Pharmaceutical Nanotechnology - Volume 10, Issue 4, 2022
Volume 10, Issue 4, 2022
-
-
Novel Herbal Nanocarriers for Treatment of Dermatological Disorders
Authors: Dipthi Shree, Chinam N. Patra and Biswa Mohan SahooBackground and Objective: In the present scenario, the use of novel nanocarriers to provide a better therapy regimen is noteworthy. Nanotechnology with the advanced system enables the herbs for encapsulation within the smart carrier and boosts the nanotherapeutic. These emerging innovations of herbal nanocarriers have paved the way for dermal targeting by eliciting the desired response for particular diseases. Methods: In this current manuscript, an extensive search is conducted for the original research papers using databases, viz., Google Scholar, PubMed, Science Direct, etc. Furthermore, painstaking efforts are made to compile and update the novel herbal nanocarriers, such as liposomes, ethosomes, transferosomes, niosomes, nanoemulsions, nanogels, nanostructured lipid carriers, solid lipid carriers, etc., which are mostly used for the treatment of several skin maladies, viz., eczema, psoriasis, acne, etc. This article highlights the recent findings that the innovators are exclusively working on herbal drug delivery systems for dermal targeting, and these are enumerated in the form of tables. Conclusion: Herbal formulations employing a suitable nanocarrier could be a promising approach for the treatment of several pathological conditions, including skin ailments. Therefore, scientific research is still being carried out in this specific area for a better perspective in herbal drug delivery and targeting.
-
-
-
Protein-Based Drug Delivery Nanomedicine Platforms: Recent Developments
Background: Naturally occurring protein cages, both viral and non-viral assemblies, have been developed for various pharmaceutical applications. Protein cages are ideal platforms as they are compatible, biodegradable, bioavailable, and amenable to chemical and genetic modification to impart new functionalities for selective targeting or tracking of proteins. The ferritin/ apoferritin protein cage, plant-derived viral capsids, the small Heat shock protein, albumin, soy and whey protein, collagen, and gelatin have all been exploited and characterized as drugdelivery vehicles. Protein cages come in many shapes and types with unique features such as unmatched uniformity, size, and conjugations. Objectives: The recent strategic development of drug delivery will be covered in this review, emphasizing polymer-based, specifically protein-based, drug delivery nanomedicine platforms. The potential and drawbacks of each kind of protein-based drug-delivery system will also be highlighted. Methods: Research examining the usability of nanomaterials in the pharmaceutical and medical sectors were identified by employing bibliographic databases and web search engines. Results: Rings, tubes, and cages are unique protein structures that occur in the biological environment and might serve as building blocks for nanomachines. Furthermore, numerous virions can undergo reversible structural conformational changes that open or close gated pores, allowing customizable accessibility to their core and ideal delivery vehicles. Conclusion: Protein cages' biocompatibility and their ability to be precisely engineered indicate they have significant potential in drug delivery and intracellular administration.
-
-
-
Targeted Nanotherapies for the Posterior Segment of the Eye: An Integrative Review on Recent Advancements and Challenges
Authors: Niva R. Gogoi, Daphisha Marbaniang, Paulami Pal, Subhabrata Ray and Bhaskar MazumderThe eye is a one-of-a-kind sensory organ with intricate anatomy and physiology. It is protected by a variety of barriers, ranging from static barriers to dynamic barriers. Although these barriers are very effective at protecting the eye from exogenous substances and external stress, they are highly compromised by various vision-impairing diseases of both the anterior and the posterior segment of the eye. Due to ocular elimination systems and intricate obstacles that selectively limit drug entry into the eye, effective drug delivery to the posterior segment of the eye (PSE) continues to be a challenge in ophthalmology. Since more than half of the most debilitating eye illnesses are thought to originate in the posterior segment (PS), understanding the physiology and clearance mechanism of the eye could help design improved formulations that could be noninvasive and intended for targeted posterior segment therapeutics. Moreover, the major drawback associated with the conventional drug delivery system to PSE is minimal therapeutic drug concentration in the desired ocular tissue and life-threatening ophthalmic complications. One possible approach that can be implemented to overcome these ocular barriers for efficient ocular therapy, non-invasive and targeted drug action to the posterior tissues is by designing nanomedicines. This review summarizes the recent non-invasive and patient compliant advances in designing nanomedicines targeting PSE. The various routes and pathways of drug administration to the ocular tissue are also summarized.
-
-
-
Nanobiotechnology-Modified Cellular and Molecular Therapy as a Novel Approach for Autoimmune Diabetes Management
Authors: Priyanka V. Lawand and Shivani DesaiSeveral cellular and molecular therapies such as stem cell therapy, cell replacement therapy, gene modification therapy, and tolerance induction therapy have been researched to procure a permanent cure for Type 1 Diabetes. However, due to the induction of undesirable side effects, their clinical utility is questionable. These anti-diabetic therapies can be modified with nanotechnological tools for reducing adverse effects by selectively targeting genes and/or receptors involved directly or indirectly in diabetes pathogenesis, such as the glucagon-like peptide 1 receptor, epidermal growth factor receptor, human leukocyte antigen (HLA) gene, miRNA gene and hepatocyte growth factor (HGF) gene. This paper will review the utilities of nanotechnology in stem cell therapy, cell replacement therapy, beta-cell proliferation strategies, immune tolerance induction strategies, and gene therapy for type 1 diabetes management.
-
-
-
SEDDS Basic Design and Recent Formulation Advancement: A Concurrent Review
Authors: K.C. Panigrahi, C.N. Patra, M.E.B. Rao, G.K. Jena and L. SahooIn the present scenario, lipid-based novel drug delivery systems are the area of interest for the formulation scientist in order to improve the bioavailability of poorly water-soluble drugs. A selfemulsifying drug delivery system (SEDDS) upon contact with the gastrointestinal fluid, forms an o/w emulsion. SEDDS has gained popularity as a potential platform for improving the bioavailability of the lipophilic drug by overcoming several challenges. The various advantages like improved solubility, bypassing lymphatic transport, and improvement in bioavailability are associated with SMEDDS or SNEDDS. The extent of the formation of stable SEDDS depends on a specific combination of surfactant, co-surfactant, and oil. The present review highlighted the different aspects of formulation design along with optimization and characterization of SEDDS formulation. It also gives a brief description of the various aspects of the excipients used in SEDDS formulation. This review also includes the conflict between types of SEDDS based on droplet size. There is an extensive review of various research regarding different solidification techniques used for SEDDS in the last three years.
-
-
-
Effect of Banana (Musa sp.) Peels Extract in Nanoemulsion Dosage Forms for the Improvement of Memory: In Vitro & In Vivo Studies
Authors: Nur Achsan Al-Hakim, Irda Fidrianny, Kusnandar Anggadiredja and Rachmat MauludinBackground: Banana (Musa sp.) is a plant rich in phytochemical compounds, especially antioxidants, which are hypothesized to inhibit the activity of acetylcholinesterase, an enzyme associated with Alzheimer's Disease. Objective: This research aimed to study nanoemulsion preparations of Kepok banana (KEP-NE) and Tanduk banana (TAN-NE) peel extracts for their activities as antioxidants, acetylcholinesterase as well as tyrosinase inhibitors, and as agents to improve short-term memory. Methods: Nanoemulsion was prepared using a combination of high shear homogenization and ultrasonication. The antioxidant activity test was carried out using DPPH and ABTS methods. Meanwhile, memory improvement was studied in a mouse model with memory impairment induced by alloxan (120 mg/kg b.w) using the Y-maze apparatus. ELISA performed determination of acetylcholinesterase and tyrosinase inhibition. Results: Characterization of the nanoemulsion was performed to include particle size, antioxidant activity, acetylcholinesterase, and tyrosinase inhibition. The particle size and polydispersity index (PI) of KEP-NE and TAN-NE were 84.2 nm (PI: 0.280) and 94.1 nm (PI: 0.282), respectively. The antioxidant activity of DPPH showed that the respective IC50 values of KEP-NE and TAN-NE were 0.64 μg/mL and 1.97 μg/mL. At the same time, the values with the ABTS method were 1.10 μg/mL and 1.72 μg/mL, respectively. The IC50 of KEP-NE on acetylcholinesterase inhibition was 108.80 μg/mL, and that on tyrosinase inhibition was 251.47 μg/mL. The study of short-term memory in the Y-maze revealed that the groups Kepok peel extracts 100 and 300 mg/kg b.w and KEP-NE 100 and 300 mg/kg b.w significantly (P < 0.05) improved short-term memory. Conclusion: This study suggests that the nanoemulsion dosage form of Kepok banana peel extract has antioxidant and acetylcholinesterase inhibition and tyrosinase inhibition activities and could potentially be an adjunct alternative treatment for memory disorders. Modifying the smaller drug particle size contributes to the delivery system. The nanoemulsion can increase pharmacological activity.
-
-
-
Development of Copper Nanoparticle Conjugated Chitosan Microparticle as a Stable Source of 2nm Copper Nanoparticle Effective against Methicillin- resistant Staphylococcus aureus
Background: Copper nanoparticle (CuNP) has well-established antimicrobial activity. Instability in an aqueous medium due to aggregation into larger particles, conversion into metal ions, and oxidation into metal oxides are the major limitations of its practical use against bacterial infections. Objective: Development of CuNP Conjugated Chitosan Microparticles as a reservoir that will release CuNP effective against notorious bacteria like Methicillin-resistant Staphylococcus aureus. Methods: CuNP conjugated chitosan microparticles (CNCCM) were synthesized using a simple twostep process. In the first step, a solution of chitosan in 2% (w/v) ascorbic acid was added dropwise in copper sulphate solution to prepare Cu ion conjugated chitosan beads. In the second step, these beads were soaked in sodium hydroxide solution to get the CNCCM. The dried CNCCM were characterized thoroughly for surface conjugation of CuNP, and the release of CuNP in a suitable medium. The physicochemical properties of release CuNP were further verified with the in silico modelled CuNP. The Antimicrobial and antibiofilm activities of released CuNp were evaluated against methicillin-resistant Staphylococcus aureus (MRSA). Results: 2% (w/v) ascorbic acid solution (pH 3.5) was the optimum medium for the release of ~2 nm CuNP from CNCCM. The CuNP had an optical band gap of ∼ 2 eV. It inhibited the cell wall synthesis of MRSA. The minimum inhibitory concentration was 200 nM. At 100 nM dose, the CuNP caused ~73% reduction in biofilm development after 24 h of growth. The cytotoxic effect of CuNP on the human cell line (HEK 293) was significantly less than that on MRSA. The 48 h IC50 value against HEK 293 was 3.45-fold higher than the MIC value against MRSA after 24 h treatment. Conclusion: CuNP Conjugated Chitosan Microparticle has been developed. It works as a stable reservoir of ∼2 nm CuNP. The CuNP is released in an aqueous medium containing 2% (w/v) ascorbic acid (pH 3.5). The released CuNP has a bacteriostatic effect against MRSA at a concentration safe for human cells.
-
Most Read This Month
