Full text loading...
Aloperine (ALO) is a vital alkaloid present in the traditional Chinese herb Sophora alopecuroides, which has demonstrated effective anti-inflammatory activity. However, the effects and the mechanism of action of ALO on cisplatin (CDDP)-induced nephrotoxicity remain unclear.
This study aimed to investigate the effects of ALO on CDDP-induced nephrotoxicity and its potential mechanism of action in vitro.
Cell viability, lactate dehydrogenase cytotoxicity, apoptosis, activity of Caspase-Glo 3/7 and 1, in-cell western blotting, immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA) were performed to assess the influence of ALO on CDDP-treated kidney cells. Inhibitors of phosphatidylinositol 3-kinase (PI3K, LY294002), protein kinase B (Akt, AKT inhibitor VIII), and nuclear factor kappa B (NFκB, BAY 11-7082) were used to determine their potential mechanisms of action.
The results indicated that ALO significantly reversed the inhibition of cell viability, cytotoxicity, apoptosis, and the release of inflammatory factors induced by CDDP in kidney cells. ALO attenuated the PI3K/AKT/NFκB-mediated pathway activated by CDDP treatment and downregulated the CDDP-induced nucleotide-binding domain, leucine-rich-containing family, pyrin domain–containing-3 (NLRP3) inflammasome. Furthermore, the PI3K and AKT inhibitors diminished the effects of ALO on CDDP-treated kidney cells. Additionally, NFκB inhibitors reversed the effects of the PI3K and AKT inhibitors on ALO in CDDP-treated kidney cells.
These results suggest that ALO protects against CDDP-induced injury in kidney cells by modulating the PI3K/AKT/NFκB-mediated NLRP3 inflammasome.
Article metrics loading...
Full text loading...
References
Data & Media loading...