Pharmaceutical Nanotechnology - Volume 12, Issue 4, 2024
Volume 12, Issue 4, 2024
-
-
Hydrogel-based Drug Delivery System in Diabetes Management
Authors: Renu Saharan, Jaspreet Kaur, Sanchit Dhankhar, Nitika Garg, Samrat Chauhan, Suresh Beniwal and Himanshu SharmaBackground: It is estimated that there are over 200 million people living with diabetes mellitus (DM) all over the world. It is a metabolic condition caused by decreased insulin action or secretion. Diabetes Mellitus is also known as Type 2 Diabetes Mellitus. Type 1 diabetes mellitus and type 2 diabetes mellitus are the two most common types of DM. Treatment for type 1 diabetes often consists of insulin replacement therapy, while treatment for type 2 diabetes typically consists of oral hypoglycemics. Objectives: Conventional dosing schedules for the vast majority of these medications come with a number of drawbacks, the most common of which are frequent dosing, a short half-life, and low bioavailability. Thus, innovative and regulated oral hypoglycemic medication delivery methods have been developed to reduce the limitations of standard dose forms. Methods: The studies and reviews published under the title were looked up in several databases (including PubMed, Elsevier, and Google Scholar). Results: Hydrogels made from biopolymers are three-dimensional polymeric networks that can be physically or chemically crosslinked. These networks are based on natural polymers and have an inherent hydrophilic quality because of the functional groups they contain. They have a very high affinity for biological fluids in addition to a high water content, softness, flexibility, permeability, and biocompatibility. The fact that these features are similar to those of a wide variety of soft living tissues paves the way for several potentials in the field of biomedicine. In this sense, hydrogels offer excellent platforms for the transport of medications and the controlled release of those drugs. Additionally, biopolymer-based hydrogels can be put as coatings on medical implants in order to improve the biocompatibility of the implants and to prevent medical diseases. Conclusion: The current review focuses on the most recent advancements made in the field of using biopolymeric hydrogels that are physically and chemically crosslinked, in addition to hydrogel coatings, for the purpose of providing sustained drug release of oral hypoglycemics and avoiding problems that are associated with the traditional dosage forms of oral hypoglycemics.
-
-
-
Cyclodextrin Nanosponges: A Revolutionary Drug Delivery Strategy
Authors: Sonia Singh, Khushi Sharma and Himanshu SharmaNanosponges are porous solid cross-linked polymeric nanostructures. This study focuses on cyclodextrin-based nanosponges. Nanosponges based on cyclodextrin can form interactions with various lipophilic or hydrophilic compounds. The release of the entrapped molecules can be altered by altering the structure to obtain either a longer or faster release kinetics. The nanosponges might increase the aqueous solubility of weakly water-soluble compounds, develop long-lasting delivery systems, or construct novel drug carriers for nanomedicine. CD-NS (cyclodextrin-based nanosponges) are evolving as flexible and promising nanomaterials for medication administration, sensing, and environmental cleanup. CD-NS are three-dimensional porous structures of cyclodextrin molecules cross-linked by a suitable polymeric network, resulting in a large surface area. This overview covers CD-NS synthesis methods and applications.
-
-
-
Nanotechnology-based Nose-to-brain Delivery in Epilepsy: A Novel Approach to Diagnosis and Treatment
Authors: Javed Khan and Shikha YadavEpilepsy is a serious neurological disease, and scientists have a significant challenge in developing a noninvasive treatment for the treatment of epilepsy. The goal is to provide novel ideas for improving existing and future anti-epileptic medications. The injection of nano treatment via the nose to the brain is being considered as a possible seizure control method. Various nasal medicine nanoformulations have the potential to cure epilepsy. Investigations with a variety of nose-to-brain dosing methods for epilepsy treatment have yielded promising results. After examining global literature on nanotechnology and studies, the authors propose nasal administration with nanoformulations as a means to successfully treat epilepsy. The goal of this review is to look at the innovative application of nanomedicine for epilepsy treatment via nose-to-brain transfer, with a focus on the use of nanoparticles for load medicines. When nanotechnology is combined with the nose to brain approach, treatment efficacy can be improved through site specific delivery. Furthermore, this technique of administration decreases adverse effects and patient noncompliance encountered with more traditional procedures.
-
-
-
Nanoemulsion of Ethanolic Extract of Centella asiatica (NanoSECA) Ameliorates Learning and Memory Performance by Enhancing Cholinergic Activities, Increasing Antioxidative Levels, and Attenuating Oxidative Stress Markers in Adult Rats
Background: Centella asiatica (C. asiatica) has long been traditionally used as a memory enhancer. Nanoemulsion of ethanolic extract C. asiatica (NanoSECA) has been developed to improve brain functions. However, the effect of NanoSECA on enhancing memory and cognitive functions remains unexplored. Objectives: This research aimed to investigate the potential of NanoSECA on cognitive tasks and memory enhancement pathways in a normal adult rat model. Methods: Thirty male Sprague Dawley rats (7-8 weeks old) were randomly subjected to five groups (n=six per group). Treatment groups were supplemented with NanoSECA and ethanolic extract of C. asiatica (SECA) for 28 days by oral gavages. Different brain sections were isolated, homogenized, and tested for acetylcholinesterase, antioxidants (glutathione and malondialdehyde), and anti-inflammatory agents (nitric oxide, tumour necrosis factor-α, and prostaglandin E2). Results: NanoSECA supplementation markedly enhanced the acetylcholine, glutathione levels and reduced a distinct diminution in plasma activities of acetylcholinesterase, malondialdehyde, nitric oxide, prostaglandin E, and tumor necrosis factor-α levels. Conclusion: NanoSECA can be used as a memory enhancer through enhanced cholinergic activity, increased antioxidant level, and reduced oxidative stress.
-
-
-
Green Synthesis of Silver Nanoparticles using Morinda citrifolia Linn Leaf Extract and its Antioxidant, Antibacterial and Anticancer Potential
More LessIntroduction: Nanomedicine has emerged as a revolutionary regimen for moderating communicable as well as non-communicable diseases. Purpose: This study demonstrated the phytosynthesis of silver nanoparticles using M. citrifolia leaf extract (MC-AgNPs) and their in vitro antioxidant, antibacterial and anticancer potential. Materials and Methods: The Biosynthesis of MC-AgNPs was studied by spectroscopy and characterized by SEM, TEM, XRD and FTIR analysis. The antibacterial activity was checked by minimum inhibition concentration assay. The HeLa and MCF-7 cancer cell lines were used to explore the cytotoxicity and genotoxicity activity of biogenic MC-AgNPs. Results: The free radical scavenging potential of MC-AgNPs was studied by in vitro DPPH and ABTS assays, which confirmed significant radical scavenging activity in a dose-dependent manner with IC50 of 17.70 ± 0.36 μg/mL for DPPH and 13.37 ± 3.15 μg/mL for ABTS radicals. The bactericidal effects of MC-AgNPs confirmed by MIC showed 0.1 mg/mL concentration of MC-AgNPs with greater sensitivity for E.coli (93.33 ± 0.89), followed by K. pneumoniae (90.99 ± 0.57), S. aureus (87.26 ± 2.80) and P. aeruginosa strains (44.68 ± 0.73). The cytotoxicity results depicted strong dose and timedependent toxicity of biogenic MC-AgNPs against cancer cell lines fifty percent inhibitory concentration MC-AgNPs against HeLa cells were 13.56 ± 1.22 μg/mL after 24h and 5.57 ± 0.12 μg/mL after 48 h exposure, likewise 16.86 ± 0.88 μg/mL and 11.60 ± 0.97 μg/mL respectively for MCF-7 cells. Conclusions: The present study revealed the green synthesis of silver nanoparticles using M. citrifolia and their significant antioxidant, antibacterial and anticancer activities.
-
-
-
Tyrosol-loaded Nano-niosomes Attenuate Diabetic Injury by Targeting Glucose Metabolism, Inflammation, and Glucose Transfer
Introduction: The increasing prevalence of type 2 diabetes, has become a global concern, making it imperative to control. Chemical drugs commonly recommended for diabetes treatment cause many complications and drug resistance over time. Methods: The polyphenol tyrosol has many health benefits, including anti-diabetes properties. Tyrosol's efficacy can be significantly increased when it is used as a niosome in the treatment of diabetes. In this study, Tyrosol and nano-Tyrosol are examined for their effects on genes implicated in type 2 diabetes in streptozotocin-treated rats. Niosome nanoparticles containing 300 mg surfactant (span60: tween60) and 10 mg cholesterol were hydrated in thin films with equal molar ratios. After 72 hours, nano-niosomal formulas were assessed for their physicochemical properties. MTT assays were conducted on HFF cells to assess the cellular toxicity of the nano niosome contacting optimal Tyrosol. Finally, the expression of PEPCK, GCK, TNF-#145;, IL6, GLUT2 and GLUT9 was measured by real-time PCR. Physiochemical properties of the SEM images of niosomes loaded with Tyrosol revealed the nanoparticles had a vehicular structure. Results: In this study, there were two stages of release: initial release (8 hours) and sustainable release (72 hours). Meanwhile, free-form drugs were considerably more toxic than niosomal drugs in terms of their cellular toxicity. An in vivo comparison of oral Tyrosol gavage with nano-Tyrosol showed a significant increase in GCK (P < 0.001), GLUT2 (P < 0.001), and GLUT9 (P < 0.001). Furthermore, nano-Tyrosol decreased the expression of TNF-#145; (P < 0.05), PEPCK (P < 0.001), and IL-6 (P < 0.05) which had been increased by diabetes mellitus. The results confirmed nano-Tyrosol's anti-diabetes and anti-inflammatory effects. Conclusion: These findings suggest that nano-Tyrosol has potential applications in diabetes treatment and associated inflammation. Further research is needed to better understand the mechanism of action.
-
-
-
Curcumin- β-Cyclodextrin Molecular Inclusion Complex: A Water- Soluble Complex in Fast-dissolving Tablets for the Treatment of Neurodegenerative Disorders
Background: Orally disintegrating tablets (ODTs) have become an excellent choice for delivering drugs as their palatability is greatly improved. In this work, β-cyclodextrin has been used to improve the solubility of curcumin by encapsulating it into the hydrophobic cavity for the treatment of neurodegenerative disorders. Objectives: The current study aimed to present the design, formulation, and optimisation of fastdissolving oral tablets of curcumin- β-cyclodextrin molecular inclusion complex using a 32-factorial design. Methods: The drug-excipient compatibility was studied by FTIR spectroscopy. The inclusion complex of curcumin-β-cyclodextrin was prepared using solvent casting and confirmed using XRD studies. Powder blends were evaluated for flow properties. Tablets prepared by direct compression were evaluated for post-compression parameters. Further, the effect of formulation variables, such as sodium starch glycolate (X1) and Neusilin® ULF2 (X2), on various responses, including disintegration time and dissolution at 2 hours, was studied using statistical models. Results: Post-compression parameters, i.e., hardness (4.4-5 kg/cm2), thickness (3.82-3.93 mm), weight variation (±7.5%), friability (< 1%), wetting time (51-85 seconds) and drug content (96.28- 99.32%) were all found to be within the permissible limits and the disintegration time of tablets with super-disintegrants ranged between 45-58 seconds. The in-vitro dissolution profile of tablets showed that higher SSG and Neuslin® ULF2 levels promoted drug release. For statistical analysis, the 2FI model was chosen. Optimised variables for formulation have been determined and validated with the experimental findings based on the significant desirability factor. Conclusion: The current study reveals the validated curcumin-β-cyclodextrin inclusion complex fastdissolving tablets with SSG and Neusilin® ULF2 to be an ideal choice for effectively treating neurodegenerative disorders.
-
Most Read This Month
