Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background

Worldwide, cancer is the second most common cause of death. Chemotherapy and other traditional cancer treatments have toxicities that affect normal cells in addition to their intended targets, necessitating the development of novel approaches to enhance cell-specific targeting.

Methods

The present work summarizes the scientific information on nanoparticles in cancer theranostics to provide a comprehensive insight into the preventive and therapeutic potential of nanoparticles in cancer. Scopus, PubMed, Science Direct, and Google Scholar databases are searched to collect all the recent (2015-2023) scientific information on smart multifunctional nanoparticles using the terms nanotechnology, cancer theranostics, and polymer.

Results

The use of nanomaterials as chemical biology tools in cancer theranostics has been thoroughly investigated. They demonstrate expanded uses in terms of stability, biocompatibility, and enhanced cell permeability, enabling precision targeting and ameliorating the drawbacks of conventional cancer treatments. The nano platform presents a fascinating chance to acquire multifunctionality and targeting techniques. The production of smart nanomaterials, specifically with regard to the advent of nanotechnology, has revolutionized the diagnosis and treatment of cancer. The capability of nanoparticles to functionalize with a variety of biosubstrates, including aptamers, antibodies, DNA, and RNA, and their broad surface area allow them to encapsulate a huge number of molecules, contributing to their theranostic effect. Comparatively speaking, economical, easily produced, and less toxic nanomaterials formed from biological sources are thought to have benefits over those made using conventional processes.

Conclusion

The present study highlights the uses of several nanoparticles (NPs), and describes numerous cancer theranostics methodologies. The benefits and difficulties preventing their adoption in cancer treatment and diagnostic applications are also critically reviewed. The use of smart nanomaterials, according to this review's findings, can considerably advance cancer theranostics and open up new avenues for tumor detection and treatment.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385304258240427054724
2024-05-09
2025-09-03
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. SathishkumarK. ChaturvediM. DasP. StephenS. MathurP. Cancer incidence estimates for 2022 & projection for 2025: Result from national cancer registry programme, india.Indian J. Med. Res.20221564-5598607
    [Google Scholar]
  3. FerlayJ. ErvikM. LamF. Global cancer observatory: Cancer today.Lyon, FranceInternational Agency for Research on Cancer. Published2020
    [Google Scholar]
  4. GarrawayL.A. LanderE.S. Lessons from the cancer genome.Cell20131531173710.1016/j.cell.2013.03.002 23540688
    [Google Scholar]
  5. AlexandrovL.B. ZainalN.S. WedgeD.C. Signatures of mutational processes in human cancer.Nature2013500746341542110.1038/nature12477 23945592
    [Google Scholar]
  6. NegriniS. GorgoulisV.G. HalazonetisT.D. Genomic instability — An evolving hallmark of cancer.Nat. Rev. Mol. Cell Biol.201011322022810.1038/nrm2858 20177397
    [Google Scholar]
  7. HalazonetisT.D. GorgoulisV.G. BartekJ. An oncogene-induced DNA damage model for cancer development.Science2008319586813521355
    [Google Scholar]
  8. CollissonE.A. ChoR.J. GrayJ.W. What are we learning from the cancer genome?Nat. Rev. Clin. Oncol.201291162163010.1038/nrclinonc.2012.159 22965149
    [Google Scholar]
  9. BukhtoyarovO.V. SamarinD.M. Pathogenesis of cancer: Cancer reparative trap.J. Cancer Ther.20156539941210.4236/jct.2015.65043
    [Google Scholar]
  10. JovčevskaI. MuyldermansS. The therapeutic potential of nanobodies.BioDrugs2020341112610.1007/s40259‑019‑00392‑z 31686399
    [Google Scholar]
  11. ParkW. HeoY.J. HanD.K. New opportunities for nanoparticles in cancer immunotherapy.Biomater. Res.20182212410.1186/s40824‑018‑0133‑y 30275967
    [Google Scholar]
  12. CrawfordS. Anti-inflammatory/antioxidant use in long-term maintenance cancer therapy: A new therapeutic approach to disease progression and recurrence.Ther. Adv. Med. Oncol.201462526810.1177/1758834014521111 24587831
    [Google Scholar]
  13. NgS. GalipeauJ. Concise review: Engineering the fusion of cytokines for the modulation of immune cellular responses in cancer and autoimmune disorders.Stem Cells Transl. Med.201541667310.5966/sctm.2014‑0145 25391644
    [Google Scholar]
  14. AsciertoP.A. AddeoR. CartenìG. The role of immunotherapy in solid tumors: Report from the campania society of oncology immunotherapy (scito) meeting, naples 2014.J. Transl. Med.201412129110.1186/s12967‑014‑0291‑1 25331657
    [Google Scholar]
  15. WestwoodJ.A. KershawM.H. Genetic redirection of T cells for cancer therapy.J. Leukoc. Biol.201087579180310.1189/jlb.1209824 20179152
    [Google Scholar]
  16. PolJ. BloyN. ObristF. Trial Watch.OncoImmunology201434e2818510.4161/onci.28185 24800178
    [Google Scholar]
  17. HuangY. GoelS. DudaD.G. FukumuraD. JainR.K. Vascular normalization as an emerging strategy to enhance cancer immunotherapy.Cancer Res.201373102943294810.1158/0008‑5472.CAN‑12‑4354 23440426
    [Google Scholar]
  18. JacobsJ.J. SnackeyC. GeldofA.A. CharaciejusD. MoorselaarV.R.J.A. Den OtterW. Inefficacy of therapeutic cancer vaccines and proposed improvements. Casus of prostate cancer.Anticancer Res.201434626892700 24922629
    [Google Scholar]
  19. ZitvogelL. ApetohL. GhiringhelliF. KroemerG. Immunological aspects of cancer chemotherapy.Nat. Rev. Immunol.200881597310.1038/nri2216 18097448
    [Google Scholar]
  20. ChanH.K. IsmailS. Side effects of chemotherapy among cancer patients in a Malaysian General Hospital: Experiences, perceptions and informational needs from clinical pharmacists.Asian Pac. J. Cancer Prev.201415135305530910.7314/APJCP.2014.15.13.5305 25040993
    [Google Scholar]
  21. ShinW.K. ChoJ. KannanA.G. LeeY.S. KimD.W. Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries.Sci. Rep.2016612633210.1038/srep26332 27189842
    [Google Scholar]
  22. EftekhariA. KryschiC. PamiesD. Natural and synthetic nanovectors for cancer therapy.Nanotheranostics20237323625710.7150/ntno.77564 37064613
    [Google Scholar]
  23. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  24. ShafeyA.M.E. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review.Green Process Synthesis20209130433910.1515/gps‑2020‑0031
    [Google Scholar]
  25. OmidiY. BararJ. Targeting tumor microenvironment: Crossing tumor interstitial fluid by multifunctional nanomedicines.Bioimpacts2014425567 25035848
    [Google Scholar]
  26. LiI. NabetB.Y. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance.Mol. Cancer20191813210.1186/s12943‑019‑0975‑5 30823926
    [Google Scholar]
  27. HinshawD.C. ShevdeL.A. The tumor microenvironment innately modulates cancer progression.Cancer Res.201979184557456610.1158/0008‑5472.CAN‑18‑3962 31350295
    [Google Scholar]
  28. BożykA. KrawczykW.K. KrawczykP. MilanowskiJ. Tumor microenvironment—A short review of cellular and interaction diversity.Biology202211692910.3390/biology11060929 35741450
    [Google Scholar]
  29. DuS. GuanY. XieA. Extracellular vesicles: A rising star for therapeutics and drug delivery.J. Nanobiotechnology202321123110.1186/s12951‑023‑01973‑5 37475025
    [Google Scholar]
  30. FarcO. CristeaV. An overview of the tumor microenvironment, from cells to complex networks. (Review)Exp. Ther. Med.20202119610.3892/etm.2020.9528 33363607
    [Google Scholar]
  31. TammingaM. HiltermannT.J.N. SchuuringE. TimensW. FehrmannR.S.N. GroenH.J.M. Immune microenvironment composition in non‐small cell lung cancer and its association with survival.Clin. Transl. Immunology202096e114210.1002/cti2.1142 32547744
    [Google Scholar]
  32. GuillebonD.E. DardenneA. SaldmannA. Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination.Int. J. Cancer202014761509151810.1002/ijc.32889 31997345
    [Google Scholar]
  33. DuanQ. ZhangH. ZhengJ. ZhangL. Turning cold into hot: Firing up the tumor microenvironment.Trends Cancer20206760561810.1016/j.trecan.2020.02.022 32610070
    [Google Scholar]
  34. LuqmaniY.A. Mechanisms of drug resistance in cancer chemotherapy.Med. Princ. Pract.200514S1354810.1159/000086183 16103712
    [Google Scholar]
  35. WangJ. SeebacherN. ShiH. KanQ. DuanZ. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer.Oncotarget2017848845598457110.18632/oncotarget.19187 29137448
    [Google Scholar]
  36. MansooriB. MohammadiA. DavudianS. ShirjangS. BaradaranB. The different mechanisms of cancer drug resistance: A brief review.Adv. Pharm. Bull.20177333934810.15171/apb.2017.041 29071215
    [Google Scholar]
  37. KaratiD. KumarD. A comprehensive review on targeted cancer therapy: New face of treatment approach.Curr. Pharm. Des.202329413282329410.2174/0113816128272203231121034814 38038008
    [Google Scholar]
  38. RochaC.R.R. SilvaM.M. QuinetA. NetoC.J.B. MenckC.F.M. DNA repair pathways and cisplatin resistance: An intimate relationship.Clinics201873S1e478s10.6061/clinics/2018/e478s 30208165
    [Google Scholar]
  39. LiuX. LuoX. WuY. MicroRNA-34a attenuates paclitaxel resistance in prostate cancer cells via direct suppression of JAG1/Notch1 axis.Cell. Physiol. Biochem.201850126127610.1159/000494004 30282072
    [Google Scholar]
  40. LinH.M. NikolicI. YangJ. MicroRNAs as potential therapeutics to enhance chemosensitivity in advanced prostate cancer.Sci. Rep.201881782010.1038/s41598‑018‑26050‑y 29777112
    [Google Scholar]
  41. WangW. ZhaoL. WeiX. MicroRNA-320a promotes 5-FU resistance in human pancreatic cancer cells.Sci. Rep.2016612764110.1038/srep27641 27279541
    [Google Scholar]
  42. EvertJ. PathakS. SunX.F. ZhangH. A study on effect of oxaliplatin in MicroRNA expression in human colon cancer.J. Cancer20189112046205310.7150/jca.24474 29896290
    [Google Scholar]
  43. ZhuJ. ZouZ. NieP. Downregulation of microRNA-27b-3p enhances tamoxifen resistance in breast cancer by increasing NR5A2 and CREB1 expression.Cell Death Dis.2016711e2454e410.1038/cddis.2016.361 27809310
    [Google Scholar]
  44. TormoE. BallesterS. ArtiguesA.A. The miRNA-449 family mediates doxorubicin resistance in triple-negative breast cancer by regulating cell cycle factors.Sci. Rep.201991531610.1038/s41598‑019‑41472‑y 30926829
    [Google Scholar]
  45. ShangY. ZhangZ. LiuZ. miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1.Oncogene201433253267327610.1038/onc.2013.297 23893241
    [Google Scholar]
  46. ChenS. WuJ. JiaoK. MicroRNA-495-3p inhibits multidrug resistance by modulating autophagy through GRP78/mTOR axis in gastric cancer.Cell Death Dis.2018911107010.1038/s41419‑018‑0950‑x 30341283
    [Google Scholar]
  47. VargasonA.M. AnselmoA.C. MitragotriS. The evolution of commercial drug delivery technologies.Nat. Biomed. Eng.20215995196710.1038/s41551‑021‑00698‑w 33795852
    [Google Scholar]
  48. NirmalaM.J. KizhuveetilU. JohnsonA. G B, Nagarajan R, Muthuvijayan V. Cancer nanomedicine: A review of nano-therapeutics and challenges ahead.RSC Advances202313138606862910.1039/D2RA07863E 36926304
    [Google Scholar]
  49. KempJ.A. KwonY.J. Cancer nanotechnology: Current status and perspectives.Nano Converg.2021813410.1186/s40580‑021‑00282‑7 34727233
    [Google Scholar]
  50. JoudehN. LinkeD. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists.J. Nanobiotechnology202220126210.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  51. LongC.M. NascarellaM.A. ValbergP.A. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions.Environ. Pollut.201318127128610.1016/j.envpol.2013.06.009 23850403
    [Google Scholar]
  52. ToshimaN. YonezawaT. Bimetallic nanoparticles—novel materials for chemical and physical applications.New J. Chem.199822111179120110.1039/a805753b
    [Google Scholar]
  53. FathiM. BararJ. Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors.Bioimpacts201771495710.15171/bi.2017.07 28546953
    [Google Scholar]
  54. CalzoniE. CesarettiA. PolchiA. Di MicheleA. TanciniB. EmilianiC. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies.J. Funct. Biomater.2019101410.3390/jfb10010004 30626094
    [Google Scholar]
  55. CabralH. KataokaK. Progress of drug-loaded polymeric micelles into clinical studies.J. Control. Release201419046547610.1016/j.jconrel.2014.06.042 24993430
    [Google Scholar]
  56. ParveenS. ArjmandF. TabassumS. Clinical developments of antitumor polymer therapeutics.RSC Advances2019943246992472110.1039/C9RA04358F 35528643
    [Google Scholar]
  57. ZhouY. DongY. HuangG. Lysosome-oriented, dual-stage pH-responsive polymeric micelles for β-lapachone delivery.J. Mater. Chem. B Mater. Biol. Med.20164467429744010.1039/C6TB02049F 28580145
    [Google Scholar]
  58. KaratiD. A concise review on bio-responsive polymers in targeted drug delivery system.Polym. Bull.20238077023704510.1007/s00289‑022‑04424‑7
    [Google Scholar]
  59. ChakrabortyM. BanerjeeD. MukherjeeS. KaratiD. Exploring the advancement of polymer-based nano-formulations for ocular drug delivery systems: An explicative review.Polym. Bull.20238011117591177710.1007/s00289‑022‑04661‑w
    [Google Scholar]
  60. NairL.S. LaurencinC.T. Biodegradable polymers as biomaterials.Prog. Polym. Sci.2007328-976279810.1016/j.progpolymsci.2007.05.017
    [Google Scholar]
  61. KamalyN. YameenB. WuJ. FarokhzadO.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release.Chem. Rev.201611642602266310.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  62. XuX. HoW. ZhangX. BertrandN. FarokhzadO. Cancer nanomedicine: From targeted delivery to combination therapy.Trends Mol. Med.201521422323210.1016/j.molmed.2015.01.001 25656384
    [Google Scholar]
  63. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym3031377 22577513
    [Google Scholar]
  64. KumariA. YadavS.K. YadavS.C. Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf. B Biointerfaces201075111810.1016/j.colsurfb.2009.09.001 19782542
    [Google Scholar]
  65. GandhiK.J. DeshmaneS.V. BiyaniK.R. Polymers in pharmaceutical drug delivery system: A review.Int. J. Pharm. Sci. Rev. Res.20121425766
    [Google Scholar]
  66. SalariN. FarajiF. TorghabehF.M. Polymer-based drug delivery systems for anticancer drugs: A systematic review.Cancer Treat. Res. Commun.20223210060510.1016/j.ctarc.2022.100605 35816909
    [Google Scholar]
  67. BresslerE.M. KimJ. ShmueliR.B. Biomimetic peptide display from a polymeric nanoparticle surface for targeting and antitumor activity to human triple‐negative breast cancer cells.J. Biomed. Mater. Res. A201810661753176410.1002/jbm.a.36360 29424479
    [Google Scholar]
  68. MehataK.A. BhartiS. SinghP. Trastuzumab decorated TPGS-g-chitosan nanoparticles for targeted breast cancer therapy.Colloids Surf. B Biointerfaces201917336637710.1016/j.colsurfb.2018.10.007 30316083
    [Google Scholar]
  69. MassadehS. OmerM.E. AlterawiA. Optimized polyethylene glycolylated polymer–lipid hybrid nanoparticles as a potential breast cancer treatment.Pharmaceutics202012766610.3390/pharmaceutics12070666 32679809
    [Google Scholar]
  70. AlemrayatB. ElhissiA. YounesH.M. Preparation and characterization of letrozole-loaded poly(d,l-lactide) nanoparticles for drug delivery in breast cancer therapy.Pharm. Dev. Technol.201924223524210.1080/10837450.2018.1455698 29561210
    [Google Scholar]
  71. TahirN. MadniA. CorreiaA. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy.Int. J. Nanomedicine2019144961497410.2147/IJN.S209325 31308666
    [Google Scholar]
  72. JadonR.S. SharmaM. Docetaxel-loaded lipid-polymer hybrid nanoparticles for breast cancer therapeutics.J. Drug Deliv. Sci. Technol.20195147548410.1016/j.jddst.2019.03.039
    [Google Scholar]
  73. SoeZ.C. KwonJ.B. ThapaR.K. Transferrin-conjugated polymeric nanoparticle for receptor-mediated delivery of doxorubicin in doxorubicin-resistant breast cancer cells.Pharmaceutics20191126310.3390/pharmaceutics11020063 30717256
    [Google Scholar]
  74. PandaJ. SatapathyB.S. MajumderS. SarkarR. MukherjeeB. TuduB. Engineered polymeric iron oxide nanoparticles as potential drug carrier for targeted delivery of docetaxel to breast cancer cells.J. Magn. Magn. Mater.201948516517310.1016/j.jmmm.2019.04.058
    [Google Scholar]
  75. ZhouZ. KennellC. JafariM. Sequential delivery of erlotinib and doxorubicin for enhanced triple negative Breast cancer treatment using polymeric nanoparticle.Int. J. Pharm.20175301-230030710.1016/j.ijpharm.2017.07.085 28778627
    [Google Scholar]
  76. GogaryI.E.R. GaberS.A.A. NasrM. Polymeric nanocapsular baicalin: Chemometric optimization, physicochemical characterization and mechanistic anticancer approaches on breast cancer cell lines.Sci. Rep.2019911106410.1038/s41598‑019‑47586‑7 31363132
    [Google Scholar]
  77. VarukattuN.B. VivekR. RejeethC. Nanostructured pH-responsive biocompatible chitosan coated copper oxide nanoparticles: A polymeric smart intracellular delivery system for doxorubicin in breast cancer cells.Arab. J. Chem.20201312276228610.1016/j.arabjc.2018.04.012
    [Google Scholar]
  78. VakilinezhadM.A. AminiA. DaraT. AlipourS. Methotrexate and Curcumin co-encapsulated PLGA nanoparticles as a potential breast cancer therapeutic system: In vitro and in vivo evaluation.Colloids Surf. B Biointerfaces201918411051510.1016/j.colsurfb.2019.110515 31585308
    [Google Scholar]
  79. XingH. HwangK. LuY. Recent developments of liposomes as nanocarriers for theranostic applications.Theranostics2016691336135210.7150/thno.15464 27375783
    [Google Scholar]
  80. LamichhaneN. UdayakumarT. D’SouzaW. Liposomes: Clinical applications and potential for image-guided drug delivery.Molecules201823228810.3390/molecules23020288 29385755
    [Google Scholar]
  81. WangC. ZhangY. DongY. Lipid nanoparticle–mrna formulations for therapeutic applications.Acc. Chem. Res.202154234283429310.1021/acs.accounts.1c00550 34793124
    [Google Scholar]
  82. LinQ. JinC.S. HuangH. Nanoparticle-enabled, image-guided treatment planning of target specific RNAi therapeutics in an orthotopic prostate cancer model.Small201410153072308210.1002/smll.201303842 24706435
    [Google Scholar]
  83. LiangX. ChenM. BhattaraiP. HameedS. TangY. DaiZ. Complementing cancer photodynamic therapy with ferroptosis through iron oxide loaded porphyrin-grafted lipid nanoparticles.ACS Nano20211512201642018010.1021/acsnano.1c08108 34898184
    [Google Scholar]
  84. HuaL. WangZ. ZhaoL. Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy.Theranostics20188185088510510.7150/thno.26225 30429888
    [Google Scholar]
  85. ZhaoM. LeiC. YangY. Abraxane, the nanoparticle formulation of paclitaxel can induce drug resistance by up-regulation of P-gp.PloS one2015107e0131429
    [Google Scholar]
  86. HerrmannK. SchwaigerM. LewisJ.S. Radiotheranostics: A roadmap for future development.Lancet Oncol.2020213e146e15610.1016/S1470‑2045(19)30821‑6 32135118
    [Google Scholar]
  87. AminolroayaeiF. GahroueiS.D. GahroueiS.S. RasouliN. Recent nanotheranostics applications for cancer therapy and diagnosis: A review.IET Nanobiotechnol.202115324725610.1049/nbt2.12021
    [Google Scholar]
  88. JiaQ. ZhaoZ. LiangK. Recent advances and prospects of carbon dots in cancer nanotheranostics.Mater. Chem. Front.20204244947110.1039/C9QM00667B
    [Google Scholar]
  89. TurnerJ.H. Recent advances in theranostics and challenges for the future.Br. J. Radiol.20189110912017089310.1259/bjr.20170893 29565650
    [Google Scholar]
  90. KelkarS.S. ReinekeT.M. Theranostics: Combining imaging and therapy.Bioconjug. Chem.201122101879190310.1021/bc200151q 21830812
    [Google Scholar]
  91. MukherjeeA. PaulM. MukherjeeS. Recent progress in the theranostics application of nanomedicine in lung cancer.Cancers201911559710.3390/cancers11050597 31035440
    [Google Scholar]
  92. SundinA. ArnoldR. BaudinE. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: Radiological, nuclear medicine and hybrid imaging.Neuroendocrinology2017105321224410.1159/000471879 28355596
    [Google Scholar]
  93. RoachP.J. FrancisR. EmmettL. The impact of 68Ga-PSMA PET/CT on management intent in prostate cancer: Results of an Australian prospective multicenter study.J. Nucl. Med.2018591828810.2967/jnumed.117.197160 28646014
    [Google Scholar]
  94. HadaschikB.A. BoegemannM. Why targeting of psma is a valuable addition to the management of castration-resistant prostate cancer: The urologist’s point of view.J. Nucl. Med.20175881207120910.2967/jnumed.117.194753 28522737
    [Google Scholar]
  95. PunS.H. TackF. BellocqN.C. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles.Cancer Biol. Ther.20043764165010.4161/cbt.3.7.918 15136766
    [Google Scholar]
  96. ChenX. WongS.T. Cancer theranostics: An introduction.Cancer theranostics.Academic Press20143810.1016/B978‑0‑12‑407722‑5.00001‑3
    [Google Scholar]
  97. DerfusA.M. ChenA.A. MinD.H. RuoslahtiE. BhatiaS.N. Targeted quantum dot conjugates for siRNA delivery.Bioconjug. Chem.20071851391139610.1021/bc060367e 17630789
    [Google Scholar]
  98. PerepelyukM. SackoK. ThangavelK. ShoyeleS.A. Evaluation of MUC1-aptamer functionalized hybrid nanoparticles for targeted delivery of miRNA-29b to nonsmall cell lung cancer.Mol. Pharm.201815398599310.1021/acs.molpharmaceut.7b00900 29432024
    [Google Scholar]
  99. SocinskiM.A. OkamotoI. HonJ.K. Safety and efficacy analysis by histology of weekly nab-paclitaxel in combination with carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer.Ann. Oncol.20132492390239610.1093/annonc/mdt235 23842283
    [Google Scholar]
  100. MotevalliS.M. EltahanA.S. LiuL. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells.Biophys. Rep.201951193010.1007/s41048‑018‑0079‑6
    [Google Scholar]
  101. GaoL. FanK. YanX. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications.Theranostics20177133207322710.7150/thno.19738 28900505
    [Google Scholar]
  102. MenonI. ZaroudiM. ZhangY. AisenbreyE. HuiL. Fabrication of active targeting lipid nanoparticles: Challenges and perspectives.Material Today Advance20221610029910.1016/j.mtadv.2022.100299
    [Google Scholar]
  103. KashyapB.K. SinghV.V. SolankiM.K. KumarA. RuokolainenJ. KesariK.K. Smart nanomaterials in cancer theranostics: Challenges and opportunities.ACS Omega2023816142901432010.1021/acsomega.2c07840 37125102
    [Google Scholar]
  104. PatelM. SoutoE.B. SinghK.K. Advances in brain drug targeting and delivery: Limitations and challenges of solid lipid nanoparticles.Expert Opin. Drug Deliv.201310788990510.1517/17425247.2013.784742 23550609
    [Google Scholar]
  105. BattagliaL. GallarateM. Lipid nanoparticles: State of the art, new preparation methods and challenges in drug delivery.Expert Opin. Drug Deliv.20129549750810.1517/17425247.2012.673278 22439808
    [Google Scholar]
  106. CorderoB.L. AlkortaI. AranaL. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs.Nanomaterials20199347410.3390/nano9030474 30909401
    [Google Scholar]
  107. GautamN. VishkarmaH. DuttaD. GoyalM. SiddiquiL. TalegaonkarS. Functionalized lipidic nanoparticles: smartly engineered lipidic theragnostic nanomedicines.Multifunctional And Targeted Theranostic Nanomedicines: Formulation, Design And Applications. Singapore: Springer.Nature Singapore202311914410.1007/978‑981‑99‑0538‑6_6
    [Google Scholar]
  108. BukhariS.Z. ZethK. IftikharM. Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics.Current . Res. Pharmacol. Drug Disc.2021210006710.1016/j.crphar.2021.100067 34909685
    [Google Scholar]
  109. PrasadP N Biophotonics and nanomedicine for theranostics: Challenges and opportunities. Physics, engineering and technologies for biomedicine2017
    [Google Scholar]
  110. AhmadF. VargheseR. PandaS. Smart nanoformulations for brain cancer theranostics: Challenges and promises.Cancers20221421538910.3390/cancers14215389 36358807
    [Google Scholar]
  111. BushN. HealeyA. ShahA. Theranostic attributes of acoustic cluster therapy and its use for enhancing the effectiveness of liposomal doxorubicin treatment of human triple negative breast cancer in mice.Front. Pharmacol.2020117510.3389/fphar.2020.00075 32153400
    [Google Scholar]
  112. ShiX. MengH. SunY. Far‐red to near‐infrared carbon dots: Preparation and applications in biotechnology.Small20191548190150710.1002/smll.201901507 31168960
    [Google Scholar]
  113. BukhariS.I. ImamS.S. AhmadM.Z. Recent progress in lipid nanoparticles for cancer theranostics: Opportunity and challenges.Pharmaceutics202113684010.3390/pharmaceutics13060840 34200251
    [Google Scholar]
  114. DuJ. XuN. FanJ. SunW. PengX. Carbon dots for in vivo bioimaging and theranostics.Small20191532180508710.1002/smll.201805087 30779301
    [Google Scholar]
  115. RumanU. FakuraziS. MasarudinM.J. HusseinM.Z. Nanocarrier-based therapeutics and theranostics drug delivery systems for next generation of liver cancer nanodrug modalities.Int. J. Nanomedicine2020151437145610.2147/IJN.S236927 32184597
    [Google Scholar]
  116. MadamsettyV.S. MukherjeeA. MukherjeeS. Recent trends of the bio-inspired nanoparticles in cancer theranostics.Front. Pharmacol.201910126410.3389/fphar.2019.01264 31708785
    [Google Scholar]
  117. RaheemM.A. RahimM.A. GulI. Advances in nanoparticles-based approaches in cancer theranostics.OpenNano20231210015210.1016/j.onano.2023.100152
    [Google Scholar]
  118. ThoratN.D. TownelyH. BrennanG. Progress in remotely triggered hybrid nanostructures for next-generation brain cancer theranostics.ACS Biomater. Sci. Eng.2019562669268710.1021/acsbiomaterials.8b01173 33405601
    [Google Scholar]
  119. ThoratN.D. TofailS.A.M. von RechenbergB. Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations.Appl. Phys. Rev.20196404130610.1063/1.5049467
    [Google Scholar]
  120. MirrahimiM. AlamzadehZ. BeikJ. A 2D nanotheranostic platform based on graphene oxide and phase-change materials for bimodal CT/MR imaging, NIR-activated drug release, and synergistic thermo-chemotherapy.Nanotheranostics20226435036410.7150/ntno.64790 35707061
    [Google Scholar]
  121. XiangD. ShigdarS. QiaoG. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: The next generation of cancer medicine.Theranostics201551234210.7150/thno.10202 25553096
    [Google Scholar]
  122. BinateG. GanbarovK. Biological activity of chalcones as carbonyl compound derivatives.Adv Biol Earth Sci2023811926
    [Google Scholar]
  123. HosainzadeganM. EftekhariA. KhalilovR. Are microbial infections and some antibiotics causes cancer?Adv Biol Earth Sci2020515861
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385304258240427054724
Loading
/content/journals/pnt/10.2174/0122117385304258240427054724
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer theranostics; drug delivery; nanomedicine; nanoparticles; Nanotechnology; polymer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test