Skip to content
2000
image of Shepherin II Gene Synthesis and Peptide Characterization: E. coli Expression, Purification, and Antiviral Activity

Abstract

Introduction

The shepherin II peptide is characterized by a histidine/glycine-rich sequence. This study aimed to design, express recombinantly, and evaluate the antiviral activity of shepherin II against hepatitis A virus (HAV).

Methods

The shepherin II gene was reverse-translated, cloned into the pET-3a vector, and expressed in BL21 (DE3) pLysS cells induced with 2 mM IPTG. Purification was achieved cation exchange chromatography, and intact mass analysis using mass spectrometry was carried out. Cytotoxicity on normal Vero cells and antiviral activity on HAV were evaluated.

Results

The mass spectrometry confirmed a primary peptide fragment with a molecular weight of 3,421.30 Da (100% relative abundance). SDS-PAGE verified peptide expression. Cytotoxicity tests on Vero cells showed a CC of 219.26 ± 7.91 µg/ml. Antiviral assay revealed an EC of 113.92 ± 4.58 µg/ml against HAV, resulting in a selectivity index (SI) of 1.92. This SI indicates limited selectivity compared to the reference drug amantadine, which exhibited an EC of 5.67 ± 0.71 µg/ml and an SI of 53.41.

Discussion

The recombinant expression of shepherin II was successfully achieved and confirmed by mass spectrometry and SDS-PAGE. The peptide showed measurable antiviral activity against HAV.

Conclusion

This study demonstrated the feasibility of recombinant shepherin II production and assessed its antiviral activity. However, the limited selectivity index of shepherin II remains a challenge that needs to be addressed through molecular modification or alternative delivery strategies to improve its clinical potential.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665413796251002111415
2025-10-23
2025-11-29
Loading full text...

Full text loading...

References

  1. Ma X. Aminov R. Franco O.L. de la Fuente-Nunez C. Wang G. Wang J. Editorial: Antimicrobial peptides and their druggability, bio-safety, stability, and resistance. Front. Microbiol. 2024 15 1425952 10.3389/fmicb.2024.1425952 38846567
    [Google Scholar]
  2. Okasha H. Samir S. Nasr S.M. Purified recombinant human Chromogranin A N46 peptide with remarkable anticancer effect on human colon cancer cells. Bioorg. Chem. 2021 115 June 105266 10.1016/j.bioorg.2021.105266 34449322
    [Google Scholar]
  3. Fontanot A. Ellinger I. Unger W.W.J. Hays J.P. A comprehensive review of recent research into the effects of antimicrobial peptides on biofilms—january 2020 to september 2023. Antibiotics 2024 13 4 343 10.3390/antibiotics13040343 38667019
    [Google Scholar]
  4. Xu L. Shao C. Li G. Shan A. Chou S. Wang J. Ma Q. Dong N. Conversion of broad-spectrum antimicrobial peptides into species-specific antimicrobials capable of precisely targeting pathogenic bacteria. Sci. Rep. 2020 10 1 944 10.1038/s41598‑020‑58014‑6 31969663
    [Google Scholar]
  5. Okasha H. Nasr S.M. Samir S. Recombinant expression of Cec-B peptide in Escherichia coli with a significant anticancer effect on hepatocellular carcinoma. Curr. Pharm. Biotechnol. 2021 22 9 1235 1245 10.2174/1389201022666210104121709 33397234
    [Google Scholar]
  6. Park C.J. Park C.B. Hong S.S. Lee H.S. Lee S.Y. Kim S.C. Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd’s purse, Capsella bursa-pastoris. Plant Mol. Biol. 2000 44 2 187 197 10.1023/A:1006431320677 11117262
    [Google Scholar]
  7. Lei J. Sun L. Huang S. Zhu C. Li P. He J. Mackey V. Coy D.H. He Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019 11 7 3919 3931 [PMID: 31396309
    [Google Scholar]
  8. Nasr S.M. Samir S. Okasha H. Interdisciplinary gene manipulation, molecular cloning, and recombinant expression of modified human growth hormone isoform-1 in E. coli system. Int. J. Biol. Macromol. 2024 257 Pt 1 128637 10.1016/j.ijbiomac.2023.128637 38061513
    [Google Scholar]
  9. El-Dabaa E. Okasha H. Samir S. Nasr S.M. El-Kalamawy H.A. Saber M.A. Optimization of high expression and purification of recombinant streptokinase and in vitro evaluation of its thrombolytic activity. Arab. J. Chem. 2022 15 5 103799 10.1016/j.arabjc.2022.103799
    [Google Scholar]
  10. Mohamed O.A. Samir S. Omar H. Hassan E.A. Abdelazeem E. Lab-scale preparation of recombinant human insulin-like growth factor-1 in Escherichia coli and its potential safety on normal human lung cell line. Recent Pat. Biotechnol. 2022 16 3 266 280 10.2174/1872208316666220412105822 35418294
    [Google Scholar]
  11. Wang G. The antimicrobial peptide database is 20 years old: Recent developments and future directions. Protein Sci. 2023 32 10 e4778 10.1002/pro.4778 37695921
    [Google Scholar]
  12. Wang G. Vaisman I.I. van Hoek M.L. Machine learning prediction of antimicrobial peptides. Methods Mol. Biol. 2022 2405 1 37 10.1007/978‑1‑0716‑1855‑4_1 35298806
    [Google Scholar]
  13. Wang G. Unifying the classification of antimicrobial peptides in the antimicrobial peptide database. Methods Enzymol. 2022 663 402 1 18 10.1016/j.ymeth.2022.03.009 35168785
    [Google Scholar]
  14. Wang G. Li X. Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016 44 D1 D1087 D1093 10.1093/nar/gkv1278 26602694
    [Google Scholar]
  15. Sasaki-Tanaka R. Kanda T. Yokoo T. Abe H. Hayashi K. Sakamaki A. Kamimura H. Terai S. Hepatitis A and E viruses are important agents of acute severe hepatitis in Asia: A narrative review. Pathogens 2025 14 5 454 10.3390/pathogens14050454 40430774
    [Google Scholar]
  16. Lodish H. Berk A. Zipursky S.L. Matsudaira P. DNA Cloning with Plasmid Vectors. In:Molecular Cell. Biology, Fourth edi. New York W. H. Freeman 2000
    [Google Scholar]
  17. Froger A. Hall J.E. Transformation of plasmid DNA into E. coli using the heat shock method. J. Vis. Exp. 2007 6 253 10.3791/253 18997900
    [Google Scholar]
  18. Palmer I. Wingfield P.T. Preparation and extraction of insoluble (Inclusion-body) proteins from Escherichia coli. Curr. Protoc. Protein Sci. 2012 1 70 603 10.1002/0471140864.ps0603s70
    [Google Scholar]
  19. Cortés-Ríos J. Zárate A.M. Figueroa J.D. Protein quantification by bicinchoninic acid (BCA) assay follows complex kinetics and can be performed at short incubation times. Anal. Biochem. 2020 608 113904 10.1016/j.ab.2020.113904
    [Google Scholar]
  20. Stringer K.L. Turan B. McCormick L. Durojaiye M. Nyblade L. Kempf M-C. HHS Public Access. Physiol. Behav. 2017 176 139 148
    [Google Scholar]
  21. Modimola M.S. Green E. Njobeh P. Senabe J. Fouche G. McGaw L. Nkadimeng S.M. Mathiba K. Mthombeni J. Investigating the toxicity of compounds yielded by Staphylococci on vero cells. Toxins 2022 14 10 712 10.3390/toxins14100712 36287980
    [Google Scholar]
  22. Lei C. Yang J. Hu J. Sun X. On the calculation of TCID50 for quantitation of virus infectivity. Virol. Sin. 2021 36 1 141 144 10.1007/s12250‑020‑00230‑5 32458296
    [Google Scholar]
  23. Lai Y. Han T. Zhan S. Jiang Y. Liu X. Li G. Antiviral activity of isoimperatorin against influenza A virus in vitro and its inhibition of neuraminidase. Front. Pharmacol. 2021 12 April 657826 10.3389/fphar.2021.657826 33927632
    [Google Scholar]
  24. Sinha N.J. Kloxin C.J. Saven J.G. Jensen G.V. Kelman Z. Pochan D.J. Recombinant expression of computationally designed peptide-bundlemers in Escherichia coli. J. Biotechnol. 2021 330 57 60 10.1016/j.jbiotec.2021.03.004 33689866
    [Google Scholar]
  25. Rydengård V. Shannon O. Lundqvist K. Kacprzyk L. Chalupka A. Olsson A.K. Mörgelin M. Jahnen-Dechent W. Malmsten M. Schmidtchen A. Histidine-rich glycoprotein protects from systemic Candida infection. PLoS Pathog. 2008 4 8 e1000116 10.1371/journal.ppat.1000116 18797515
    [Google Scholar]
  26. Nunes L.G.P. Reichert T. Machini M.T. His-Rich peptides, Gly- and his-rich peptides: Functionally versatile compounds with potential multi-purpose applications. Int. J. Pept. Res. Ther. 2021 27 4 2945 2963 10.1007/s10989‑021‑10302‑z
    [Google Scholar]
  27. Weber A. Gibisch M. Tyrakowski D. Cserjan-Puschmann M. Toca-Herrera J.L. Striedner G. Recombinant peptide production softens Escherichia coli cells and increases their size during C-limited fed-batch cultivation. Int. J. Mol. Sci. 2023 24 3 2641 10.3390/ijms24032641 36768962
    [Google Scholar]
  28. Stoyanov A.V. Rohlfing C.L. Connolly S. Roberts M.L. Nauser C.L. Little R.R. Use of cation exchange chromatography for human C-peptide isotope dilution – Mass spectrometric assay. J. Chromatogr. A 2011 1218 51 9244 9249 10.1016/j.chroma.2011.10.080 22098929
    [Google Scholar]
  29. Neshani A. Zare H. Akbari Eidgahi M.R. Kamali K.R. Safdari H. Khaledi A. Ghazvini K. LL-37: Review of antimicrobial profile against sensitive and antibiotic-resistant human bacterial pathogens. Gene Rep. 2019 17 100519 10.1016/j.genrep.2019.100519
    [Google Scholar]
  30. Ridyard K.E. Overhage J. The potential of human peptide ll-37 as an antimicrobial and anti-biofilm agent. Antibiotics 2021 10 6 650 10.3390/antibiotics10060650 34072318
    [Google Scholar]
  31. Neghabi H.M. Hajikhani B. Vaezjalali M. Samadi K.H. Kazemzadeh A.R. Goudarzi M. Antiviral and antibacterial peptides: Mechanisms of action. Heliyon 2024 10 22 e40121 10.1016/j.heliyon.2024.e40121 39748995
    [Google Scholar]
  32. Gagat P. Ostrówka M. Duda-Madej A. Mackiewicz P. Enhancing antimicrobial peptide activity through modifications of charge, hydrophobicity, and structure. Int. J. Mol. Sci. 2024 25 19 10821 10.3390/ijms251910821 39409150
    [Google Scholar]
  33. Zhong Q. Xiao X. Qiu Y. Xu Z. Chen C. Chong B. Zhao X. Hai S. Li S. An Z. Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm 2023 4 3 e261 10.1002/mco2.261 37143582
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665413796251002111415
Loading
/content/journals/ppl/10.2174/0109298665413796251002111415
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test