Skip to content
2000
image of Role of TPD52 in Endometrial Cancer: Impact on EMT and the PI3K/AKT and ERK/MAPK Signaling

Abstract

Introduction

Endometrial carcinoma (EC) incidence and mortality continue to rise, and reliable therapeutic targets remain scarce. We aimed to define the oncogenic role and mechanism of tumor protein D52 (TPD52) in EC, focusing on epithelial–mesenchymal transition (EMT) and the PI3K/AKT and ERK/MAPK signaling pathways.

Methods

In this study, we assessed the expression levels of TPD52 in EC tissues and benign endometrial tissues using immunohistochemistry. To further investigate the role of TPD52, we performed experiments both and . We transfected siRNA and overexpression (OE) plasmids into Ishikawa and HEC-1-A cell lines to knock down (KD) or overexpress TPD52, respectively. We observed the effects of TPD52 knockdown on tumor growth and EMT through experiments.

Results

TPD52 was significantly upregulated in EC tissues compared with those of benign endometrial tissues. Silencing TPD52 significantly inhibited cell proliferation, migration, and invasion, whereas TPD52 overexpression produced the opposite effects. TPD52 facilitates epithelial-mesenchymal transition (EMT). Moreover, TPD52 stimulates the PI3K/AKT and ERK/MAPK signaling pathways.

Discussion

These data position TPD52 as a bona fide EC oncoprotein that drives EMT dual PI3K/AKT–ERK/MAPK signaling. Limitations include the modest patient cohort and the lack of clinical–pathological correlation analyses.

Conclusion

TPD52 promotes EC progression through EMT and PI3K/AKT and ERK/MAPK activation, offering a promising therapeutic target whose clinical utility warrants further investigation.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665400400251003013958
2025-10-23
2025-11-29
Loading full text...

Full text loading...

References

  1. Zhao D. Ren C. Yao Y. Wang Q. Li F. Li Y. Jiang A. Wang G. Identifying prognostic biomarkers in endometrial carcinoma based on ceRNA network. J. Cell. Biochem. 2020 121 3 2437 2446 10.1002/jcb.29466 31692050
    [Google Scholar]
  2. Pierce S.R. Fang Z. Yin Y. West L. Asher M. Hao T. Zhang X. Tucker K. Staley A. Fan Y. Sun W. Moore D.T. Xu C. Tsai Y.H. Parker J. Prabhu V.V. Allen J.E. Lee D. Zhou C. Bae-Jump V. Targeting dopamine receptor D2 as a novel therapeutic strategy in endometrial cancer. J. Exp. Clin. Cancer Res. 2021 40 1 61 10.1186/s13046‑021‑01842‑9 33557912
    [Google Scholar]
  3. Xu Q. Ge Q. Zhou Y. Yang B. Yang Q. Jiang S. Jiang R. Ai Z. Zhang Z. Teng Y. MELK promotes endometrial carcinoma progression via activating mTOR signaling pathway. EBioMedicine 2020 51 102609 10.1016/j.ebiom.2019.102609 31915116
    [Google Scholar]
  4. Zhang J. Zheng Z. Zheng J. Xie T. Tian Y. Li R. Wang B. Lin J. Xu A. Huang X. Yuan Y. Epigenetic-mediated downregulation of zinc finger protein 671 (ZNF671) predicts poor prognosis in multiple solid tumors. Front. Oncol. 2019 9 342 10.3389/fonc.2019.00342 31134149
    [Google Scholar]
  5. Yang B. Hu M. Fu Y. Sun D. Zheng W. Liao H. Zhang Z. Chen X. LASS2 mediates Nrf2-driven progestin resistance in endometrial cancer. Am. J. Transl. Res. 2021 13 3 1280 1289
    [Google Scholar]
  6. Liu T. Liu Y. Bao X. Tian J. Liu Y. Yang X. Overexpression of TROP2 predicts poor prognosis of patients with cervical cancer and promotes the proliferation and invasion of cervical cancer cells by regulating ERK signaling pathway. PLoS One 2013 8 9 e75864 10.1371/journal.pone.0075864 24086649
    [Google Scholar]
  7. Ummanni R. Teller S. Junker H. Zimmermann U. Venz S. Scharf C. Giebel J. Walther R. Altered expression of tumor protein D52 regulates apoptosis and migration of prostate cancer cells. FEBS J. 2008 275 22 5703 5713 10.1111/j.1742‑4658.2008.06697.x 18959755
    [Google Scholar]
  8. Sims A.H. Finnon P. Miller C.J. Bouffler S.D. Howell A. Scott D. Clarke R.B. TPD52 and NFKB1 gene expression levels correlate with G2 chromosomal radiosensitivity in lymphocytes of women with and at risk of hereditary breast cancer. Int. J. Radiat. Biol. 2007 83 6 409 420 10.1080/09553000701317366 17487680
    [Google Scholar]
  9. Abe Y. Mukudai Y. Kurihara M. Houri A. Chikuda J. Yaso A. Kato K. Shimane T. Shirota T. Tumor protein D52 is upregulated in oral squamous carcinoma cells under hypoxia in a hypoxia-inducible-factor-independent manner and is involved in cell death resistance. Cell Biosci. 2021 11 1 122 10.1186/s13578‑021‑00634‑0 34217360
    [Google Scholar]
  10. Cheng X. Li Z. Jia X. Fan Z. He Q. Zhuang Z. TPD52 is a prognostic biomarker and potential therapeutic target for ER+/PR+/HER2+ breast cancer. Chin Clin. Oncol. 2024 13 3 33 10.21037/cco‑23‑156 38859601
    [Google Scholar]
  11. Shehata M. Bièche I. Boutros R. Weidenhofer J. Fanayan S. Spalding L. Zeps N. Byth K. Bright R.K. Lidereau R. Byrne J.A. Nonredundant functions for tumor protein D52-like proteins support specific targeting of TPD52. Clin. Cancer Res. 2008 14 16 5050 5060 10.1158/1078‑0432.CCR‑07‑4994 18698023
    [Google Scholar]
  12. Fan Y. Hou T. Gao Y. Dan W. Liu T. Liu B. Chen Y. Xie H. Yang Z. Chen J. Zeng J. Li L. Acetylation-dependent regulation of TPD52 isoform 1 modulates chaperone-mediated autophagy in prostate cancer. Autophagy 2021 17 12 4386 4400 10.1080/15548627.2021.1917130 34034634
    [Google Scholar]
  13. Petrova D.T. Asif A.R. Armstrong V.W. Dimova I. Toshev S. Yaramov N. Oellerich M. Toncheva D. Expression of chloride intracellular channel protein 1 (CLIC1) and tumor protein D52 (TPD52) as potential biomarkers for colorectal cancer. Clin. Biochem. 2008 41 14-15 1224 1236 10.1016/j.clinbiochem.2008.07.012 18710659
    [Google Scholar]
  14. Kumamoto T. Seki N. Mataki H. Mizuno K. Kamikawaji K. Samukawa T. Koshizuka K. Goto Y. Inoue H. Regulation of TPD52 by antitumor microRNA-218 suppresses cancer cell migration and invasion in lung squamous cell carcinoma. Int. J. Oncol. 2016 49 5 1870 1880 10.3892/ijo.2016.3690 27633630
    [Google Scholar]
  15. Miao L. Jing L. Chen B. Zeng T. Chen Y. TPD52 is a potential prognostic biomarker and correlated with immune infiltration: A pan-cancer analysis. Curr. Mol. Med. 2024 24 11 1413 1425 10.2174/0115665240260252230919054858 38178662
    [Google Scholar]
  16. Miao L. Chen B. Jing L. Zeng T. Chen Y. TPD52 as a potential prognostic biomarker and its correlation with immune infiltrates in uterine corpus endometrial carcinoma: Bioinformatic analysis and experimental verification. Recent Patents Anticancer Drug Discov. 2025 20 1 71 88 10.2174/0115748928267447231107101539 38305309
    [Google Scholar]
  17. Shu L. Peng Y. Zhong L. Feng X. Qiao L. Yi Y. Expression of concern: CircZNF124 regulates cell proliferation, leucine uptake, migration and invasion by miR‐199b‐5p/SLC7A5 pathway in endometrial cancer. Immun. Inflamm. Dis. 2021 9 4 1291 1305 10.1002/iid3.477 34145797
    [Google Scholar]
  18. Ren Z. Zhang X. Han J. Expression and prognostic significance of ferroptosis-related proteins SLC7A11 and GPX4 in renal cell carcinoma. Protein Pept. Lett. 2023 30 10 868 876 10.2174/0109298665255704230920063254 37807410
    [Google Scholar]
  19. Vaisitti T. Gaudino F. Ouk S. Moscvin M. Vitale N. Serra S. Arruga F. Zakrzewski J.L. Liou H.C. Allan J.N. Furman R.R. Deaglio S. Targeting metabolism and survival in chronic lymphocytic leukemia and Richter syndrome cells by a novel NF-κB inhibitor. Haematologica 2017 102 11 1878 1889 10.3324/haematol.2017.173419 28860341
    [Google Scholar]
  20. Lee Y.J. Kang S.Y. Jo M.S. Suh D.S. Kim K.H. Yoon M.S. S100 expression in dendritic cells is inversely correlated with tumor grade in endometrial carcinoma. Obstet. Gynecol. Sci. 2014 57 3 201 207 10.5468/ogs.2014.57.3.201 24883291
    [Google Scholar]
  21. Pei L.P. Zhang Y.Z. Li G.Y. Sun J.L. Comprehensive analysis of the expression and prognosis for MCM4 in uterine corpus endometrial carcinoma. Front. Genet. 2022 13 890591 10.3389/fgene.2022.890591 35719366
    [Google Scholar]
  22. He K. Li J. Huang X. Zhao W. Wang K. Wang T. Chen J. Wang Z. Yi J. Zhao S. Zhao L. KNL1 is a prognostic and diagnostic biomarker related to immune infiltration in patients with uterine corpus endometrial carcinoma. Front. Oncol. 2023 13 1090779 10.3389/fonc.2023.1090779 36776306
    [Google Scholar]
  23. Tam S. McCarthy S. Armstrong A. Somani S. Wu S.J. Liu X. Gervais A. Ernst R. Saro D. Decker R. Luo J. Gilliland G. Chiu M. Scallon B. Functional, biophysical, and structural characterization of human IgG1 and IgG4 Fc Variants with ablated immune functionality. Antibodies 2017 6 3 12 10.3390/antib6030012 31548527
    [Google Scholar]
  24. Wang C. Hou L. Zheng W. Mu H. Chen J. Circ_0002762 regulates oncoprotein YBX1 in cervical cancer via mir-375 to regulate the malignancy of cancer cells. Protein Pept. Lett. 2023 30 2 162 172 10.2174/0929866530666230104155209 36600625
    [Google Scholar]
  25. Nonsuwan P. Niwetbowornchai N. Insawang K. Kunwong N. Srichan K. Srisawat C. Dana P. Saengkrit N. Nguyen K.T. Punnakitikashem P. Synergistic anticancer activity of resveratrol-loaded polymeric nanoparticles and sunitinib in colorectal cancer treatment. R. Soc. Open Sci. 2025 12 4 241817 10.1098/rsos.241817 40271141
    [Google Scholar]
  26. Tian S. Chen M. Jing W. Meng Q. Wu J. miR-1204 positioning in 8q24.21 involved in the tumorigenesis of colorectal cancer by targeting MASPIN. Protein Pept. Lett. 2024 31 7 544 558 10.2174/0109298665305114240718072029 39082173
    [Google Scholar]
  27. Hu W. Hu Y. Pei Y. Li R. Xu F. Chi X. Mi J. Bergquist J. Lu L. Zhang L. Yang C. Silencing DTX3L inhibits the progression of cervical carcinoma by regulating PI3K/AKT/mTOR signaling pathway. Int. J. Mol. Sci. 2023 24 1 861 10.3390/ijms24010861 36614304
    [Google Scholar]
  28. Liu Y. Wen Y. Nie Z. Jia L. AURKC promotes clear cell renal cell carcinoma proliferation through upregulation of ERp57. J. Cancer 2025 16 4 1215 1227 10.7150/jca.103134 39895780
    [Google Scholar]
  29. Weng X. Zeng L. Yan F. He M. Wu X. Zheng D. Cyclin-dependent kinase inhibitor 2B gene is associated with the sensitivity of hepatoma cells to Sorafenib. OncoTargets Ther. 2019 12 5025 5036 10.2147/OTT.S196607 31388306
    [Google Scholar]
  30. Wu M. Wu X. Han J. KIF20A promotes CRC progression and the warburg effect through the C-Myc/HIF-1α axis. Protein Pept. Lett. 2024 31 2 107 115 10.2174/0109298665256238231120093150 38037834
    [Google Scholar]
  31. Wu Q. Jin Y. Yu L. Zhang B. Chen Y. Zhan X. Liu C. Chen Z. CircPSMC3 inhibits colorectal cancer cell growth and migration by controlling miR-31-5p/YAP/β-Catenin. Protein Pept. Lett. 2023 30 6 469 476 10.2174/0929866530666230516143823 37194934
    [Google Scholar]
  32. Xiang J. Zhou L. Xie Y. Zhu Y. Xiao L. Chen Y. Zhou W. Chen D. Wang M. Cai L. Guo L. Mesh-like electrospun membrane loaded with atorvastatin facilitates cutaneous wound healing by promoting the paracrine function of mesenchymal stem cells. Stem Cell Res. Ther. 2022 13 1 190 10.1186/s13287‑022‑02865‑5 35526075
    [Google Scholar]
  33. Wei C. Li D. Liu Y. Wang W. Qiu T. Curdione induces antiproliferation effect on human uterine leiomyosarcoma via Targeting IDO1. Front. Oncol. 2021 11 637024 10.3389/fonc.2021.637024 33718227
    [Google Scholar]
  34. Yang Y. Wu G. Wang Y. Mao Q. Zhang D. Wu J. LL37 promotes angiogenesis: A potential therapeutic strategy for lower limb ischemic diseases. Front. Pharmacol. 2025 16 1587351 10.3389/fphar.2025.1587351 40337519
    [Google Scholar]
  35. Xie D.M. Chen Y. Liao Y. Lin W. Dai G. Lu D.H. Zhu S. Yang K. Wu B. Chen Z. Peng C. Jiang M.H. Cardiac derived CD51-positive mesenchymal stem cells enhance the cardiac repair through SCF-mediated angiogenesis in mice with myocardial infarction. Front. Cell Dev. Biol. 2021 9 642533 10.3389/fcell.2021.642533 33968928
    [Google Scholar]
  36. Zhang B. Li N. Zhang H. Knockdown of homeobox B5 (HOXB5) inhibits cell proliferation, migration, and invasion in non-small cell lung cancer cells through inactivation of the Wnt/β-Catenin pathway. Oncol. Res. 2018 26 1 37 44 10.3727/096504017X14900530835262 28337958
    [Google Scholar]
  37. Yang F. Gong H. Chen S. Li J. Huang N. Wang M. Depletion of SLC7A11 sensitizes nasopharyngeal carcinoma cells to ionizing radiation. Protein Pept. Lett. 2024 31 4 323 331 10.2174/0109298665308572240513113105 38779733
    [Google Scholar]
  38. Liu J. Ren X.L. Fu W. Liu Y. Xia R.M. Bronchoalveolar lavage for the treatment of neonatal pulmonary atelectasis under lung ultrasound monitoring. J. Matern. Fetal Neonatal Med. 2017 30 19 2362 2366 10.1080/14767058.2016.1248935 27756159
    [Google Scholar]
  39. Suszyńska-Zajczyk J. Witucki Ł. Perła-Kaján J. Jakubowski H. Diet-induced hyperhomocysteinemia causes sex-dependent deficiencies in offspring musculature and brain function. Front. Cell Dev. Biol. 2024 12 1322844 10.3389/fcell.2024.1322844 38559811
    [Google Scholar]
  40. Wang L. Tang Z. Li B. Peng Y. Yang X. Xiao Y. Ni R. Qi X. Myricetin ameliorates cognitive impairment in 3×Tg Alzheimer’s disease mice by regulating oxidative stress and tau hyperphosphorylation. Biomed. Pharmacother. 2024 177 116963 10.1016/j.biopha.2024.116963 38889642
    [Google Scholar]
  41. Pospieszna J. Dams-Kozlowska H. Udomsak W. Murias M. Kucinska M. Unmasking the deceptive nature of cancer stem cells: The role of CD133 in revealing their secrets. Int. J. Mol. Sci. 2023 24 13 10910 10.3390/ijms241310910 37446085
    [Google Scholar]
  42. Kouroumalis E. Tsomidis I. Voumvouraki A. Pathogenesis of hepatocellular carcinoma: The interplay of apoptosis and autophagy. Biomedicines 2023 11 4 1166 10.3390/biomedicines11041166 37189787
    [Google Scholar]
  43. Xing M. Wu B. Wang S. Heat shock protein B7 inhibits the progression of endometrial carcinoma by inhibiting PI3K/AKT/mTOR pathway. Reprod. Sci. 2023 30 2 590 600 10.1007/s43032‑022‑01041‑7 35859224
    [Google Scholar]
  44. Dai G. Sun Y. Knockdown of GNL3 inhibits LUAD cell growth by regulating Wnt–β-catenin pathway. Allergol. Immunopathol. (Madr.) 2024 52 4 46 52 10.15586/aei.v52i4.1117 38970264
    [Google Scholar]
  45. Wang B. Wang Y. Wang W. Wang Z. Zhang Y. Pan X. Wen X. Leng H. Guo J. Ma X. WTAP/IGF2BP3 mediated m6A modification of the EGR1/PTEN axis regulates the malignant phenotypes of endometrial cancer stem cells. J. Exp. Clin. Cancer Res. 2024 43 1 204 10.1186/s13046‑024‑03120‑w 39044249
    [Google Scholar]
  46. Byrne J.A. Frost S. Chen Y. Bright R.K. Tumor protein D52 (TPD52) and cancer—oncogene understudy or understudied oncogene? Tumour Biol. 2014 35 8 7369 7382 10.1007/s13277‑014‑2006‑x 24798974
    [Google Scholar]
  47. Zhao Z. Liu H. Hou J. Li T. Du X. Zhao X. Xu W. Xu W. Chang J. Tumor protein D52 (TPD52) inhibits growth and metastasis in renal cell carcinoma cells through the PI3K/Akt signaling pathway. Oncol. Res. 2017 25 5 773 779 10.3727/096504016X14774889687280 27983909
    [Google Scholar]
  48. Li L. Qi L. Liang Z. Song W. Liu Y. Wang Y. Sun B. Zhang B. Cao W. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int. J. Mol. Med. 2015 36 1 113 122 10.3892/ijmm.2015.2222 26005723
    [Google Scholar]
  49. Slomovitz B.M. Coleman R.L. The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin. Cancer Res. 2012 18 21 5856 5864 10.1158/1078‑0432.CCR‑12‑0662 23082003
    [Google Scholar]
  50. Lei S. He X. Yang X. Gu X. He Y. Wang J. A mechanism study of DUSP1 in inhibiting malignant progression of endometrial carcinoma by regulating ERK/AP-1 axis and dephosphorylation of EPHA2. J. Cancer 2023 14 4 634 645 10.7150/jca.81069 37057290
    [Google Scholar]
  51. Wu C. Cheng W. Apolipoprotein E enhances migration of endometrial cancer cells byactivating the ERK/MMP9 signaling pathway. J. Southern Med. University 2023 43 2 232 10.12122/j.issn.1673‑4254.2023.02.11
    [Google Scholar]
  52. Luo L. Xu L. Tang L. The expression of ER, PR in endometrial cancer and analysis of their correlation with ERK signaling pathway. Cancer Biomark. 2017 21 1 145 149 10.3233/CBM‑170457 29081408
    [Google Scholar]
  53. Zhang X. Qi G. Zhang X. Wang L. Li F. lncRNA RHPN1‐AS1 promotes the progression of endometrial cancer through the activation of ERK/MAPK pathway. J. Obstet. Gynaecol. Res. 2021 47 2 533 543 10.1111/jog.14548 33169491
    [Google Scholar]
  54. Manohar S.M. At the crossroads of TNF α signaling and cancer. Curr. Mol. Pharmacol. 2023 17 1 e080923220828 10.2174/1874467217666230908111754 37691196
    [Google Scholar]
  55. Karati D. Kumar D. Molecular insight into the apoptotic mechanism of cancer cells: An explicative review. Curr. Mol. Pharmacol. 2024 17 e18761429273223 10.2174/0118761429273223231124072223 38389419
    [Google Scholar]
  56. Chen J. Lin A. Luo P. Advancing pharmaceutical research: A comprehensive review of cutting-edge tools and technologies. Curr. Pharm. Anal. 2024 21 1 1 19 10.1016/j.cpan.2024.11.001
    [Google Scholar]
  57. Wang Z. Zhao Y. Zhang L. Emerging trends and hot topics in the application of multi-omics in drug discovery: A bibliometric and visualized study. Curr. Pharm. Anal. 2024 21 1 20 32 10.1016/j.cpan.2024.12.001
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665400400251003013958
Loading
/content/journals/ppl/10.2174/0109298665400400251003013958
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test