Skip to content
2000
Volume 13, Issue 5
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Nanotechnology is rapidly transforming various fields, including medicine, environmental conservation, agriculture, and pharmaceuticals. The production of metallic nanoparticles is a key area within this field, known for its innovative applications. However, traditional chemical and physical methods used for nanoparticle synthesis often involve toxic chemicals and are expensive, making them unsuitable for large-scale production. To address these issues, there has been a growing focus on developing sustainable, cost-effective, and eco-friendly methods. One promising approach is the biological synthesis of metallic nanoparticles. This technique combines principles from biology and nanotechnology, using natural sources such as plant extracts, bacteria, fungi, yeast, and algae to produce nanoparticles in an environmentally friendly way. This review examines the biological synthesis of various metal nanoparticles, including platinum, palladium, gold, and silver. It explores different green methods used for their production and discusses the mechanisms that enable these biological processes. Additionally, the review highlights the diverse applications of these nanoparticles, from environmental cleanup and heavy metal removal to cancer treatment and drug delivery. By focusing on green synthesis methods, this approach not only reduces environmental impact but also offers a scalable, sustainable alternative to traditional nanoparticle production techniques. As research in this area advances, these eco-friendly methods are expected to play a crucial role in the future of nanotechnology.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385353296241119072148
2024-12-12
2025-12-26
Loading full text...

Full text loading...

References

  1. OzcakirG. Applications of nanomaterials in food industry: A review.Mater. Proc.2023142210.3390/IOCN2023‑14470
    [Google Scholar]
  2. IslamG.M.N. Applications of nanotechnology in textiles.RE:view2019
    [Google Scholar]
  3. YadavK. SahuK.K. SuchetaS.P.E. GnanakaniS.P.E. SureP. VijayalakshmiR. SundarV.D. SharmaV. AntilR. JhaM. MinzS. BagchiA. PradhanM. Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: Mechanistic challenges, delivery strategies, and therapeutic applications.Int. J. Biol. Macromol.202324112458210.1016/j.ijbiomac.2023.12458237116843
    [Google Scholar]
  4. ZhangY. WangY. Nonlinear optical properties of metal nanoparticles: A review.RSC Advances2017771451294514410.1039/C7RA07551K
    [Google Scholar]
  5. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  6. BurlecA.F. CorciovaA. BoevM. Batir-MarinD. MirceaC. CioancaO. DanilaG. DanilaM. BucurA.F. HancianuM. Current overview of metal nanoparticles' synthesis, characterization, and biomedical applications, with a focus on silver and gold nanoparticlesPharmaceuticals (Basel)20231610141010.3390/ph16101410
    [Google Scholar]
  7. BorhanA.I. IordanA.R. GhercăD. PalamaruM.N. Pal SinghJ. ChaeK.H. SrivastavaR.C. CaltunO.F. 7 - Ferrite nanoparticles by sol–gel method.Ferrite Nanostructured Magn. Mater.Woodhead Publishing202310311910.1016/B978‑0‑12‑823717‑5.00047‑4
    [Google Scholar]
  8. KumariS. RaturiS. KulshresthaS. ChauhanK. DhingraS. AndrásK. ThuK. KhargotraR. SinghT. A comprehensive review on various techniques used for synthesizing nanoparticles.J. Mater. Res. Technol.2023271739176310.1016/j.jmrt.2023.09.291
    [Google Scholar]
  9. Vinnacombe-WillsonG.A. ContiY. StefancuA. WeissP.S. CortésE. ScarabelliL. Direct bottom-up in situ growth: A paradigm shift for studies in wet-chemical synthesis of gold nanoparticles.Chem. Rev.2023123138488852910.1021/acs.chemrev.2c0091437279171
    [Google Scholar]
  10. MwenzeN.M. JumaM. MaazaM. BirechZ. DhlaminiM.S. Laser liquid ablation for silver nanoparticles synthesis and conjugation with hydroxychloroquine for Covid-19 treatment.Mater. Today Proc.202310.1016/j.matpr.2023.08.195
    [Google Scholar]
  11. KashyapP. ShirkotP. DasR. PandeyH. SinghD. Biosynthesis and characterization of copper nanoparticles from Stenotrophomonas maltophilia and its effect on plant pathogens and pesticide degradation.J. Agric. Food Res.20231310065410.1016/j.jafr.2023.100654
    [Google Scholar]
  12. KhatunM. KhatunZ. KarimM.R. HabibM.R. RahmanM.H. AzizM.A. Green synthesis of silver nanoparticles using extracts of Mikania cordata leaves and evaluation of their antioxidant, antimicrobial and cytotoxic properties.Food Chem. Adv.2023310038610.1016/j.focha.2023.100386
    [Google Scholar]
  13. ItuenE. SinghA. YuanhuaL. AkarantaO. Biomass-mediated synthesis of silver nanoparticles composite and application as green corrosion inhibitor in oilfield acidic cleaning fluid.Clean. Eng. Technol.2021310011910.1016/j.clet.2021.100119
    [Google Scholar]
  14. BahariN. HashimN. AbdanK. Md AkimA. MaringgalB. Al-ShdifatL. Role of honey as a bifunctional reducing and capping/stabilizing agent: Application for Silver and Zinc Oxide nanoparticles.Nanomaterials (Basel)2023137124410.3390/nano1307124437049336
    [Google Scholar]
  15. BanuR. Bhagavanth ReddyG. AyodhyaD. RamakrishnaD. KotuG.M. Biogenic Pd-nanoparticles from Lantana trifolia seeds extract: Synthesis, characterization, and catalytic reduction of textile dyes.Results Chem.2023510073710.1016/j.rechem.2022.100737
    [Google Scholar]
  16. YounasM. RasoolM.H. KhurshidM. KhanA. NawazM.Z. AhmadI. LakhanM.N. Moringa oleifera leaf extract mediated green synthesis of silver nanoparticles and their antibacterial effect against selected gram-negative strains.Biochem. Syst. Ecol.202310710460510.1016/j.bse.2023.104605
    [Google Scholar]
  17. KashyapM. SamadhiyaK. GhoshA. AnandV. LeeH. SawamotoN. OguraA. OhshitaY. ShirageP.M. BalaK. Synthesis, characterization and application of intracellular Ag/AgCl nanohybrids biosynthesized in Scenedesmus sp. as neutral lipid inducer and antibacterial agent.Environ. Res.202120111149910.1016/j.envres.2021.11149934146525
    [Google Scholar]
  18. NagarajaK. HemalathaD. AnsarS. Tae HwanO. Tae HwanO. Novel, biosynthesis of Palladium nanoparticles using Strychnos Potatorum Polysaccharide as a green sustainable approach; and their effective Catalytic Hydrogenation of 4-Nitrophenol.Int. J. Biol. Macromol.2023253Pt 412698310.1016/j.ijbiomac.2023.12698337739284
    [Google Scholar]
  19. DowlathM.J.H. MusthafaS.A. Mohamed KhalithS.B. VarjaniS. KaruppannanS.K. RamanujamG.M. ArunachalamA.M. ArunachalamK.D. ChandrasekaranM. ChangS.W. ChungW.J. RavindranB. Comparison of characteristics and biocompatibility of green synthesized iron oxide nanoparticles with chemical synthesized nanoparticles.Environ. Res.202120111158510.1016/j.envres.2021.11158534181925
    [Google Scholar]
  20. ZhangH. ChenS. JiaX. HuangY. JiR. ZhaoL. Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles.Sci. Total Environ.202175214226410.1016/j.scitotenv.2020.14226433207511
    [Google Scholar]
  21. GariboD. Borbón-NuñezH.A. de LeónJ.N.D. García MendozaE. EstradaI. Toledano-MagañaY. TiznadoH. Ovalle-MarroquinM. Soto-RamosA.G. BlancoA. RodríguezJ.A. RomoO.A. Chávez-AlmazánL.A. Susarrey-ArceA. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity.Sci. Rep.20201011280510.1038/s41598‑020‑69606‑732732959
    [Google Scholar]
  22. SotoK.M. López-RomeroJ.M. MendozaS. Peza-LedesmaC. Rivera-MuñozE.M. Velazquez-CastilloR.R. Pineda-PiñónJ. Méndez-LozanoN. Manzano-RamírezA. Rapid and facile synthesis of gold nanoparticles with two Mexican medicinal plants and a comparison with traditional chemical synthesis.Mater. Chem. Phys.202329512710910.1016/j.matchemphys.2022.127109
    [Google Scholar]
  23. PoorshamohammadC. LiuL. ChengX. Abbas Momtazi-BorojeniA. ChaiJ. Green synthesis of plant-stabilized Au nanoparticles for the treatment of gastric carcinoma.Arab. J. Chem.202316110438610.1016/j.arabjc.2022.104386
    [Google Scholar]
  24. Al-KhafajiM.A.A. Al-Refai’aR.A.K. Al-ZamelyO.M.Y. Green synthesis of copper nanoparticles using artemisia plant extract.Mater. Today Proc.2022492831283510.1016/j.matpr.2021.10.067
    [Google Scholar]
  25. Kumar BhardwajV. PurohitR. KumarS. Himalayan bioactive molecules as potential entry inhibitors for the human immunodeficiency virus.Food Chem.202134712893210.1016/j.foodchem.2020.12893233465692
    [Google Scholar]
  26. DarR.A. ShahnawazM. AhangerM.A. MajidI. Exploring the diverse bioactive compounds from medicinal plants: A review.Journal of Phytopharmacology202312318919510.31254/phyto.2023.12307
    [Google Scholar]
  27. TesfayeM. GonfaY. TadesseG. TemesgenT. PeriyasamyS. Green synthesis of silver nanoparticles using Vernonia amygdalina plant extract and its antimicrobial activities.Heliyon202396e1735610.1016/j.heliyon.2023.e1735637383214
    [Google Scholar]
  28. BaroiA.M. SieniawskaE. ŚwiątekŁ. FierascuI. Grape waste materials—an attractive source for developing nanomaterials with versatile applications.Nanomaterials (Basel)202313583610.3390/nano1305083636903714
    [Google Scholar]
  29. BenassaiE. Del BubbaM. AncillottiC. ColziI. GonnelliC. CalisiN. SalvaticiM.C. CasaloneE. RistoriS. Green and cost-effective synthesis of copper nanoparticles by extracts of non-edible and waste plant materials from Vaccinium species: Characterization and antimicrobial activity.Mater. Sci. Eng. C202111911145310.1016/j.msec.2020.11145333321590
    [Google Scholar]
  30. ZamanY. IshaqueM.Z. AjmalS. ShahzadM. SiddiqueA.B. HameedM.U. KanwalH. RamalingamR.J. SelvarajM. YasinG. Tamed synthesis of AgNPs for photodegradation and anti-bacterial activity: Effect of size and morphology.Inorg. Chem. Commun.202315011052310.1016/j.inoche.2023.110523
    [Google Scholar]
  31. WasilewskaA. KlekotkaU. ZambrzyckaM. ZambrowskiG. ŚwięcickaI. Kalska-SzostkoB. Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis.Food Chem.202340013396010.1016/j.foodchem.2022.13396036063680
    [Google Scholar]
  32. Nieto-MaldonadoA. Bustos-GuadarramaS. Espinoza-GomezH. Flores-LópezL.Z. Ramirez-AcostaK. Alonso-NuñezG. Cadena-NavaR.D. Green synthesis of copper nanoparticles using different plant extracts and their antibacterial activity.J. Environ. Chem. Eng.20221010713010.1016/j.jece.2022.107130
    [Google Scholar]
  33. MythiliR. SelvankumarT. SrinivasanP. SengottaiyanA. SabastinrajJ. AmeenF. Al-SabriA. Kamala-KannanS. GovarthananM. KimH. Biogenic synthesis, characterization and antibacterial activity of gold nanoparticles synthesised from vegetable waste.J. Mol. Liq.201826231832110.1016/j.molliq.2018.04.087
    [Google Scholar]
  34. ArgenzianoR. Agustin-SalazarS. PanaroA. CalarcoA. Di SalleA. ApreaP. CerrutiP. PanzellaL. NapolitanoA. Combining the potent reducing properties of Pecan nutshell with a solvent-free mechanochemical approach for synthesizing high Ag° content-silver nanoparticles: An eco-friendly Route to an efficient multifunctional photocatalytic, antibacterial, and antioxidant material.Nanomaterials (Basel)202313582110.3390/nano1305082136903701
    [Google Scholar]
  35. BloiseE. LazzoiM.R. MergolaL. Del SoleR. MeleG. Advances in nanomaterials based on cashew nut shell liquid.Nanomaterials (Basel)20231317248610.3390/nano1317248637686994
    [Google Scholar]
  36. PatilT.P. VibhuteA.A. PatilS.L. DongaleT.D. TiwariA.P. Green synthesis of gold nanoparticles via Capsicum annum fruit extract: Characterization, antiangiogenic, antioxidant and anti-inflammatory activities.Applied Surface Science Advances20231310037210.1016/j.apsadv.2023.100372
    [Google Scholar]
  37. Al-RadadiN.S. Ephedra mediated green synthesis of gold nanoparticles (AuNPs) and evaluation of its antioxidant, antipyretic, anti-asthmatic, and antimicrobial properties.Arab. J. Chem.202316110435310.1016/j.arabjc.2022.104353
    [Google Scholar]
  38. DöllE.G. SantanaE.R. WiniarskiJ.P. BaumgartenL.G. VieiraI.C. Green synthesis of gold nanoparticles using peach extract Incorporated in Graphene for the electrochemical determination of antioxidant Butylated hydroxyanisole in food matricesBiosensors (Basel)20231312103710.3390/bios13121037
    [Google Scholar]
  39. BaranM.F. KeskinC. BaranA. HatipoğluA. YildiztekinM. KüçükaydinS. KurtK. HoşgörenH. SarkerM.M.R. SufianovA. BeylerliO. KhalilovR. EftekhariA. Green synthesis of silver nanoparticles from Allium cepa L. Peel extract, their antioxidant, Antipathogenic, and Anticholinesterase activity.Molecules2023285231010.3390/molecules2805231036903556
    [Google Scholar]
  40. TakcıD.K. OzdenefeM.S. GencS. Green synthesis of silver nanoparticles with an antibacterial activity using Salvia officinalis aqueous extract.J. Cryst. Growth202361412723910.1016/j.jcrysgro.2023.127239
    [Google Scholar]
  41. Dinesh RamG. Praveen KumarS. SrinivasanT.K. AravindT. RamyaS. LingarajaD. BhuvaneshwariG. Green synthesis of silver nanoparticles using Chrysopogon zizanioides root extract and their antibacterial activities.Mater. Today Proc.202310.1016/j.matpr.2023.01.026
    [Google Scholar]
  42. AlzubaidiA.K. Al-KaabiW.J. AliA.A. AlbukhatyS. Al-KaragolyH. SulaimanG.M. AsiriM. KhaneY. Green synthesis and characterization of silver nanoparticles using Flaxseed extract and evaluation of their antibacterial and antioxidant activities.Appl. Sci. (Basel)2023134218210.3390/app13042182
    [Google Scholar]
  43. SanchetiR.S. SamreenS. GiteA.B. PatilP.N. PatilM.P. ShahH.H. PatilA.M. TodarwalM.A. PatilM.T. Cordia sebestena leaf extract mediated biosynthesis of silver nanoparticles, characterization, and screening of its antimicrobial activities.Green Analytical Chemistry2023610007510.1016/j.greeac.2023.100075
    [Google Scholar]
  44. SelvamK. SudhakarC. Ragu PrasathA. Green synthesis and characterization of silver nanoparticles from sandalwood (Santalum album L.) extract for efficient catalytic reduction, antioxidant and antibacterial activity.Biocatal. Agric. Biotechnol.20245710309410.1016/j.bcab.2024.103094
    [Google Scholar]
  45. Md IshakN.A.I. KamarudinS.K. TimmiatiS.N. Mohd SauidS. A KarimN. BasriS. Green synthesis of platinum nanoparticles as a robust electrocatalyst for methanol oxidation reaction: Metabolite profiling and antioxidant evaluation.J. Clean. Prod.202338213511110.1016/j.jclepro.2022.135111
    [Google Scholar]
  46. ZhangY. ChengS. JiaH. ZhouJ. XiJ. WangJ. ChenX. WuL. Green synthesis of platinum nanoparticles by Nymphaea tetragona flower extract and their skin lightening, antiaging effects.Arab. J. Chem.202316110439110.1016/j.arabjc.2022.104391
    [Google Scholar]
  47. EltaweilA.S. FawzyM. HosnyM. Abd El-MonaemE.M. TamerT.M. OmerA.M. Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications.Arab. J. Chem.202215110351710.1016/j.arabjc.2021.103517
    [Google Scholar]
  48. RehmanK. KhanS.U. TahirK. ZamanU. KhanD. NazirS. KhanW.U. KhanM.I. UllahK. AnjumS.I. BibiR. Sustainable and green synthesis of novel acid phosphatase mediated platinum nanoparticles (ACP-PtNPs) and investigation of its in vitro antibacterial, antioxidant, hemolysis and photocatalytic activities.J. Environ. Chem. Eng.202210310762310.1016/j.jece.2022.107623
    [Google Scholar]
  49. JayaseelanE. NixonP.D. JosephB. Role OF KIT-6 on the fungicide and pesticide activities of zinc, copper and magnesium oxide nanoparticles prepared using Camellia sinensis extract (tea plant) through green synthesis, nano-struct.Nano-Objects20243810111910.1016/j.nanoso.2024.101119
    [Google Scholar]
  50. ArunS.B. KarthikB.M. YatishK.V. PrashanthK.N. BalakrishnaG.R. Green synthesis of copper oxide nanoparticles using the Bombax ceiba plant: Biodiesel production and nano-additive to investigate diesel engine performance-emission characteristics.Energy202327412734510.1016/j.energy.2023.127345
    [Google Scholar]
  51. AtriA. EchabaaneM. BouzidiA. HarabiI. SoucaseB.M. Ben ChaâbaneR. Green synthesis of copper oxide nanoparticles using Ephedra Alata plant extract and a study of their antifungal, antibacterial activity and photocatalytic performance under sunlight.Heliyon202392e1348410.1016/j.heliyon.2023.e1348436816263
    [Google Scholar]
  52. GayathriT. Logesh KumarS. SangaviS. YudhikaM. SwathyM. Green synthesis of copper oxide nanoparticles using Carica papaya and their antimicrobial activity.Mater. Today Proc.202310.1016/j.matpr.2023.11.136
    [Google Scholar]
  53. PaiM. AhmedE. BatakurkiS. KumarS.G. KusanurR. Green synthesis of Palladium magnetic nanoparticles decorated on carbon nanospheres using Chenopodium and their application as heterogenous catalyst in the Suzuki-Miyaura coupling reaction.Applied Surface Science Advances20231610042710.1016/j.apsadv.2023.100427
    [Google Scholar]
  54. JayamaniT. Arul Prasad TA. Edal QueenJ. Scholastica Mary VithiyaB. TamizhduraiP. Siva KumarN. Al-FateshA.S. Reddy KoduruJ. Catalytic reduction of anionic and cationic toxic dyes and evaluation of antimicrobial activity using green synthesized palladium nanoparticles employing Carica papaya aqueous leaf extract.J. Saudi Chem. Soc.202327610175910.1016/j.jscs.2023.101759
    [Google Scholar]
  55. BiS. SrivastavaR. Rosa damascena leaf extract mediated palladium nanoparticles and their anti-inflammatory and analgesic applications.Inorg. Chem. Commun.202416211212210.1016/j.inoche.2024.112122
    [Google Scholar]
  56. KamarajC. NaveenkumarS. PremP. RagavendranC. SubramaniyanV. Al-GhanimK.A. MalafaiaG. NicolettiM. GovindarajanM. Green synthesis and biophysical characterization of silver and palladium nanoparticles using Laureliopsis philippiana: A potent eco-friendly larvicide with negligible impact on zebrafish (Danio rerio).J. Asia Pac. Entomol.202326410216410.1016/j.aspen.2023.102164
    [Google Scholar]
  57. AlamuG.A. AyanlolaP.S. BabalolaK.K. AdedokunO. SanusiY.K. FajinmiG.R. Green synthesis and characterizations of magnetic iron oxide nanoparticles using Moringa oleifera extract for improved performance in dye-sensitized solar cell.Chemical Physics Impact2024810054210.1016/j.chphi.2024.100542
    [Google Scholar]
  58. DuanY.T. SoniK. PatelD. ChoksiH. SanganiC.B. Sharaf SaeedW. Lalit AmetaK. Kumar AmetaR. Green synthesis of iron oxide nanoparticles using Nicotiana plumbaginifolia and their biological evaluation.J. Mol. Liq.202439612398510.1016/j.molliq.2024.123985
    [Google Scholar]
  59. GamindaK.A.P. ThomasI.B.K. LakmauriP. AbeysingheT. JayasingheC. SenthilnithyR. Green synthesis of iron nanoparticles using Syzygium aromaticum extracts and their applications: Nitrate removal, malachite green degradation and antibacterial activity.Environ. Nanotechnol. Monit. Manag.20242110092510.1016/j.enmm.2024.100925
    [Google Scholar]
  60. JoJ.H. SinghP. KimY.J. WangC. MathiyalaganR. JinC.G. YangD.C. Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles.Artif. Cells Nanomed. Biotechnol.20164461576158110.3109/21691401.2015.106879226232081
    [Google Scholar]
  61. SaeedS. IqbalA. AshrafM.A. Bacterial-mediated synthesis of silver nanoparticles and their significant effect against pathogens.Environ. Sci. Pollut. Res. Int.20202730373473735610.1007/s11356‑020‑07610‑032130634
    [Google Scholar]
  62. TiwariM. JainP. Chandrashekhar HariharapuraR. NarayananK. Bhat KU. UdupaN. RaoJ.V. Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate.Process Biochem.201651101348135610.1016/j.procbio.2016.08.008
    [Google Scholar]
  63. CekuolyteK. GudiukaiteR. KlimkeviciusV. MazrimaiteV. ManeikisA. LastauskieneE. Biosynthesis of silver nanoparticles produced using Geobacillus spp. bacteria.Nanomaterials (Basel)202313470210.3390/nano1304070236839070
    [Google Scholar]
  64. Ren LoiH. AbbasiliasiS. Bothi RajaP. Shamzi MohamedM. TanW.N. Suan NgH. Chi-Wei LanJ. Shun TanJ. Biosynthesis of silver nanoparticles using nitrate reductase produced by Lactobacillus plantarum CAM 4: Characterization and in vitro evaluation of its antimicrobial efficiency.J. Mol. Liq.202337612147610.1016/j.molliq.2023.121476
    [Google Scholar]
  65. Solís-SandíI. Cordero-FuentesS. Pereira-ReyesR. Vega-BaudritJ.R. Batista-MenezesD. Montes de Oca-VásquezG. Optimization of the biosynthesis of silver nanoparticles using bacterial extracts and their antimicrobial potential.Biotechnol. Rep. (Amst.)202340e0081610.1016/j.btre.2023.e0081638020726
    [Google Scholar]
  66. XiaF. TaoX. WangH. ShuiJ. MinC. XiaY. LiJ. TangM. LiuZ. HuY. LuoH. ZouM. Biosynthesis of silver nanoparticles using the biofilm supernatant of Pseudomonas aeruginosa PA75 and evaluation of their antibacterial, antibiofilm, and antitumor activities.Int. J. Nanomedicine2023182485250210.2147/IJN.S41031437192897
    [Google Scholar]
  67. ShunmugamR. Renukadevi BalusamyS. KumarV. MenonS. LakshmiT. PerumalsamyH. Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis.J. King Saud Univ. Sci.202133110126010.1016/j.jksus.2020.101260
    [Google Scholar]
  68. MollaniaH. Oloomi-buygiM. MollaniaN. Catalytic and anti-cancer properties of platinum, gold, silver, and bimetallic Au-Ag nanoparticles synthesized by Bacillus sp. bacteria.J. Biotechnol.2024379334510.1016/j.jbiotec.2023.11.00738049076
    [Google Scholar]
  69. Anjali DasC.G. Ganesh KumarV. DharaniG. Stalin DhasT. KarthickV. Vineeth KumarC.M. EmbrandiriA. Macroalgae-associated halotolerant marine bacteria Exiguobacterium aestuarii ADCG SIST3 synthesized gold nanoparticles and its anticancer activity in breast cancer cell line (MCF-7).J. Mol. Liq.202338312206110.1016/j.molliq.2023.122061
    [Google Scholar]
  70. WeiS. ZhengQ. Biosynthesis and characterization of zinc sulphide nanoparticles produced by the bacterium Lysinibacillus sp. SH74.Ceram. Int.20245022637264210.1016/j.ceramint.2023.10.246
    [Google Scholar]
  71. ShanmugamR. MunusamyT. JayakodiS. Al-GhanimK.A. NicolettiM. SachivkinaN. GovindarajanM. Probiotic-bacteria (Lactobacillus fermentum)-wrapped zinc oxide nanoparticles: Biosynthesis, characterization, and antibacterial activity.Fermentation (Basel)20239541310.3390/fermentation9050413
    [Google Scholar]
  72. AshourM.A. Abd-ElhalimB.T. Biosynthesis and biocompatibility evaluation of zinc oxide nanoparticles prepared using Priestia megaterium bacteria.Sci. Rep.2024141414710.1038/s41598‑024‑54460‑838378738
    [Google Scholar]
  73. ElshaerS. ShaabanM.I. Antibiofilm activity of biosynthesized silver and copper nanoparticles using Streptomyces S29.AMB Express202313113910.1186/s13568‑023‑01647‑338055099
    [Google Scholar]
  74. QasimM. YaaqoobL. Evaluation of antibacterial activity of Iron oxide nanoparticles synthesis by extracellular Lactobacillus against Pseudomonas Aeruginosa2023Available from: https://www.jmchemsci.com/article_159625.html
  75. KhanA.A. KhanS. KhanS. RentschlerS. LauferS. DeignerH.P. Biosynthesis of iron oxide magnetic nanoparticles using clinically isolated Pseudomonas aeruginosa.Sci. Rep.20211112050310.1038/s41598‑021‑99814‑834654851
    [Google Scholar]
  76. RothM.G. WestrickN.M. BaldwinT.T. Fungal biotechnology: From yesterday to tomorrow.Front. Fungal Biol.20234113526310.3389/ffunb.2023.113526337746125
    [Google Scholar]
  77. PrescottT.A.K. HillR. Mas-ClaretE. GayaE. BurnsE. Fungal drug discovery for chronic disease: History, new discoveries and new approaches.Biomolecules202313698610.3390/biom1306098637371566
    [Google Scholar]
  78. YassinM.A. ElgorbanA.M. El-SamawatyA.E.R.M.A. AlmunqedhiB.M.A. Biosynthesis of silver nanoparticles using Penicillium verrucosum and analysis of their antifungal activity.Saudi J. Biol. Sci.20212842123212710.1016/j.sjbs.2021.01.06333911928
    [Google Scholar]
  79. Soltani NejadM. Samandari NajafabadiN. AghighiS. PakinaE. ZargarM. Evaluation of Phoma sp. Biomass as an endophytic fungus for synthesis of extracellular gold nanoparticles with antibacterial and antifungal properties.Molecules2022274118110.3390/molecules2704118135208971
    [Google Scholar]
  80. SantosT.S. PassosE.M. SeabraM.G.J. SoutoE.B. SeverinoP. MendonçaM.C. Entomopathogenic fungi biomass production and extracellular biosynthesis of silver nanoparticles for bioinsecticide action.Appl. Sci. (Basel)2021116246510.3390/app11062465
    [Google Scholar]
  81. TyagiS. TyagiP.K. GolaD. ChauhanN. BhartiR.K. Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: Characterization and antibacterial potential.SN Appl. Sci.2019112154510.1007/s42452‑019‑1593‑y
    [Google Scholar]
  82. AktherT. KhanM.S. SH. Biosynthesis of silver nanoparticles via fungal cell filtrate and their anti-quorum sensing against Pseudomonas aeruginosa.J. Environ. Chem. Eng.20208610436510.1016/j.jece.2020.104365
    [Google Scholar]
  83. ClaranceP. LuvankarB. SalesJ. KhusroA. AgastianP. TackJ.C. Al KhulaifiM.M. AL-ShwaimanH.A. ElgorbanA.M. SyedA. KimH.J. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications.Saudi J. Biol. Sci.202027270671210.1016/j.sjbs.2019.12.02632210692
    [Google Scholar]
  84. IranmaneshS. Shahidi BonjarG.H. BaghizadehA. Study of the biosynthesis of gold nanoparticles by using several saprophytic fungi.SN Appl. Sci.2020211185110.1007/s42452‑020‑03704‑z
    [Google Scholar]
  85. SriramuluM. SumathiS. Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour.ANS20189202501810.1088/2043‑6254/aac506
    [Google Scholar]
  86. Ramesh KumarB. DeviramG. MathimaniT. DucP.A. PugazhendhiA. Microalgae as rich source of polyunsaturated fatty acids.Biocatal. Agric. Biotechnol.20191758358810.1016/j.bcab.2019.01.017
    [Google Scholar]
  87. MoraesL.C. FigueiredoR.C. Ribeiro-AndradeR. Pontes-SilvaA.V. ArantesM.L. GianiA. FigueredoC.C. High diversity of microalgae as a tool for the synthesis of different silver nanoparticles: A species-specific green synthesis.Colloid Interface Sci. Commun.20214210042010.1016/j.colcom.2021.100420
    [Google Scholar]
  88. RosyidahA. PurbaniD.C. PratiwiR.D. MuttaqienS.E. NantapongN. WarsitoM.F. FikriM.N. RuthF. GustiniN. SyahputraG. PadriM. NoerdjitoD.R. NurkantoA. AfaniH. Eco-friendly synthesis of gold nanoparticles by marine microalgae Synechococcus moorigangae: Characterization, antimicrobial, and antioxidant properties.Kuwait Journal of Science202451210019410.1016/j.kjs.2024.100194
    [Google Scholar]
  89. ZhaoK. ZhaoX. GaoT. LiX. WangG. PanX. WangJ. Dielectrophoresis-assisted removal of Cd and Cu heavy metal ions by using Chlorella microalgae.Environ. Pollut.202333412211010.1016/j.envpol.2023.12211037390915
    [Google Scholar]
  90. ChakravortyM. NandaM. BishtB. SharmaR. KumarS. MishraA. VlaskinM.S. ChauhanP.K. KumarV. Heavy metal tolerance in microalgae: Detoxification mechanisms and applications.Aquat. Toxicol.202326010655510.1016/j.aquatox.2023.10655537196506
    [Google Scholar]
  91. ChughD. ViswamalyaV.S. DasB. Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process.J. Genet. Eng. Biotechnol.202119112610.1186/s43141‑021‑00228‑w34427807
    [Google Scholar]
  92. SonbolH. AmeenF. AlYahyaS. AlmansobA. AlwakeelS. Padina boryana mediated green synthesis of crystalline palladium nanoparticles as potential nanodrug against multidrug resistant bacteria and cancer cells.Sci. Rep.2021111544410.1038/s41598‑021‑84794‑633686169
    [Google Scholar]
  93. AryaA. GuptaK. ChundawatT.S. In vitro antimicrobial and antioxidant activity of biogenically synthesized palladium and platinum nanoparticles using Botryococcus braunii.Turk. J. Pharm. Sci.202017329930610.4274/tjps.galenos.2019.9410332636708
    [Google Scholar]
  94. MouzakiM. MarouiI. MirY. LemkhenteZ. AttaouiH. El OuardyK. LbouhmadiR. MouineH. Green synthesis of silver nanoparticles and their antibacterial activities.Green Processing and Synthesis20221111136114710.1515/gps‑2022‑0061
    [Google Scholar]
  95. SS. MP. KkU. MsV.D. SN. KG. AM. S. S Bioynthesis of silver nanoparticles using Dunaliella salina and its antibacterial applications.ASSA20231310037710.1016/j.apsadv.2023.100377
    [Google Scholar]
  96. El ShehawyA.S. ElsayedA. El-ShehabyO.A. AliE.M. Potentiality of the green synthesized silver nanoparticles for heavy metal removal using Laurencia papillosa seaweed.Egypt. J. Aquat. Res.202349451351910.1016/j.ejar.2023.10.001
    [Google Scholar]
  97. BorahD. DasN. SarmahP. GhoshK. ChandelM. RoutJ. PandeyP. GhoshN.N. BhattacharjeeC.R. A facile green synthesis route to silver nanoparticles using cyanobacterium Nostoc carneum and its photocatalytic, antibacterial and anticoagulative activity.Mater. Today Commun.20233410511010.1016/j.mtcomm.2022.105110
    [Google Scholar]
  98. AnwarS.J. YusoffH.M. BhatI.U.H. ErnL.K. Remediation of dye-contaminated water using brown algae seaweed Supported Copper Nanoparticles.Arab. J. Sci. Eng.202449147549610.1007/s13369‑023‑08199‑5
    [Google Scholar]
  99. El OuardyK. LbouhmadiR. AttaouiH. MouzakiM. MouineH. LemkhenteZ. MirY. Biosynthesis and characterization of silver nanoparticles produced by Parachlorella kessleri and Cyclotella spp., and the evaluation of their antibacterial activity.Int. J. Mol. Sci.202324131059910.3390/ijms24131059937445777
    [Google Scholar]
  100. VenckusP. EndriukaitytėI. ČekuolytėK. GudiukaitėR. PakalniškisA. LastauskienėE. Effect of biosynthesized silver nanoparticles on the growth of the green microalga Haematococcus pluvialis and Astaxanthin synthesis.Nanomaterials (Basel)20231310161810.3390/nano1310161837242035
    [Google Scholar]
  101. KumarL. MohanL. AnandR. BharadvajaN. Chlorella minutissima-assisted silver nanoparticles synthesis and evaluation of its antibacterial activity.Syst. Microbiol. Biomanuf.20244123023910.1007/s43393‑023‑00173‑438625121
    [Google Scholar]
  102. ChoudharyS. KumawatG. KhandelwalM. KhangarotR.K. SangelaV. KumarM. DeoraS. RaiN. SaharanV. Harish Sustainable phyco-fabrication of silver nanoparticles using Coelastrella terrestris and their multiple downstream applications.Biocatal. Agric. Biotechnol.20235310285410.1016/j.bcab.2023.102854
    [Google Scholar]
  103. BasiratniaE. EinaliA. Azizian-ShermehO. MollashahiE. GhasemiA. Biological synthesis of gold nanoparticles from suspensions of green microalga dunaliella salina and their antibacterial potential.Bionanoscience202111497798810.1007/s12668‑021‑00897‑4
    [Google Scholar]
  104. ArdeleanA.V. MoroşanuA-M. ArdeleanI. MoisescuC. CorneaC.P. Gold nanoparticles synthesis by green microalgae and the cyanobacterium synechocystis PCC 6803 in light and in darkness, and pollutants degradation by these nanoparticles in vitro.AgroLife Sci. J.20221110.17930/AGL202211
    [Google Scholar]
  105. ŽvabU. KukulinD.S. FanettiM. ValantM. Bioremediation of copper polluted wastewater-like nutrient media and simultaneous synthesis of stable copper nanoparticles by a viable green alga.J. Water Process Eng.20214210212310.1016/j.jwpe.2021.102123
    [Google Scholar]
  106. GhanbariasadA. TaghizadehS.M. ShowP.L. NomanbhayS. BerenjianA. GhasemiY. EbrahiminezhadA. Controlled synthesis of iron oxyhydroxide (FeOOH) nanoparticles using secretory compounds from Chlorella vulgaris microalgae.Bioengineered201910139039610.1080/21655979.2019.166169231495263
    [Google Scholar]
  107. ZeponK.M. Amaral Fetzner PucciC. HansenA.W. de MoraesF.M. Jose Heriberto OliveriaN. MorissoF.D.P. MagnagoR.F. ZiulkoskiA.L. Using sugars as both reducing and cryoprotectants of freeze-dried silver nanoparticles for improving long-term stability.Ind. Crops Prod.202319711651910.1016/j.indcrop.2023.116519
    [Google Scholar]
  108. PalN. AgarwalM. GhoshA. Green synthesis of silver nanoparticles using polysaccharide-based guar gum.Mater. Today Proc.20237621221810.1016/j.matpr.2023.01.048
    [Google Scholar]
  109. DağlıoğluY. Yılmaz ÖztürkB. A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp. (Scenedesmaceae): Different methods of pigment change.Rend. Lincei Sci. Fis. Nat.201930361162110.1007/s12210‑019‑00822‑8
    [Google Scholar]
  110. GuiF. MoW. GuoX. CaoF. ZhaiT. HongC. GuanX. HuangB. PanX. Biosynthesis of nanocrystalline silver chloride with high antibacterial activity using bacterial extracts.Advanced Agrochem202321889610.1016/j.aac.2022.12.002
    [Google Scholar]
  111. MourdikoudisS. PallaresR.M. ThanhN.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties.Nanoscale20181027128711293410.1039/C8NR02278J29926865
    [Google Scholar]
  112. SinghM.B. KumariK. AslamM. VishvakarmaV.K. BahadurI. SinghP. Role of alkyl chain present in the cations of ionic liquids on stabilization of silver nanoparticle: DFT and TD-DFT studies.J. Mol. Liq.202338312216810.1016/j.molliq.2023.122168
    [Google Scholar]
  113. Dodoo-ArhinD. AsieduT. Agyei-TuffourB. NyanksonE. ObadaD. MwaboraJ.M. Photocatalytic degradation of Rhodamine dyes using zinc oxide nanoparticles.Mater. Today Proc.20213880981510.1016/j.matpr.2020.04.597
    [Google Scholar]
  114. HaridevamuthuB. MuruganR. SeenivasanB. MeenatchiR. PachaiappanR. AlmutairiB.O. ArokiyarajS. M KK. ArockiarajJ. Synthetic azo-dye, Tartrazine induces neurodevelopmental toxicity via mitochondria-mediated apoptosis in zebrafish embryos.J. Hazard. Mater.202446113252410.1016/j.jhazmat.2023.13252437741213
    [Google Scholar]
  115. SudarshanS. HarikrishnanS. RathiBhuvaneswariG. AlameluV. AanandS. RajasekarA. GovarthananM. Impact of textile dyes on human health and bioremediation of textile industry effluent using microorganisms: current status and future prospects.J. Appl. Microbiol.20231342lxac06410.1093/jambio/lxac06436724285
    [Google Scholar]
  116. RambabuK. BharathG. BanatF. ShowP.L. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment.J. Hazard. Mater.202140212356010.1016/j.jhazmat.2020.12356032759001
    [Google Scholar]
  117. AgnihotriS. SilluD. SharmaG. AryaR.K. Photocatalytic and antibacterial potential of silver nanoparticles derived from pineapple waste: Process optimization and modeling kinetics for dye removal.Appl. Nanosci.2018882077209210.1007/s13204‑018‑0883‑9
    [Google Scholar]
  118. JainR. MendirattaS. KumarL. SrivastavaA. Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin basic dye.Current Research in Green and Sustainable Chemistry2021410008610.1016/j.crgsc.2021.100086
    [Google Scholar]
  119. Abu-DiefA. Abdel-RahmanL. ElSayedM. ZikryM. Green synthesis of silver nanoparticles using Delonix Regia extract, characterization and its application As adsorbent for removal of Cu (II) ions from aqueous solutionAsian J. Appl. Chem. Res.2021911510.9734/ajacr/2021/v9i130202
    [Google Scholar]
  120. LinY. JinX. OwensG. ChenZ. Simultaneous removal of mixed contaminants triclosan and copper by green synthesized bimetallic iron/nickel nanoparticles.Sci. Total Environ.201969513387810.1016/j.scitotenv.2019.13387831756849
    [Google Scholar]
  121. SrivastavaV. SharmaY.C. SillanpääM. Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater.Ceram. Int.20154156702670910.1016/j.ceramint.2015.01.112
    [Google Scholar]
  122. ManimegalaiS. VickramS. DeenaS.R. RohiniK. ThanigaivelS. ManikandanS. SubbaiyaR. KarmegamN. KimW. GovarthananM. Carbon-based nanomaterial intervention and efficient removal of various contaminants from effluents – A review.Chemosphere2023312Pt 113731910.1016/j.chemosphere.2022.13731936410505
    [Google Scholar]
  123. AjalaM.A. AbdulkareemA.S. KovoA.S. TijaniJ.O. AjalaE.O. Synthesis of Ag2O-TiO2-Kaolinite clay nanocomposite for efficient removal of Mn2+, Fe3+, Cu2+, and Pb2+ and pathogens in mining wastewater.Water Air Soil Pollut.202423514210.1007/s11270‑023‑06811‑w
    [Google Scholar]
  124. LiuS. GuoY. YiS. YanS. OuyangC. DengF. LiC. LiaoG. LiQ. Facile synthesis of pure silicon zeolite-confined silver nanoparticles and their catalytic activity for the reduction of 4-nitrophenol and methylene blue.Separ. Purif. Tech.202330712272710.1016/j.seppur.2022.122727
    [Google Scholar]
  125. BennettJ.A. CreamerN.J. DeplancheK. MacaskieL.E. ShannonI.J. WoodJ. Palladium supported on bacterial biomass as a novel heterogeneous catalyst: A comparison of Pd/Al2O3 and bio-Pd in the hydrogenation of 2-pentyne.Chem. Eng. Sci.201065128229010.1016/j.ces.2009.06.069
    [Google Scholar]
  126. HuangJ. LiuC. SunD. HongY. DuM. Odoom-WubahT. FangW. LiQ. Biosynthesized gold nanoparticles supported over TS-1 toward efficient catalyst for epoxidation of styrene.Chem. Eng. J.201423521522310.1016/j.cej.2013.09.035
    [Google Scholar]
  127. VenuR. RamuluT.S. AnandakumarS. RaniV.S. KimC.G. Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications.Colloids Surf. A Physicochem. Eng. Asp.20113841-373373810.1016/j.colsurfa.2011.05.045
    [Google Scholar]
  128. AygunA. GulbagcaF. AltunerE.E. BekmezciM. GurT. Karimi-MalehH. KarimiF. VasseghianY. SenF. Highly active PdPt bimetallic nanoparticles synthesized by one-step bioreduction method: Characterizations, anticancer, antibacterial activities and evaluation of their catalytic effect for hydrogen generation.Int. J. Hydrogen Energy202348176666667910.1016/j.ijhydene.2021.12.144
    [Google Scholar]
  129. KushwahaR. KumarS. VermaM.L. IngleA.P. A way from biofuels to biorefinery: Nanotechnological perspectives.Nanotechnol. Biorefinery.Elsevier202316320310.1016/B978‑0‑323‑95965‑0.00002‑0
    [Google Scholar]
  130. Karimi-MalehH. OroojiY. KarimiF. KaramanC. VasseghianY. DragoiE.N. KaramanO. Integrated approaches for waste to biohydrogen using nanobiomediated towards low carbon bioeconomy.Adv. Compos. Hybrid Mater.2023612910.1007/s42114‑022‑00597‑x
    [Google Scholar]
  131. KrishnarajC. RadhakrishnanS. Mengistu AsmareM. WahabS. KimB.S. YunS.I. Green synthesis of Ag and Au NPs decorated rGO nanocomposite for high impedimetric electrochemical sensor as well as enhanced antimicrobial performance against foodborne pathogens.Arab. J. Chem.202417110537910.1016/j.arabjc.2023.105379
    [Google Scholar]
  132. MorsiM.A. Al-SulamiA.I. Al SulamiF.M.H. FareaM.O. AlqarniM.A. AlhazimeA.A. RajehA. Preparation, structural characterization, optical, photoluminescence, AC electrical conductivity and broadband dielectric properties of WO3 reinforced PEG/CS blend for futuristic optoelectronic and energy storage devices.Results Phys.20245910758210.1016/j.rinp.2024.107582
    [Google Scholar]
  133. Al-MuntaserA.A. BanoqitahE. MorsiM.A. MadkhliA.Y. Mohammed AbdulwahedJ.A. AlwafiR. Al NaimA.F. SaeedA. Fabrication and characterizations of nanocomposite flexible films of ZnO and polyvinyl chloride/poly(N-vinyl carbazole) polymers for dielectric capacitors.Arab. J. Chem.2023161010517110.1016/j.arabjc.2023.105171
    [Google Scholar]
  134. IzadiS. TashkhourianJ. Alireza Hosseini HafshejaniS. Biosynthesized silver nanoparticles based on bitter orange bloom extract and its application for the determination of cyanide ion in environmental samples.J. Photochem. Photobiol. Chem.202444611517310.1016/j.jphotochem.2023.115173
    [Google Scholar]
  135. RahmanM. Magnetic resonance imaging and iron-oxide nanoparticles in the era of personalized medicine.Nanotheranostics20237442444910.7150/ntno.8646737650011
    [Google Scholar]
  136. EreminaO.E. YarenkovN.R. BikbaevaG.I. KapitanovaO.O. SamodelovaM.V. ShekhovtsovaT.N. KolesnikovI.E. SyuyA.V. ArseninA.V. VolkovV.S. TselikovG.I. NovikovS.M. ManshinaA.A. VeselovaI.A. Silver nanoparticle-based SERS sensors for sensitive detection of amyloid-β aggregates in biological fluids.Talanta2024266Pt 112497010.1016/j.talanta.2023.12497037536108
    [Google Scholar]
  137. ChotaA. GeorgeB.P. AbrahamseH. Recent advances in green metallic nanoparticles for enhanced drug delivery in photodynamic therapy: A therapeutic approach.Int. J. Mol. Sci.2023245480810.3390/ijms2405480836902238
    [Google Scholar]
  138. Denk-LobnigM. WoodK.B. Antibiotic resistance in bacterial communities.Curr. Opin. Microbiol.20237410230610.1016/j.mib.2023.10230637054512
    [Google Scholar]
  139. SaidA. Abu-ElghaitM. AttaH.M. SalemS.S. Antibacterial activity of green synthesized silver nanoparticles using lawsonia inermis against common pathogens from urinary tract infection.Appl. Biochem. Biotechnol.20241961859810.1007/s12010‑023‑04482‑137099124
    [Google Scholar]
  140. TunW.S.T. HongsingN. SirithongsukP. NasompakS. DaduangS. KlaynongsruangS. TaweechaisupapongS. ChareonsudjaiS. PrangkioP. KosolwattanaS. PatramanonR. The synergistic action of silver nanoparticles and ceftazidime against antibiotic-resistant Burkholderia pseudomallei: A modifying treatment.Process Biochem.202413635136110.1016/j.procbio.2023.11.016
    [Google Scholar]
  141. VasilievG. KuboA.L. VijaH. KahruA. BondarD. KarpichevY. BondarenkoO. Synergistic antibacterial effect of copper and silver nanoparticles and their mechanism of action.Sci. Rep.2023131920210.1038/s41598‑023‑36460‑237280318
    [Google Scholar]
  142. SuT.L. ChenT.P. LiangJ. Green in-situ synthesis of silver coated textiles for wide hygiene and healthcare applications.Colloids Surf. A Physicochem. Eng. Asp.202365713050610.1016/j.colsurfa.2022.130506
    [Google Scholar]
  143. AsharA. BhuttaZ.A. ShoaibM. AlharbiN.K. Fakhar-e-AlamM. AtifM. KulyarM.F.A. MahfoozA. BoruahP. EletmanyM.R. Al-SaeedF.A. Ezzat AhmedA. Cotton fabric loaded with ZnO nanoflowers as a photocatalytic reactor with promising antibacterial activity against pathogenic E. coli. Arab. J. Chem.202316910508410.1016/j.arabjc.2023.105084
    [Google Scholar]
  144. YasirM. SinghJ. TripathiM.K. SinghP. ShrivastavaR. Green synthesis of silver nanoparticles using leaf extract of common arrowhead houseplant and its anticandidal activity.Pharmacogn. Mag.201813Suppl. 4S840S84410.4103/pm.pm_226_1729491642
    [Google Scholar]
  145. MaliS.C. DhakaA. GithalaC.K. TrivediR. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties.Biotechnol. Rep. (Amst.)202027e0051810.1016/j.btre.2020.e0051832923378
    [Google Scholar]
  146. UmamaheswariK. AbiramiM. Assessment of antifungal action mechanism of green synthesized gold nanoparticles (AuNPs) using Allium sativum on Candida species.Mater. Lett.202333313361610.1016/j.matlet.2022.133616
    [Google Scholar]
  147. YugandharP. VasaviT. Jayavardhana RaoY. Uma Maheswari DeviP. NarasimhaG. SavithrammaN. Cost effective, green synthesis of copper oxide nanoparticles using fruit extract of Syzygium alternifolium (Wt.) Walp., characterization and evaluation of antiviral activity.J. Cluster Sci.201829474375510.1007/s10876‑018‑1395‑1
    [Google Scholar]
  148. DehghaniF. Mosleh-ShiraziS. ShafieeM. KasaeeS.R. AmaniA.M. Antiviral and antioxidant properties of green synthesized gold nanoparticles using Glaucium flavum leaf extract.Appl. Nanosci.20231364395440510.1007/s13204‑022‑02705‑136466143
    [Google Scholar]
  149. Al-AskarA.A. AseelD.G. El-GendiH. SobhyS. SamyM.A. HamdyE. El-MesseiryS. BehiryS.I. ElbeainoT. AbdelkhalekA. Antiviral activity of biosynthesized silver nanoparticles from pomegranate (Punica granatum L.) Peel extract against tobacco mosaic virus.Plants20231211210310.3390/plants1211210337299082
    [Google Scholar]
  150. FarragH.M.M. MostafaF.A.A.M. MohamedM.E. HuseeinE.A.M. Green biosynthesis of silver nanoparticles by Aspergillus niger and its antiamoebic effect against Allovahlkampfia spelaea trophozoite and cyst.Exp. Parasitol.202021910803110.1016/j.exppara.2020.10803133091422
    [Google Scholar]
  151. KamarajC. RagavendranC. KumarR.C.S. SabarathinamS. VetrivelC. VaithiyalingamM. MalafaiaG. Synthesize palladium nanoparticles from the macroalgae Sargassum fusiforme: An eco-friendly tool in the fight against Plasmodium falciparum? Sci. Total Environ.2023857Pt 315951710.1016/j.scitotenv.2022.15951736302403
    [Google Scholar]
  152. NasefS.M. KhozemyE.E. MahmoudG.A. pH-responsive chitosan/acrylamide/gold/nanocomposite supported with silver nanoparticles for controlled release of anticancer drug.Sci. Rep.2023131781810.1038/s41598‑023‑34870‑w37188828
    [Google Scholar]
  153. KahG. ChandranR. AbrahamseH. Biogenic silver nanoparticles for targeted cancer therapy and enhancing photodynamic therapy.Cells20231215201210.3390/cells1215201237566091
    [Google Scholar]
  154. Turkmen KocS.N. Rezaei BenamS. AralI.P. ShahbaziR. UlubayramK. Gold nanoparticles-mediated photothermal and photodynamic therapies for cancer.Int. J. Pharm.202465512405710.1016/j.ijpharm.2024.124057
    [Google Scholar]
  155. LondheS. HaqueS. PatraC.R. SahooS. Hormozi-NezhadM.R. Silver and gold nanoparticles: Potential cancer theranostic applications, recent development, challenges, and future perspectives.Gold Silver Nanoparticles.Elsevier202324729010.1016/B978‑0‑323‑99454‑5.00006‑8
    [Google Scholar]
  156. HamidianK. SaraniM. BaraniM. KhakbazF. Cytotoxic performance of green synthesized Ag and Mg dual doped ZnO NPs using Salvadora persica extract against MDA-MB-231 and MCF-10 cells.Arab. J. Chem.202215510379210.1016/j.arabjc.2022.103792
    [Google Scholar]
  157. MariadossA.V.A. SaravanakumarK. SathiyaseelanA. VenkatachalamK. WangM-H. biosensors.Int. J. Biol. Macromol.20201642073208410.1016/j.ijbiomac.2020.08.03632784027
    [Google Scholar]
  158. LeT.T.H. NgoT.H. NguyenT.H. HoangV.H. NguyenV.H. NguyenP.H. Anti-cancer activity of green synthesized silver nanoparticles using Ardisia gigantifolia leaf extract against gastric cancer cells.Biochem. Biophys. Res. Commun.20236619910710.1016/j.bbrc.2023.04.03737087804
    [Google Scholar]
  159. WuC.C. YangY.C. HsuY.T. WuT.C. HungC.F. HuangJ.T. ChangC.L. Nanoparticle-induced intraperitoneal hyperthermia and targeted photoablation in treating ovarian cancer.Oncotarget2015629268612687510.18632/oncotarget.476626318039
    [Google Scholar]
  160. MargheriG. ZoppiA. OlmiR. TrigariS. TraversiR. SeveriM. BaniD. BianchiniF. TorreE. MargheriF. ChillàA. BiagioniA. CaloriniL. LaurenzanaA. FibbiG. RossoM.D. Tumor-tropic endothelial colony forming cells (ECFCs) loaded with near-infrared sensitive Au nanoparticles: A “cellular stove” approach to the photoablation of melanoma.Oncotarget2016726398463986010.18632/oncotarget.951127223433
    [Google Scholar]
  161. WuC. LiD. WangL. GuanX. TianY. YangH. LiS. LiuY. Single wavelength light-mediated, synergistic bimodal cancer photoablation and amplified photothermal performance by graphene/gold nanostar/photosensitizer theranostics.Acta Biomater.20175363164210.1016/j.actbio.2017.01.07828161572
    [Google Scholar]
  162. HengleiR. ChunliG. MinL. LiangZ. Bimetallic Au–Pd nanoparticles/RGO as theranostic nanoplatform for photothermal therapy of throat cancer - An in vitro approach.Journal of Radiation Research and Applied Sciences202215410047310.1016/j.jrras.2022.100473
    [Google Scholar]
  163. FaidA.H. HusseinF.E.Z. MostafaE.M. ShoumanS.A. BadrY.A. SliemM.A. Hybrid chitosan gold nanoparticles for photothermal therapy and enhanced cytotoxic action of 6-mercaptopurine on breast cancer cell line.Beni. Suef Univ. J. Basic Appl. Sci.20231218310.1186/s43088‑023‑00419‑z
    [Google Scholar]
  164. YusefiM. ShameliK. HedayatnasabZ. TeowS.Y. IsmailU.N. AzlanC.A. Rasit AliR. Green synthesis of Fe3O4 nanoparticles for hyperthermia, magnetic resonance imaging and 5-fluorouracil carrier in potential colorectal cancer treatment.Res. Chem. Intermed.20214751789180810.1007/s11164‑020‑04388‑1
    [Google Scholar]
  165. RadońA. WłodarczykA. SierońŁ. Rost-RoszkowskaM. ChajecŁ. ŁukowiecD. CiuraszkiewiczA. GębaraP. WacławekS. Kolano-BurianA. Influence of the modifiers in polyol method on magnetically induced hyperthermia and biocompatibility of ultrafine magnetite nanoparticles.Sci. Rep.2023131786010.1038/s41598‑023‑34738‑z37188707
    [Google Scholar]
  166. TatarchukT. ShyichukA. SojkaZ. GrybośJ. NaushadM. KotsyubynskyV. KowalskaM. Kwiatkowska-MarksS. DanyliukN. Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) adsorption and magnetic hyperthermia applications.J. Mol. Liq.202132811537510.1016/j.molliq.2021.115375
    [Google Scholar]
  167. HajalilouA. FerreiraL.P. Melo JorgeM.E. ReisC.P. CruzM.M. Superparamagnetic Ag-Fe3O4 composites nanoparticles for magnetic fluid hyperthermia.J. Magn. Magn. Mater.202153716824210.1016/j.jmmm.2021.168242
    [Google Scholar]
  168. Montes-BurgosI. WalczykD. HoleP. SmithJ. LynchI. DawsonK. Characterisation of nanoparticle size and state prior to nanotoxicological studies.J. Nanopart. Res.2010121475310.1007/s11051‑009‑9774‑z
    [Google Scholar]
  169. SchneiderT. WestermannM. GleiM. In vitro uptake and toxicity studies of metal nanoparticles and metal oxide nanoparticles in human HT29 cells.Arch. Toxicol.201791113517352710.1007/s00204‑017‑1976‑z28466231
    [Google Scholar]
  170. BoltmanT. SibuyiN.R.S. EkpoO. MeyerM. Synthesis of chlorotoxin functionalized metallic nanoparticles and their in vitro evaluation of cytotoxic effects in nervous system cancer cell lines.Nano Express20245404500210.1088/2632‑959X/ad80b0
    [Google Scholar]
  171. HanZ. WangY. ZangX. LiuH. SuJ. ZhouY. FePt/MnO2@PEG nanoparticles as multifunctional radiosensitizers for enhancing Ferroptosis and Alleviating Hypoxia in Osteosarcoma therapyIEEE Trans. Nanobioscience2024PP10.1109/TNB.2024.3475051
    [Google Scholar]
  172. ZhaoH. ZhaoH. TangY. LiM. CaiY. XiaoX. HeF. HuangH. ZhangY. LiJ. Skin-permeable gold nanoparticles with modifications azelamide monoethanolamine ameliorate inflammatory skin diseases.Biomark. Res.202412111810.1186/s40364‑024‑00663‑039385245
    [Google Scholar]
  173. HavelH.A. Where are the nanodrugs? An industry perspective on development of drug products containing nanomaterials.AAPS J.20161861351135310.1208/s12248‑016‑9970‑627520380
    [Google Scholar]
  174. RodríguezF. CaruanaP. De la FuenteN. EspañolP. GámezM. BalartJ. LlurbaE. RoviraR. RuizR. Martín-LorenteC. CorcheroJ.L. CéspedesM.V. Nano-based approved pharmaceuticals for cancer treatment: Present and future challenges.Biomolecules202212678410.3390/biom1206078435740909
    [Google Scholar]
  175. FarjadianF. GhasemiA. GohariO. RoointanA. KarimiM. HamblinM.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities.Nanomedicine (Lond.)20191419312610.2217/nnm‑2018‑012030451076
    [Google Scholar]
  176. SoetaertF. KorangathP. SerantesD. FieringS. IvkovR. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies.Adv. Drug Deliv. Rev.2020163-164658310.1016/j.addr.2020.06.02532603814
    [Google Scholar]
  177. AbdulrehmanJ. TangG.H. AuerbachM. SantessoN. SholzbergM. The safety and efficacy of ferumoxytol in the treatment of iron deficiency: A systematic review and meta‐analysis.Transfusion201959123646365610.1111/trf.1558731762068
    [Google Scholar]
  178. SakamotoJ.H. van de VenA.L. GodinB. BlancoE. SerdaR.E. GrattoniA. ZiemysA. BouamraniA. HuT. RanganathanS.I. De RosaE. MartinezJ.O. SmidC.A. BuchananR.M. LeeS.Y. SrinivasanS. LandryM. MeynA. TasciottiE. LiuX. DecuzziP. FerrariM. Enabling individualized therapy through nanotechnology.Pharmacol. Res.2010622578910.1016/j.phrs.2009.12.01120045055
    [Google Scholar]
  179. TassaC. ShawS.Y. WeisslederR. Dextran-coated iron oxide nanoparticles: A versatile platform for targeted molecular imaging, molecular diagnostics, and therapy.Acc. Chem. Res.2011441084285210.1021/ar200084x21661727
    [Google Scholar]
  180. HuangY. HsuJ.C. KooH. CormodeD.P. Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle.Theranostics202212279681610.7150/thno.6737534976214
    [Google Scholar]
  181. dos SantosV.E.Jr FilhoA.V. Ribeiro TarginoA.G. Pelagio FloresM.A. GalembeckA. CaldasA.F.Jr RosenblattA. A New “Silver-Bullet” to treat caries in children – Nano Silver Fluoride: A randomised clinical trial.J. Dent.201442894595110.1016/j.jdent.2014.05.01724930870
    [Google Scholar]
  182. FongJ. WoodF. Nanocrystalline silver dressings in wound management: A review.Int. J. Nanomedicine20061444144910.2147/nano.2006.1.4.44117722278
    [Google Scholar]
  183. PotgieterM.D. MeidanyP. Evaluation of the penetration of nanocrystalline silver through various wound dressing mediums: An in vitro study.Burns201844359660210.1016/j.burns.2017.10.01129290512
    [Google Scholar]
  184. GuggenbichlerJ.P. BöswaldM. LugauerS. KrallT. A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters.Infection199927S1Suppl. 1S16S2310.1007/BF0256161210379438
    [Google Scholar]
  185. HaqueS. NorbertC.C. AcharyyaR. MukherjeeS. KathirvelM. PatraC.R. Biosynthesized Silver nanoparticles for cancer therapy and in vivo bioimaging.Cancers (Basel)20211323611410.3390/cancers1323611434885224
    [Google Scholar]
  186. EsmaeiliA. MoniriE. SafaeijavanR. Ahmad PanahiH. Green synthesis of AgNO3/glutathione nanoparticles by Eucalyptus Globulus extracts as a novel nanocarrier for using as drug delivery system: Study of nonlinear isotherms and kinetics.Polym. Bull.20238010108431086110.1007/s00289‑022‑04583‑7
    [Google Scholar]
  187. JayachandranP. IlangoS. SuseelaV. NirmaladeviR. ShaikM.R. KhanM. KhanM. ShaikB. Green synthesized silver nanoparticle-loaded liposome-based nanoarchitectonics for cancer management: In vitro drug release analysis.Biomedicines202311121710.3390/biomedicines1101021736672725
    [Google Scholar]
  188. GharbaviM. JohariB. GhorbaniR. MadanchiH. SharafiA. Green synthesis of Zn nanoparticles and in situ hybridized with BSA nanoparticles for Baicalein targeted delivery mediated with glutamate receptors to U87‐MG cancer cell lines.Appl. Organomet. Chem.2023371e692610.1002/aoc.6926
    [Google Scholar]
  189. WagnerA.M. KnipeJ.M. OriveG. PeppasN.A. Quantum dots in biomedical applicationsActa Biomater.201994446310.1016/j.actbio.2019.05.022
    [Google Scholar]
  190. MorsiM.A. AsnagG.M. RajehA. AwwadN.S. Nd:YAG nanosecond laser induced growth of Au nanoparticles within CMC/PVA matrix: Multifunctional nanocomposites with tunable optical and electrical properties.Composites Communications20212410066210.1016/j.coco.2021.100662
    [Google Scholar]
  191. DashB.S. DasS. ChenJ.P. Photosensitizer-functionalized nanocomposites for light-activated cancer theranostics.Int. J. Mol. Sci.20212213665810.3390/ijms2213665834206318
    [Google Scholar]
  192. RamachandranV. Arokia Vijaya AnandM. DavidE. VenkatachalamK. VijayakumarS. SankaranV. BalupillaiA. SangeethaC.C. GothandamK.M. KotakadiV.S. GhidanA. Al AntaryT. XuB. Antidiabetic activity of gold nanoparticles synthesized using Wedelolactone in RIN-5F cell line.Antioxidants201991810.3390/antiox901000831877697
    [Google Scholar]
  193. BarabadiH. HosseiniO. JounakiK. Sadeghian-AbadiS. AshouriF. Mostafa Abdulabbas AlrikabiA. VahidiH. AmidiS. MojabF. MohammadiN. MostafaviE. Bioinspired green-synthesized silver nanoparticles: In vitro physicochemical, antibacterial, biofilm inhibitory, genotoxicity, antidiabetic, antioxidant, and anticoagulant performance.Mater. Adv.20234143037305410.1039/D3MA00089C
    [Google Scholar]
  194. ElegbedeJ.A. LateefA. AzeezM.A. AsafaT.B. YekeenT.A. OladipoI.C. AinaD.A. BeukesL.S. Gueguim-KanaE.B. Biofabrication of Gold Nanoparticles Using Xylanases Through Valorization of Corncob by Aspergillus niger and Trichoderma longibrachiatum: Antimicrobial, Antioxidant, Anticoagulant and Thrombolytic Activities.Waste Biomass Valoriz.202011378179110.1007/s12649‑018‑0540‑2
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385353296241119072148
Loading
/content/journals/pnt/10.2174/0122117385353296241119072148
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): algae; bacteria; Biological synthesis; fungi; metallic nanoparticles; plants; yeast
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test