Skip to content
2000
Volume 6, Issue 4
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background: Hepatitis B virus claims approximately 780000 human lives each year. Inadequate effectiveness and drug resistance has led to the search for more potent antivirals with minimal risk of resistance. Plant extract from Phyllanthus genus have long been used in traditional medicine as effective antiviral and hepatoprotective agents. Objective: The present study aims to find the active principle of Phyllanthus and their mode of action against Hepatitis B Virus Reverse Transcriptase (HBV RT), a potential drug target of HBV infection. Methods: The 3D structure of HBV RT was modeled and its stability was assessed with a 50ns molecular dynamics simulation. Ninety-three phytochemicals were screened from Phyllanthus and used for docking study taking lamivudine as control drug. Results: Comparison of binding energy suggests that, lupeol acetate, a triterpene of P. niruri, P. reticulatus and P. urinaria showed highest binding energy for both native and M204V mutated HBV RT (-7.95 kcal/mol & -6.16 kcal/mol respectively) than the control drug lamivudine (-4.57 kcal/mol & -3.50 kcal/mol respectively). Subsequently, lupeol acetate was screened for in silico ADME/Tox property and result indicates good bioavailability without toxicity and can be treated as a candidate drug molecule. Conclusion: Further clinical testing may lead to the discovery of a novel HBV RT inhibitor.

Loading

Article metrics loading...

/content/journals/npj/10.2174/2210315506666160822095818
2016-12-01
2025-09-08
Loading full text...

Full text loading...

/content/journals/npj/10.2174/2210315506666160822095818
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test