Pharmaceutical Nanotechnology - Volume 12, Issue 3, 2024
Volume 12, Issue 3, 2024
-
-
Nanotechnology-based Drug Delivery of Topical Antifungal Agents
Authors: Sumita Singh, Vaishali M. Patil, Sarvesh K. Paliwal and Neeraj MasandAmong the various prominent fungal infections, superficial ones are widespread. A large number of antifungal agents and their formulations for topical use are commercially available. They have some pharmacokinetic limitations which cannot be retracted by conventional delivery systems. While nanoformulations composed of lipidic and polymeric nanoparticles have the potential to overcome the limitations of conventional systems. The broad spectrum category of antifungals i.e. azoles (ketoconazole, voriconazole, econazole, miconazole, etc.) nanoparticles have been designed, prepared and their pharmacokinetic and pharmacodynamic profile was established. This review briefly elaborates on the types of nano-based topical drug delivery systems and portrays their advantages for researchers in the related field to benefit the available antifungal therapeutics.
-
-
-
Nanobiosensors: Concepts and Emerging Clinical Applications
Authors: Sagar Desai, Raghavendra R. Naveen, Prakash S Goudanavar and Buduru GowthamiBiosensors have been one of the most fascinating topics for scientists for a long time. This is because biological moieties are multifaceted and are unswervingly related to the presence of a healthy atmosphere. The biosensor approach has also endured profound changes in recent years. Biosensors have been emphasized for various applications, including food quality estimation, surveillance systems, and health and metabolic abnormality diagnostics. The advances in nanotechnology have led to a considerable potential to enhance biosensors' sensitivity, robustness, and anti-interference capabilities. Several new nanomaterials (such as nanoparticles, nanotubes, nanorods, and nanowires) have been fabricated due to the evolution of nanotechnology, and their unique features are gradually being identified, allowing for much faster detection and reproducibility. Biosensor performance has also been enhanced substantially as a result of their use. Because of their capacity to detect a wide range of compounds at deficient concentrations, nanobiosensors have sparked much interest. This article discusses biosensors based on various nanomaterials, their evolution, accompanying features, and their applications in multiple fields.
-
-
-
A Comprehensive Review on Niosomes as a Tool for Advanced Drug Delivery
Authors: Shivani Sharma, Akash Garg, Rutvi Agrawal, Himansu Chopra and Devender PathakOver the past few decades, advancements in nanocarrier-based therapeutic delivery have been significant, and niosomes research has recently received much interest. The self-assembled nonionic surfactant vesicles lead to the production of niosomes. The most recent nanocarriers, niosomes, are self-assembled vesicles made of nonionic surfactants with or without the proper quantities of cholesterol or other amphiphilic molecules. Because of their durability, low cost of components, largescale production, simple maintenance, and high entrapment efficiency, niosomes are being used more frequently. Additionally, they enhance pharmacokinetics, reduce toxicity, enhance the solubility of poorly water-soluble compounds, & increase bioavailability. One of the most crucial features of niosomes is their controlled release and targeted diffusion, which is utilized for treating cancer, infectious diseases, and other problems. In this review article, we have covered all the fundamental information about niosomes, including preparation techniques, niosomes types, factors influencing their formation, niosomes evaluation, applications, and administration routes, along with recent developments.
-
-
-
Applications of Nanotechnology-mediated Herbal Nanosystems for Ophthalmic Drug
Authors: Dipthi Shree, Chinam N. Patra and Biswa Mohan SahooIn recent years, herbal nanomedicines have gained tremendous popularity for novel drug discovery. Nanotechnology has provided several advances in the healthcare sector, emerging several novel nanocarriers that potentiate the bioavailability and therapeutic efficacy of the herbal drug. The recent advances in nanotechnology with accelerated strategies of ophthalmic nanosystems have paved a new path for overcoming the limitations associated with ocular drug delivery systems, such as low bioavailability, poor absorption, stability, and precorneal drug loss. Ophthalmic drug delivery is challenging due to anatomical and physiological barriers. Due to the presence of these barriers, the herbal drug entry into the eyes can be affected when administered by following multiple routes, i.e., topical, injectables, or systemic. However, the advancement of nanotechnology with intelligent systems enables the herbal active constituent to successfully entrap within the system, which is usually difficult to reach employing conventional herbal formulations. Herbal-loaded nanocarrier drug delivery systems demonstrated enhanced herbal drug permeation and prolonged herbal drug delivery. In this current manuscript, an extensive search is conducted for original research papers using databases Viz., PubMed, Google Scholar, Science Direct, Web of Science, etc. Further painstaking efforts are made to compile and update the novel herbal nanocarriers such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, nanostructure lipid carriers, micelles, niosomes, nanoemulsions, dendrimers, etc., which are mostly used for ophthalmic drug delivery system. This article presents a comprehensive survey of diverse applications used for the preventative measures and treatment therapy of varied eye disorders. Further, this article highlights the recent findings that the innovators are exclusively working on ophthalmic nanosystems for herbal drug delivery systems. The nanocarriers are promising drug delivery systems that enable an effective and supreme therapeutic potential circumventing the limitations associated with conventional ocular drug delivery systems. The nanotechnology-based approach is useful to encapsulate the herbal bioactive and prevent them from degradation and therefore providing them for controlled and sustained release with enhanced herbal drug permeation. Extensive research is still being carried out in the field of herbal nanotechnology to design an ophthalmic nanosystem with improved biopharmaceutical properties.
-
-
-
Preparation, Physicochemical Characterization, and Stability Study of Lippia origanoides Essential Oil-based Nanoemulsion as a Topical Delivery System
Introduction: Fungal diseases are a priority in research, development, and health care, according to the WHO, mainly due to Candida spp. Essential oils (EOs) of the genus Lippia have demonstrated broad antimicrobial biological activity. Previous studies identified the anti-Candida potential of a thymol/p-cymene chemotype EO from Lippia origanoides H.B.K coded “0018”. Nanoemulsions favor the biological activity of EOs and overcome limitations such as low solubility, instability against oxidizing agents, pH, light, and low permeability. To develop, characterize, and adjust a prototype of an O/W nanoemulsion containing the "0018” EO from Lippia origanoides for its evaluation in an in vitro permeability study. Methods: Nanoemulsions were obtained using a high energy high shear method. Their particle size distribution, Z potential, viscosity, pH, encapsulation efficiency (EE), thermodynamic stability and the Turbiscan Stability Index (TSI) were evaluated. The nanoemulsion prototype was adjusted to improve performance characteristics and microbiological efficacy. Thymol was used as an analyte in the EO quantification using UHPLC-DAD. Results: An O/W nanoemulsion with hydrodynamic diameter <200 nm and polydispersity index <0.3, EE >95%, with TSI < 1.5, anti-Candida albicans efficiency >95% was obtained; permeable with a flow of 6.0264 μg/cm2/h and permeability coefficient of 1.3170x10-3 cm/h. Conclusion: A pharmaceutical formulation prototype is obtained that maintains the physical and physicochemical characteristics over time. Permeability is verified in an in-vitro model. It is proposed to evaluate its antifungal activity in preclinical or clinical studies as a contribution to the treatment of topical fungal diseases caused by Candida spp., through the use of biological resources and Colombian biodiversity.
-
-
-
Effect of Curcumin-containing Nanofibrous Gelatin-hydroxyapatite Scaffold on Proliferation and Early Osteogenic Differentiation of Dental Pulp Stem Cells
Authors: Solmaz M. Dizaj, Yashar Rezaei, Fatemeh Namaki, Simin Sharifi and Elaheh Dalir AbdolahiniaBackground: In recent years, the electrospinning method has received attention because of its usage in producing a mimetic nanocomposite scaffold for tissue regeneration. Hydroxyapatite and gelatin are suitable materials for producing scaffolds, and curcumin has the osteogenesis induction effect. Aims: This study aimed to evaluate the toxicity and early osteogenic differentiation stimulation of nanofibrous gelatin-hydroxyapatite scaffold containing curcumin on dental pulp stem cells (DPSCs). Objective: The objective of the present investigation was the evaluation of the proliferative effect and primary osteogenic stimulation of DPSCs with a nanofibrous gelatin-hydroxyapatite scaffold containing curcumin. Hydroxyapatite and gelatin were used as suitable and biocompatible materials to make a scaffold suitable for stimulating osteogenesis. Curcumin was added to the scaffold as an osteogenic differentiation- enhancing agent. Methods: The effect of nano-scaffold on the proliferation of DPSCs was evaluated. The activity of alkaline phosphatase (ALP) as the early osteogenic marker was considered to assess primary osteogenesis stimulation in DPSCs. Results: The nanofibrous gelatin-hydroxyapatite scaffold containing curcumin significantly increased the proliferation and the ALP activity of DPSCs (P<0.05). The proliferative effect was insignificant in the first 2 days, but the scaffold increased cell proliferation by more than 40% in the fourth and sixth days. The prepared scaffold increased the activity of the ALP of DPSCs by 60% compared with the control after 14 days (p<0.05). Conclusion: The produced nanofibrous gelatin-hydroxyapatite scaffold containing curcumin can be utilized as a potential candidate in tissue engineering and regeneration of bone and tooth. Future Prospects: The prepared scaffold in the present study could be a beneficial biomaterial for tissue engineering and the regeneration of bone and tooth soon.
-
-
-
Preparation, Characterization, and Evaluation of the Anticancer Effect of Mesoporous Silica Nanoparticles Containing Rutin and Curcumin
Aims and Objective: The aim of this study was the preparation of mesoporous silica nanoparticles co-loaded with rutin and curcumin (Rut-Cur-MSNs) and the assessment of its physicochemical properties as well as its cytotoxicity on the head and neck cancer cells (HN5). Besides, ROS generation of HN5 cells exposed to Rut-Cur-MSNs was evaluated. Several investigations showed that rutin and curcumin have potential effects as anticancer phytochemicals; however, their low aqueous solubility and poor bioavailability limited their applications. The assessment of physicochemical properties and anticancer effect of prepared nanoparticles was the objective of this study. Methods: The physicochemical properties of produced nanoparticles were evaluated. The toxicity of Rut-Cur-MSNs on HN5 cells was assessed. In addition, the ROS production in cells treated with Rut- Cur-MSNs was assessed compared to control untreated cells. Results: The results showed that Rut-Cur-MSNs have mesoporous structure, nanometer size and negative surface charge. The X-ray diffraction pattern showed that the prepared nanoparticles belong to the family of silicates named MCM-41. The cytotoxicity of Rut-Cur-MSNs at 24 h was significantly higher than that of rutin-loaded MSNs (Rut-MSNs) and curcumin-loaded MSNs (Cur-MSNs) (p<0.05). Conclusion: The achieved results recommend that the prepared mesoporous silica nanoparticles containing rutin and curcumin can be a useful nanoformulation for the treatment of cancer. The produced nanomaterial in this study can be helpful for cancer therapy.
-
-
-
Janus Dendrimers as Nanocarriers of Ibuprofen, Chlorambucil and their Anticancer Activity
Background: Janus Dendrimer represents a novel class of synthetic nanocarriers. Since it is possible to introduce multiple drugs and target moieties, this helps the designing of new biocompatible forms with pharmacological activities comprised of different drugs with tailor-made functionalities, such as anticancer and nonsteroidal anti-inflammatory, which could improve the anticancer activity with less toxicity. Aims: This study aimed to determine the anticancer activity of the Janus dendrimers formed by two dendrons. One dendron conjugates with chlorambucil, and the other dendron conjugates with Ibuprofen. Methods: The cytotoxicity of the drug carriers was determined by the sulforhodamine B (SRB) assay for three cell lines. PC-3 (human prostatic adenocarcinoma), HCT-15 (human colorectal adenocarcinoma), MFC-7 (human breast cancer) and the COS-7 African green monkey kidney (used as a control) cell lines were seeded into 96-well plates at a density of 5x103 cells/well and cultured for 24 h before use. All the obtained compounds were characterized by 1H and 13C NMR one and two dimensions, UVvis, FTIR, MALDI-TOF, Electrospray mass, and FAB+. Microscopic images were taken in an Inverted microscope Nikon, Diaphot 300, 10x4 in culture medium. Results: Janus dendrimers (G1 and G2) were synthesized via an azide-alkyne click-chemistry reaction attaching on one face dendrons with ibuprofen molecules and, on the other face, attached a chlorambucil- derivative. The IC50 behavior of the conjugates of the first and second generations showed anticancer activity against PC-3, HCT-15, and MFC-7 cell lines. The second generation was more active against PC-3, HCT-15 and MFC-7 with IC50 of 3.8±0.5, 3.0±0.2 and 3.7 ± 1.1 mM, respectively. Conclusion: The new Janus dendrimers with anticancer chlorambucil and nonsteroidal antiinflammatory Ibuprofen can improve the anticancer activity of chlorambucil with less toxicity. Future Prospects: Now, we are working on the synthesis of new Janus dendrimers using the most effective and fine methods. Moreover, we hope that we shall be able to obtain different generations that are more selective against cancer cells.
-
Most Read This Month
