Skip to content
2000
Volume 13, Issue 5
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Liquid crystalline lipid nanoparticles (LCNPs) represent a type of membrane-based nano-carriers formed through the self-assembly of lyotropic lipids. These lipids, such as unsaturated monoglycerides, phospholipids, and co-lipids, create liquid crystals or vesicles with an aqueous core enclosed by a natural or synthetic phospholipid bilayer upon exposure to an aqueous medium. Liquid crystalline lipid nanoparticles (LCNPs), akin to liposomes, have garnered significant attention as nanocarriers suitable for a diverse range of hydrophobic and hydrophilic molecules. Their notable structural advantage lies in a mono-channel network organization and the presence of multiple compartments, resulting in heightened encapsulation efficiency for various substances. Cubosomes, spongosomes, hexosomes, and multicompartment nanoparticles are examples of lipid nanocarriers with interior liquid crystalline structures that have recently gained a lot of interest as effective drug delivery systems. Additionally, LCNPs facilitate the sustained release of encapsulated compounds, including therapeutic macromolecules. This review delves into the structure of liquid crystalline lipid nanoparticles, explores preparation techniques, and outlines their applications in the context of skin cancer.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385312450240816055942
2024-08-30
2025-12-20
Loading full text...

Full text loading...

References

  1. MertinsO. MathewsP.D. AngelovaA. Advances in the design of ph-sensitive cubosome liquid crystalline nanocarriers for drug delivery applications.Nanomaterials202010596310.3390/nano1005096332443582
    [Google Scholar]
  2. RakotoarisoaM. AngelovaA. Amphiphilic Nanocarrier Systems for Curcumin Delivery in Neurodegenerative Disorders.In book: The Road from Nanomedicine to Precision Medicine202010.1201/9781003027058‑16
    [Google Scholar]
  3. DeshpandeA PatilTS Nanocarrier technologies for enhancing the solubility and dissolution rate of API.InMedicinal Chemistry with Pharmaceutical Product DevelopmentApple Academic Press201915523410.1201/9780429487842‑5
    [Google Scholar]
  4. YapS.L. YuH. LiS. DrummondC.J. ConnC.E. TranN. Cell interactions with lipid nanoparticles possessing different internal nanostructures: Liposomes, bicontinuous cubosomes, hexosomes, and discontinuous micellar cubosomes.J. Colloid Interface Sci.202465640942310.1016/j.jcis.2023.11.05938000253
    [Google Scholar]
  5. AbourehabM.A.S. AnsariM.J. SinghA. HassanA. AbdelgawadM.A. ShrivastavP. AbualsoudB.M. AmaralL.S. PramanikS. Cubosomes as an emerging platform for drug delivery: a review of the state of the art.J. Mater. Chem. B Mater. Biol. Med.202210152781281910.1039/D2TB00031H35315858
    [Google Scholar]
  6. IqbalS. ZamanM. WaqarM.A. SarwarH.S. JamshaidM. Vesicular approach of cubosomes, its components, preparation techniques, evaluation and their appraisal for targeting cancer cells.J. Liposome Res.202434236838410.1080/08982104.2023.227264337873797
    [Google Scholar]
  7. MaslizanM. HarisM.S. AjatM. Md JamilS.N.A. AzharS.C. ZahidN.I. Mat AzmiI.D. Non-lamellar lyotropic liquid crystalline nanoparticles as nanocarriers for enhanced drug encapsulation of atorvastatin calcium and proanthocyanidins.Chem. Phys. Lipids202426010537710.1016/j.chemphyslip.2024.10537738325712
    [Google Scholar]
  8. PeiJ. YanY. PalanisamyC.P. JayaramanS. NatarajanP.M. UmapathyV.R. GopathyS. RoyJ.R. SadagopanJ.C. ThalamatiD. MironescuM. Materials-based drug delivery approaches: Recent advances and future perspectives.Green Processing and Synthesis20241312023009410.1515/gps‑2023‑0094
    [Google Scholar]
  9. AttriN. DasS. BanerjeeJ. ShamsuddinS.H. DashS.K. PramanikA. Liposomes to cubosomes: The evolution of lipidic nanocarriers and their cutting-edge biomedical applications.ACS Appl. Bio Mater.2024752677269410.1021/acsabm.4c0015338613498
    [Google Scholar]
  10. MunirM. ZamanM. WaqarM.A. KhanM.A. AlviM.N. Solid lipid nanoparticles: A versatile approach for controlled release and targeted drug delivery.J. Liposome Res.202434233534810.1080/08982104.2023.226871137840238
    [Google Scholar]
  11. SalaM. DiabR. ElaissariA. FessiH. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications.Int. J. Pharm.20185351-211710.1016/j.ijpharm.2017.10.04629111097
    [Google Scholar]
  12. FornasierM. MurgiaS. Non-lamellar lipid liquid crystalline nanoparticles: A smart platform for nanomedicine applications.Frontiers in Soft Matter20233110950810.3389/frsfm.2023.1109508
    [Google Scholar]
  13. SharmaP. DhawanS. NandaS. Cubosome: A potential liquid crystalline carrier system.Curr. Pharm. Des.202026273300331610.2174/138161282666620061716242432552637
    [Google Scholar]
  14. RakotoarisoaM. AngelovB. DrechslerM. NicolasV. BizienT. GorshkovaY.E. DengY. AngelovaA. Liquid crystalline lipid nanoparticles for combined delivery of curcumin, fish oil and BDNF: In vitro neuroprotective potential in a cellular model of tunicamycin-induced endoplasmic reticulum stress.Smart Materials in Medicine2022327428810.1016/j.smaim.2022.03.001
    [Google Scholar]
  15. AngelovaA AngelovB DengY. Lipid Membranes: Fusion, Instabilities, and Cubic Structure Formation.Biological Soft Matter: Fundamentals, Properties, and Applications2021115152
    [Google Scholar]
  16. Araújo-SilvaH TeixeiraPV GomesAC LúcioM LopesCM Lyotropic liquid crystalline 2D and 3D mesophases: Advanced materials for multifunctional anticancer nanosystems.Biochimica et Biophysica Acta (BBA)-Reviews on Cancer2023189011
    [Google Scholar]
  17. TanC. HosseiniS.F. JafariS.M. Cubosomes and hexosomes as novel nanocarriers for bioactive compounds.J. Agric. Food Chem.20227051423143710.1021/acs.jafc.1c0674735089018
    [Google Scholar]
  18. ShanX. LuoL. YuZ. YouJ. Recent advances in versatile inverse lyotropic liquid crystals.J. Control. Release202234812110.1016/j.jconrel.2022.05.03635636617
    [Google Scholar]
  19. KaasgaardT. DrummondC.J. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent.Phys. Chem. Chem. Phys.20068434957497510.1039/b609510k17091149
    [Google Scholar]
  20. ZahidN.I. SalimM. LiewC.Y. BoydB.J. HashimR. Structural investigation and steric stabilisation of Guerbet glycolipid-based cubosomes and hexosomes using triblock polyethylene oxide-polypropylene oxide-polyethylene oxide copolymers.Colloids Surf. A Physicochem. Eng. Asp.202264812921210.1016/j.colsurfa.2022.129212
    [Google Scholar]
  21. ChakrabortyS. DhibarM. DasA. SwainK. PattnaikS. A Critical Appraisal of Lipid Nanoparticles Deployed in Cancer Pharmacotherapy.Recent Advances in Drug Delivery and Formulation202317213215110.2174/266738781766623072614074537493164
    [Google Scholar]
  22. LopesL.B. FerreiraD.A. de PaulaD. GarciaM.T.J. ThomaziniJ.A. FantiniM.C.A. BentleyM.V.L.B. Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A.Pharm. Res.20062361332134210.1007/s11095‑006‑0143‑716715364
    [Google Scholar]
  23. SwarnakarN.K. JainV. DubeyV. MishraD. JainN.K. Enhanced oromucosal delivery of progesterone via hexosomes.Pharm. Res.200724122223223010.1007/s11095‑007‑9409‑y17828445
    [Google Scholar]
  24. BoydB.J. WhittakerD.V. KhooS.M. DaveyG. Hexosomes formed from glycerate surfactants—Formulation as a colloidal carrier for irinotecan.Int. J. Pharm.20063181-215416210.1016/j.ijpharm.2006.03.01016621358
    [Google Scholar]
  25. ChenY. AngelovaA. AngelovB. DrechslerM. GaramusV.M. Willumeit-RömerR. ZouA. Sterically stabilized spongosomes for multidrug delivery of anticancer nanomedicines.J. Mater. Chem. B Mater. Biol. Med.20153397734774410.1039/C5TB01193K32264582
    [Google Scholar]
  26. ZouA. LiY. ChenY. AngelovaA. GaramusV.M. LiN. DrechslerM. AngelovB. GongY. Self-assembled stable sponge-type nanocarries for Brucea javanica oil delivery.Colloids Surf. B Biointerfaces201715331031910.1016/j.colsurfb.2017.02.03128285062
    [Google Scholar]
  27. GaballaSA El GarhyOH AbdelkaderH Cubosomes: Composition, preparation, and drug delivery applications.Journal of advanced biomedical and pharmaceutical sciences20203119
    [Google Scholar]
  28. GargG. SarafS. SarafS. Cubosomes: An Overview.Biol. Pharm. Bull.200730235035310.1248/bpb.30.35017268078
    [Google Scholar]
  29. HundekarY.R. SabojiJ.K. PatilS.M. NanjwadeB.K. Preparation and evaluation of diclofenac sodium cubosomes for percutaneous administration.World J. Pharm. Pharm. Sci.201435523539
    [Google Scholar]
  30. KaramiZ. HamidiM. Cubosomes: remarkable drug delivery potential.Drug Discov. Today201621578980110.1016/j.drudis.2016.01.00426780385
    [Google Scholar]
  31. GustafssonJ. Ljusberg-WahrenH. AlmgrenM. LarssonK. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer.Langmuir199713266964697110.1021/la970566+
    [Google Scholar]
  32. LasfarguesM. GengQ. CaoH. DingY. Mechanical dispersion of nanoparticles and its effect on the specific heat capacity of impure binary nitrate salt mixtures.Nanomaterials2015531136114610.3390/nano503113628347056
    [Google Scholar]
  33. SpicerP.T. HaydenK.L. LynchM.L. Ofori-BoatengA. BurnsJ.L. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes).Langmuir200117195748575610.1021/la010161w
    [Google Scholar]
  34. SalentinigS. YaghmurA. GuillotS. GlatterO. Preparation of highly concentrated nanostructured dispersions of controlled size.J. Colloid Interface Sci.2008326121122010.1016/j.jcis.2008.07.02118687442
    [Google Scholar]
  35. HirlekarR. JainS. PatelM. GarseH. KadamV. Hexosomes: a novel drug delivery system.Curr. Drug Deliv.201071283510.2174/15672011079039652620044910
    [Google Scholar]
  36. BoydB.J. RizwanS.B. DongY.D. HookS. RadesT. Self-assembled geometric liquid-crystalline nanoparticles imaged in three dimensions: hexosomes are not necessarily flat hexagonal prisms.Langmuir20072325124611246410.1021/la702971417988167
    [Google Scholar]
  37. LiT. SenesiA.J. LeeB. Small angle X-ray scattering for nanoparticle research.Chem. Rev.201611618111281118010.1021/acs.chemrev.5b0069027054962
    [Google Scholar]
  38. AgbabiakaA. WiltfongM. ParkC. Small angle X‐ray scattering technique for the particle size distribution of nonporous nanoparticles.Journal of Nanoparticles20132013111110.1155/2013/640436
    [Google Scholar]
  39. NirschlH. GuoX. Characterisation of structured and functionalised particles by small-angle X-ray scattering (SAXS).Chem. Eng. Res. Des.201813643144610.1016/j.cherd.2018.06.012
    [Google Scholar]
  40. AndreazzaP. Probing nanoalloy structure and morphology by X-ray scattering methods.InNanoalloys: Synthesis, Structure and PropertiesSpringerLondon201269112
    [Google Scholar]
  41. ZubavichusY.V. SlovokhotovY.L. X-Ray synchrotron radiation in physicochemical studies.Russ. Chem. Rev.200170537340310.1070/RC2001v070n05ABEH000656
    [Google Scholar]
  42. MoriY. FurukawaM. HayashiT. NakamuraK. Size distribution of gold nanoparticles used by small angle X-ray scattering.Particul. Sci. Technol.20062419710310.1080/02726350500403215
    [Google Scholar]
  43. KulkarniC.V. YaghmurA. SteinhartM. KriechbaumM. RappoltM. Effects of high pressure on internally self-assembled lipid nanoparticles: A synchrotron small-angle X-ray scattering (SAXS) study.Langmuir20163245119071191710.1021/acs.langmuir.6b0330027782407
    [Google Scholar]
  44. LyuZ. YaoL. ChenW. KalutantirigeF.C. ChenQ. Electron microscopy studies of soft nanomaterials.Chem. Rev.202312374051414510.1021/acs.chemrev.2c0046136649190
    [Google Scholar]
  45. GaoM. KimY.K. ZhangC. BorshchV. ZhouS. ParkH.S. JákliA. LavrentovichO.D. TambaM.G. KohlmeierA. MehlG.H. WeissflogW. StuderD. ZuberB. GnägiH. LinF. Direct observation of liquid crystals using cryo‐TEM: Specimen preparation and low‐dose imaging.Microsc. Res. Tech.2014771075477210.1002/jemt.2239725045045
    [Google Scholar]
  46. KatheN. HenriksenB. ChauhanH. Physicochemical characterization techniques for solid lipid nanoparticles: principles and limitations.Drug Dev. Ind. Pharm.201440121565157510.3109/03639045.2014.90984024766553
    [Google Scholar]
  47. TeeJ.K. YipL.X. TanE.S. SantitewagunS. PrasathA. KeP.C. HoH.K. LeongD.T. Nanoparticles’ interactions with vasculature in diseases.Chem. Soc. Rev.201948215381540710.1039/C9CS00309F31495856
    [Google Scholar]
  48. PatelJ. PatelA. Toxicity of Nanomaterials on the Liver, Kidney, and Spleen.Biointeractions of Nanomaterials.20151286306
    [Google Scholar]
  49. SahaR.N. VasanthakumarS. BendeG. SnehalathaM. Nanoparticulate drug delivery systems for cancer chemotherapy.Mol. Membr. Biol.201027721523110.3109/09687688.2010.51080420939772
    [Google Scholar]
  50. VarenneF. HillaireauH. BatailleJ. SmadjaC. BarrattG. VauthierC. Application of validated protocols to characterize size and zeta potential of dispersed materials using light scattering methods.Colloids Surf. A Physicochem. Eng. Asp.201956041842510.1016/j.colsurfa.2018.09.006
    [Google Scholar]
  51. RahmanI.A. VejayakumaranP. SipautC.S. IsmailJ. CheeC.K. Size-dependent physicochemical and optical properties of silica nanoparticles.Mater. Chem. Phys.2009114132833210.1016/j.matchemphys.2008.09.068
    [Google Scholar]
  52. ItohN. KimotoA. YamamotoE. HigashiT. SantaT. FunatsuT. KatoM. High performance liquid chromatography analysis of 100-nm liposomal nanoparticles using polymer-coated, silica monolithic columns with aqueous mobile phase.J. Chromatogr. A20171484344010.1016/j.chroma.2016.12.08028089273
    [Google Scholar]
  53. MartinsL.G. khalilN.M. MainardesR.M. Application of a validated HPLC-PDA method for the determination of melatonin content and its release from poly(lactic acid) nanoparticles.J. Pharm. Anal.20177638839310.1016/j.jpha.2017.05.00729404064
    [Google Scholar]
  54. BaroliB. Penetration of nanoparticles and nanomaterials in the skin: Fiction or reality?J. Pharm. Sci.2010991215010.1002/jps.2181719670463
    [Google Scholar]
  55. JenningV. Schäfer-KortingM. GohlaS. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties.J. Control. Release2000662-311512610.1016/S0168‑3659(99)00223‑010742573
    [Google Scholar]
  56. TiptonJ.D. Mass spectrometry for structural proteomic analysis of recombinant human sialyltransferase and identification of nanoparticle harvested oligonucleotides.University of Florida2005
    [Google Scholar]
  57. LvY. HeH. QiJ. LuY. ZhaoW. DongX. WuW. Visual validation of the measurement of entrapment efficiency of drug nanocarriers.Int. J. Pharm.20185471-239540310.1016/j.ijpharm.2018.06.02529894757
    [Google Scholar]
  58. VauthierC. BouchemalK. Methods for the preparation and manufacture of polymeric nanoparticles.Pharm. Res.20092651025105810.1007/s11095‑008‑9800‑319107579
    [Google Scholar]
  59. HoseiniB. JaafariM.R. GolabpourA. Momtazi-BorojeniA.A. EslamiS. Optimizing nanoliposomal formulations: Assessing factors affecting entrapment efficiency of curcumin-loaded liposomes using machine learning.Int. J. Pharm.202364612341410.1016/j.ijpharm.2023.12341437714314
    [Google Scholar]
  60. KrügerG.J. Diffusion in thermotropic liquid crystals.Phys. Rep.198282422926910.1016/0370‑1573(82)90025‑4
    [Google Scholar]
  61. LindblomG. OräddG. NMR Studies of translational diffusion in lyotropic liquid crystals and lipid membranes.Prog. Nucl. Magn. Reson. Spectrosc.19942648351510.1016/0079‑6565(94)80014‑6
    [Google Scholar]
  62. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.5728220502539
    [Google Scholar]
  63. AlamT. Quality by design based development of nanostructured lipid carrier: a risk based approach.10.37349/emed.2022.00118
    [Google Scholar]
  64. WalshM. SrinathanS.K. McAuleyD.F. MrkobradaM. LevineO. RibicC. MolnarA.O. DattaniN.D. BurkeA. GuyattG. ThabaneL. WalterS.D. PogueJ. DevereauxP.J. The statistical significance of randomized controlled trial results is frequently fragile: a case for a Fragility Index.J. Clin. Epidemiol.201467662262810.1016/j.jclinepi.2013.10.01924508144
    [Google Scholar]
  65. TichonJ. Response surface methodology for split-plot designs with categorical factors.
    [Google Scholar]
  66. BadieH. AbbasH. Novel small self-assembled resveratrol-bearing cubosomes and hexosomes: preparation, charachterization, and ex vivo permeation.Drug Dev. Ind. Pharm.201844122013202510.1080/03639045.2018.150822030095009
    [Google Scholar]
  67. IqubalM.K. IqubalA. ImtiyazK. RizviM.M.A. GuptaM.M. AliJ. BabootaS. Combinatorial lipid-nanosystem for dermal delivery of 5-fluorouracil and resveratrol against skin cancer: Delineation of improved dermatokinetics and epidermal drug deposition enhancement analysis.Eur. J. Pharm. Biopharm.202116322323910.1016/j.ejpb.2021.04.00733864904
    [Google Scholar]
  68. VendruscoloCW de OliveiraBE LeonardiGR Micro and Nanostructured Drug Release Systems for Skin Cancer Treatment.InBiotechnology Applied to Inflammatory Diseases: Cellular Mechanisms and NanomedicineSpringer Nature SingaporeSingapore20233532210.1007/978‑981‑19‑8342‑9_14
    [Google Scholar]
  69. AwadM. BarnesT.J. ThomasN. JoyceP. PrestidgeC.A. Gallium protoporphyrin liquid crystalline lipid nanoparticles: a third-generation photosensitizer against Pseudomonas aeruginosa biofilms.Pharmaceutics20221410212410.3390/pharmaceutics1410212436297559
    [Google Scholar]
  70. PetrilliR. PracaF. CarolloA.R. MedinaW. OliveiraK.T. FantiniM. NevesM.G. CavaleiroJ. SerraO. IamamotoY. BentleyM.V. Nanoparticles of lyotropic liquid crystals: A novel strategy for the topical delivery of a chlorin derivative for photodynamic therapy of skin cancer.Curr. Nanosci.20139443444110.2174/1573413711309040003
    [Google Scholar]
  71. TanY.N. LiY.P. HuangJ.D. LuoM. LiS.S. LeeA.W.M. HuF.Q. GuanX.Y. Thermal-sensitive lipid nanoparticles potentiate anti-PD therapy through enhancing drug penetration and T lymphocytes infiltration in metastatic tumor.Cancer Lett.202152223825410.1016/j.canlet.2021.09.03134571084
    [Google Scholar]
  72. RigonR.B. OyafusoM.H. FujimuraA.T. GonçalezM.L. PradoA.H. GremiãoM.P.D. ChorilliM. Nanotechnology‐based drug delivery systems for melanoma antitumoral therapy: a review.BioMed Res. Int.20152015112210.1155/2015/84181726078967
    [Google Scholar]
  73. SharmaP. KumarA. AgarwalT. DeyA.D. MoghaddamF.D. RahimmaneshI.L.N.A.Z. GhovvatiM. YousefiaslS. BorzacchielloA. MohammadiA. YellaV.R. MoradiO. SharifiE. Nucleic acid-based therapeutics for dermal wound healing.Int. J. Biol. Macromol.202222092093310.1016/j.ijbiomac.2022.08.09935987365
    [Google Scholar]
  74. ObeidMA AljabaliAA RezigueM AmawiH AlyamaniH AbdeljaberSN FerroVA Use of nanoparticles in delivery of nucleic acids for melanoma treatment.Melanoma: Methods and Protocols202159162010.1007/978‑1‑0716‑1205‑7_41
    [Google Scholar]
  75. de MouraL.D. RibeiroL.N.M. de CarvalhoF.V. Rodrigues da SilvaG.H. Lima FernandesP.C. BrunettoS.Q. RamosC.D. VellosoL.A. de AraújoD.R. de PaulaE. Docetaxel and lidocaine co-loaded (NLC-in-hydrogel) hybrid system designed for the treatment of melanoma.Pharmaceutics20211310155210.3390/pharmaceutics1310155234683846
    [Google Scholar]
  76. FliegerJ. Raszewska-FamielecM. Radzikowska-BüchnerE. FliegerW. Skin Protection by Carotenoid Pigments.Int. J. Mol. Sci.2024253143110.3390/ijms2503143138338710
    [Google Scholar]
  77. VictorelliF.D. Lutz-BuenoV. SantosK.P. WuD. SturlaS.J. MezzengaR. Cubosomes functionalized with antibodies as a potential strategy for the treatment of HER2-positive breast cancer.J. Colloid Interface Sci.202467329130010.1016/j.jcis.2024.06.09138875795
    [Google Scholar]
  78. ZhaiJ. FongC. TranN. DrummondC.J. Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the next generation of nanomedicine.ACS Nano20191366178620610.1021/acsnano.8b0796131082192
    [Google Scholar]
  79. WangC XuM FanQ LiC ZhouX Therapeutic potential of exosome‐based personalized delivery platform in chronic inflammatory diseases.Asian journal of pharmaceutical sciences202318110077210.1016/j.ajps.2022.100772
    [Google Scholar]
  80. RezakhaniL. RahmatiS. GhasemiS. AlizadehM. AlizadehA. A comparative study of the effects of crab derived exosomes and doxorubicin in 2 & 3-dimensional in vivo models of breast cancer.Chem. Phys. Lipids202224310517910.1016/j.chemphyslip.2022.10517935150707
    [Google Scholar]
  81. RezakhaniL. AlizadehM. SharifiE. SoleimannejadM. AlizadehA. Isolation and characterization of crab haemolymph exosomes and its effects on breast cancer cells (4T1).Cell J.202123665866434939759
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385312450240816055942
Loading
/content/journals/pnt/10.2174/0122117385312450240816055942
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test