Skip to content
2000
Volume 16, Issue 1
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

Stimulation of the sensory nerves in the trigeminal ganglion triggers CGRP as well as nitric oxide release, leading to dilation of the cranial blood vessels and causing neurogenic inflammation. The release of these mediators is associated with several neuroinflammatory disorders. It is suggested that neuroinflammation can be alleviated by inhibiting the release of these inflammatory mediators.

Aims

The present study aimed to investigate the neuroprotective effect of α-Phellandrene in LPS-induced Zebrafish larvae.

Objectives

Neurogenic inflammation refers to localized inflammation within the peripheral and central nervous systems, which can lead to various neuroinflammatory disorders, such as headache, migraine, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis. This condition is triggered by neuronal activation, releasing neuropeptides, inflammatory mediators, cytokines, interleukins, and tumor necrosis factor-α. This study aimed to investigate the neuroprotective effects of α-Phellandrene by experiment. The development of a drug to treat neurogenic inflammation is a prime task for managing the condition. Hence, this study was undertaken to find out a CGRP antagonist from a natural source to alleviate the neuro inflammatory disorders.

Methods

This study investigated the release of inflammatory mediators induced by lipopolysaccharides and the inhibitory effects of α-Phellandrene in zebrafish larvae. The inhibitory effect of α-Phellandrene on nitric acid production in larval fish homogenates was assessed using the Griess assay. Additionally, the mRNA expression of TNF-α was quantified using RT-PCR.

Results and Discussion

The result of the behavioral study showed that treatment with α-Phellandrene (10 μg/mL) significantly () reduced the behavioral abnormalities as compared to LPS-treated animals. In addition, α-Phellandrene-treated animals exhibited better nitric oxide inhibition activity as compared to the LPS-treated group. Further, the molecular analysis revealed that the α-Phellandrene treatment significantly () reduced the mRNA expression of TNF-α as compared to LPS-treated group.

Conclusion

The results of behavioral study, nitric oxide inhibition assay, and molecular analysis suggest that α-Phellandrene prevents neuroinflammation in LPS-treated animals. It was concluded from the study that α-Phellandrene is used to treat neuroinflammation, and it indicates that it possesses neuroprotective activity.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155348215250318064223
2025-05-16
2025-10-22
Loading full text...

Full text loading...

References

  1. JiR.R. XuZ.Z. GaoY.J. Emerging targets in neuroinflammation-driven chronic pain.Nat. Rev. Drug Discov.201413753354810.1038/nrd4334 24948120
    [Google Scholar]
  2. NaduchamyK.P. ParthasarathyV. A review of the potential receptors of migraine with a special emphasis on CGRP to develop an ideal antimigraine drug.Curr. Mol. Pharmacol.2020141112610.2174/1874467213999200824124532 32838728
    [Google Scholar]
  3. GeppettiP. NassiniR. MaterazziS. BenemeiS. The concept of neurogenic inflammation.BJU Int.2008101Suppl. 32610.1111/j.1464‑410X.2008.07493.x 18307678
    [Google Scholar]
  4. Marek-JozefowiczL. NedoszytkoB. GrochockaM. ŻmijewskiM.A. CzajkowskiR. CubałaW.J. SlominskiA.T. Molecular mechanisms of neurogenic inflammation of the skin.Int. J. Mol. Sci.2023245500110.3390/ijms24055001 36902434
    [Google Scholar]
  5. CaiZ.M. PengJ.Q. ChenY. TaoL. ZhangY.Y. FuL.Y. LongQ.D. ShenX.C. 1,8-Cineole: A review of source, biological activities, and application.J. Asian Nat. Prod. Res.2021231093895410.1080/10286020.2020.1839432 33111547
    [Google Scholar]
  6. ReynosoM.M.N. LuciaA. ZerbaE.N. AlzogarayR.A. The octopamine receptor is a possible target for eugenol-induced hyperactivity in the blood-sucking bug Triatoma infestans (hemiptera: Reduviidae).J. Med. Entomol.2019572tjz18310.1093/jme/tjz183 31637445
    [Google Scholar]
  7. SellC. SellC.S. The chemistry of fragrances: From perfumer to consumer.London, UKRoyal Society of Chemistry200610.1039/9781847555342
    [Google Scholar]
  8. RadiceM. DurofilA. BuzziR. BaldiniE. MartínezA.P. ScalvenziL. ManfrediniS. Alpha-phellandrene and alpha-phellandrene-rich essential oils: A systematic review of biological activities, pharmaceutical and food applications.Life20221210160210.3390/life12101602
    [Google Scholar]
  9. ThangaleelaS. SivamaruthiB.S. KesikaP. TiyajamornT. BharathiM. ChaiyasutC. A narrative review on the bioactivity and health benefits of Alpha-Phellandrene.Sci. Pharm.20229045710.3390/scipharm90040057
    [Google Scholar]
  10. PascualM.E. SlowingK. CarreteroE. MataS.D. VillarA. Lippia: Traditional uses, chemistry and pharmacology: A review.J. Ethnopharmacol.200176320121410.1016/S0378‑8741(01)00234‑3 11448540
    [Google Scholar]
  11. SinghG. SinghO.P. MauryaS. Chemical and biocidal investigations on essential oils of some Indian Curcuma species.Prog. Cryst. Growth Charact. Mater.2002451-2758110.1016/S0960‑8974(02)00030‑X
    [Google Scholar]
  12. StashenkoE.E. JaramilloB.E. MartínezJ.R. Analysis of volatile secondary metabolites from Colombian Xylopia aromatica (Lamarck) by different extraction and headspace methods and gas chromatography.J. Chromatogr. A20041025110511310.1016/j.chroma.2003.10.059 14753677
    [Google Scholar]
  13. NapoliE.M. CurcurutoG. RubertoG. Screening of the essential oil composition of wild Sicilian rosemary.Biochem. Syst. Ecol.201038465967010.1016/j.bse.2010.04.001
    [Google Scholar]
  14. GillesM. ZhaoJ. AnM. AgboolaS. Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species.Food Chem.2010119273173710.1016/j.foodchem.2009.07.021
    [Google Scholar]
  15. GeronC.D. ArntsR.R. Seasonal monoterpene and sesquiterpene emissions from Pinus taeda and Pinus virginiana.Atmos. Environ.201044344240425110.1016/j.atmosenv.2010.06.054
    [Google Scholar]
  16. González-MolinaE. Domínguez-PerlesR. MorenoD.A. García-VigueraC. Natural bioactive compounds of Citrus limon for food and health.J. Pharm. Biomed. Anal.201051232734510.1016/j.jpba.2009.07.027
    [Google Scholar]
  17. Alpha phellandreneAvailable from: https://pubchem.ncbi. nlm.nih.gov/compound/alpha-PHELLANDRENE
  18. KimH. ParkJ. A density functional theory study on the reaction mechanism of α‐phellandrene with NO3.Bull. Korean Chem. Soc.20153682139214210.1002/bkcs.10384
    [Google Scholar]
  19. ZhangJ. SunH. ChenS. ZengL. WangT. Anti-fungal activity, mechanism studies on α-phellandrene and nonanal against Penicillium cyclopium.Bot. Stud.20175811310.1186/s40529‑017‑0168‑8 28510196
    [Google Scholar]
  20. LinJ-J. LinJ-H. HsuS-C. WengS-W. HuangY-P. TangN-Y. LinJ-G. ChungJ-G. Alpha-phellandrene promotes immune responses in normal mice through enhancing macrophage phagocytosis and natural killer cell activities.In Vivo2013276809814
    [Google Scholar]
  21. SchererC.D.M.M. MarquesF.M. FigueiraM.M. PeisinoM.C.O. SchmittE.F.P. KondratyukT.P. EndringerD.C. SchererR. FronzaM. Wound healing activity of terpinolene and α-phellandrene by attenuating inflammation and oxidative stress in vitro.J. Tissue Viability2019282949910.1016/j.jtv.2019.02.003 30792116
    [Google Scholar]
  22. LimaD.F. BrandãoM.S. MouraJ.B. LeitãoJ.M.R.S. CarvalhoF.A.A. MiúraL.M.C.V. LeiteJ.R.S.A. SousaD.P. AlmeidaF.R.C. Antinociceptive activity of the monoterpene α -phellandrene in rodents: Possible mechanisms of action.J. Pharm. Pharmacol.201264228329210.1111/j.2042‑7158.2011.01401.x 22221105
    [Google Scholar]
  23. ChaabanA. RichardiV.S. CarrerA.R. BrumJ.S. CiprianoR.R. MartinsC.E.N. Navarro-SilvaM.A. DeschampsC. MolentoM.B. Cuticular damage of Lucilia cuprina larvae exposed to Curcuma longa leaves essential oil and its major compound α-phellandrene.Data Brief2018211776177810.1016/j.dib.2018.11.001 30505915
    [Google Scholar]
  24. ChaabanA. RichardiV.S. CarrerA.R. BrumJ.S. CiprianoR.R. MartinsC.E.N. SilvaM.A.N. DeschampsC. MolentoM.B. Insecticide activity of Curcuma longa (leaves) essential oil and its major compound α-phellandrene against Lucilia cuprina larvae (Diptera: Calliphoridae): Histological and ultrastructural biomarkers assessment.Pestic. Biochem. Physiol.2019153172710.1016/j.pestbp.2018.10.002 30744891
    [Google Scholar]
  25. KuradeN.P. JaitakV. KaulV.K. SharmaO.P. Chemical composition and antibacterial activity of essential oils of Lantana camara, Ageratum houstonianum and Eupatorium adenophorum.Pharm. Biol.201048553954410.3109/13880200903193336 20645797
    [Google Scholar]
  26. SindhuS. ChempakamB. LeelaN.K. BhaiS.R. Chemoprevention by essential oil of turmeric leaves (Curcuma longa L.) on the growth of Aspergillus flavus and aflatoxin production.Food Chem. Toxicol.20114951188119210.1016/j.fct.2011.02.014 21354246
    [Google Scholar]
  27. LinJ.J. HsuS.C. LuK.W. MaY.S. WuC.C. LuH.F. ChenJ.C. LinJ.G. WuP.P. ChungJ.G. Alpha‐phellandrene‐induced apoptosis in mice leukemia WEHI ‐3 cells in vitro.Environ. Toxicol.201631111640165110.1002/tox.22168 26174008
    [Google Scholar]
  28. StewartA.M. BraubachO. SpitsbergenJ. GerlaiR. KalueffA.V. Zebrafish models for translational neuroscience research: From tank to bedside.Trends Neurosci.201437526427810.1016/j.tins.2014.02.011 24726051
    [Google Scholar]
  29. KalueffA.V. StewartA.M. GerlaiR. Zebrafish as an emerging model for studying complex brain disorders.Trends Pharmacol. Sci.2014352637510.1016/j.tips.2013.12.002 24412421
    [Google Scholar]
  30. PanulaP. SallinenV. SundvikM. KolehmainenJ. TorkkoV. TiittulaA. MoshnyakovM. PodlaszP. Modulatory neurotransmitter systems and behavior: Towards zebrafish models of neurodegenerative diseases.Zebrafish20063223524710.1089/zeb.2006.3.235 18248264
    [Google Scholar]
  31. PeitsaroN. SundvikM. AnichtchikO.V. KaslinJ. PanulaP. Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior.Biochem. Pharmacol.20077381205121410.1016/j.bcp.2007.01.014 17266939
    [Google Scholar]
  32. PanulaP. ChenY.C. PriyadarshiniM. KudoH. SemenovaS. SundvikM. SallinenV. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases.Neurobiol. Dis.2010401465710.1016/j.nbd.2010.05.010 20472064
    [Google Scholar]
  33. SpenceR. GerlachG. LawrenceC. SmithC. The behaviour and ecology of the zebrafish, Danio rerio.Biol. Rev. Camb. Philos. Soc.2008831133410.1111/j.1469‑185X.2007.00030.x 18093234
    [Google Scholar]
  34. EganR.J. BergnerC.L. HartP.C. CachatJ.M. CanavelloP.R. EleganteM.F. ElkhayatS.I. BartelsB.K. TienA.K. TienD.H. MohnotS. BeesonE. GlasgowE. AmriH. ZukowskaZ. KalueffA.V. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish.Behav. Brain Res.20092051384410.1016/j.bbr.2009.06.022 19540270
    [Google Scholar]
  35. BlaserR.E. ChadwickL. McGinnisG.C. Behavioral measures of anxiety in zebrafish (Danio rerio).Behav. Brain Res.20102081566210.1016/j.bbr.2009.11.009 19896505
    [Google Scholar]
  36. ChampagneD.L. HoefnagelsC.C.M. KloetD.R.E. RichardsonM.K. Translating rodent behavioral repertoire to zebrafish (Danio rerio): Relevance for stress research.Behav. Brain Res.2010214233234210.1016/j.bbr.2010.06.001 20540966
    [Google Scholar]
  37. JesuthasanS. Fear, anxiety, and control in the zebrafish.Dev. Neurobiol.201272339540310.1002/dneu.20873 22328274
    [Google Scholar]
  38. LeeY. LeeS. ParkJ.W. HwangJ.S. KimS.M. LyooI.K. LeeC.J. HanI.O. Hypoxia-induced neuroinflammation and learning–memory impairments in adult zebrafish are suppressed by glucosamine.Mol. Neurobiol.201855118738875310.1007/s12035‑018‑1017‑9 29589284
    [Google Scholar]
  39. SinghS. SahuK. KapilL. SinghC. SinghA. Quercetin ameliorates lipopolysaccharide-induced neuroinflammation and oxidative stress in adult zebrafish.Mol. Biol. Rep.20224943247325810.1007/s11033‑022‑07161‑2 35094209
    [Google Scholar]
  40. MojzeszM. WidziolekM. AdamekM. OrzechowskaU. PodlaszP. PrajsnarT.K. PooranachandranN. PecioA. MichalikA. SurachetpongW. ChadzinskaM. RakusK. Tilapia lake virus-induced neuroinflammation in zebrafish: Microglia activation and sickness behavior.Front. Immunol.20211276088210.3389/fimmu.2021.760882 34707620
    [Google Scholar]
  41. KysilE.V. MeshalkinaD.A. FrickE.E. EchevarriaD.J. RosembergD.B. MaximinoC. LimaM.G. AbreuM.S. GiacominiA.C. BarcellosL.J.G. SongC. KalueffA.V. Comparative analyses of zebrafish anxiety-like behavior using conflict-based novelty tests.Zebrafish201714319720810.1089/zeb.2016.1415 28459655
    [Google Scholar]
  42. AbreuD.M.S. GiacominiA.C.V.V. DeminK.A. GalstyanD.S. ZabegalovK.N. KolesnikovaT.O. AmstislavskayaT.G. StrekalovaT. PetersenE.V. KalueffA.V. Unconventional anxiety pharmacology in zebrafish: Drugs beyond traditional anxiogenic and anxiolytic spectra.Pharmacol. Biochem. Behav.202120717320510.1016/j.pbb.2021.173205 33991579
    [Google Scholar]
  43. ChahardehiA.M. HosseiniY. MahdaviS.M. NasehI. Zebrafish, a biological model for pharmaceutical research for the management of anxiety.Mol. Biol. Rep.20235043863387210.1007/s11033‑023‑08263‑1
    [Google Scholar]
  44. Ruiz-OliveiraJ. SilvaP.F. LuchiariA.C. Coffee time: Low caffeine dose promotes attention and focus in zebrafish.Learn. Behav.201947322723310.3758/s13420‑018‑0369‑3 30623296
    [Google Scholar]
  45. NonnisS. AngiulliE. MaffioliE. FrabettiF. NegriA. CioniC. AllevaE. RomeoV. TedeschiG. ToniM. Acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish.Sci. Rep.2021111252110.1038/s41598‑021‑81804‑5 33510219
    [Google Scholar]
  46. TanJ.K. NazarF.H. MakpolS. TeohS.L. Zebrafish: A pharmacological model for learning and memory research.Molecules20222721737410.3390/molecules27217374 36364200
    [Google Scholar]
  47. KhanK.M. Towards a better understanding of zebrafish sleep behaviour.Thesis, University of Southern Mississippi2017
    [Google Scholar]
  48. GerlaiR. Reproducibility and replicability in zebrafish behavioral neuroscience research.Pharmacol. Biochem. Behav.2019178303810.1016/j.pbb.2018.02.005 29481830
    [Google Scholar]
  49. ChoudaryV. HellerC.R. AimonS. SchmidL.D. RobsonD.N. LiJ.M. Neural and behavioral organization of rapid eye movement sleep in zebrafish.bioRxiv20232023-0810.1101/2023.08.28.555077
    [Google Scholar]
  50. MoreiraA.L.P. LuchiariA.C. Effects of oxybenzone on zebrafish behavior and cognition.Sci. Total Environ.202280815210110.1016/j.scitotenv.2021.152101 34863770
    [Google Scholar]
  51. BurneT. ScottE. SwinderenV.B. HilliardM. ReinhardJ. ClaudianosC. EylesD. McGrathJ. Big ideas for small brains: What can psychiatry learn from worms, flies, bees and fish?Mol. Psychiatry201116171610.1038/mp.2010.35 20351718
    [Google Scholar]
  52. BilottaJ. SaszikS. DeLorenzoA.S. HardestyH.R. Establishing and maintaining a low-cost zebrafish breeding and behavioral research facility.Behav. Res. Methods Instrum. Comput.199931117818410.3758/BF03207707 10495848
    [Google Scholar]
  53. KokelD. PetersonR.T. Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish.Brief. Funct. Genom. Prot.20087648349010.1093/bfgp/eln040 18784194
    [Google Scholar]
  54. OECD guidelines for the testing of chemicals, section 2: Effects on biotic systems test no. 203: Acute toxicity for fish.2019Available from: https://www.oecd.org/content/dam/oecd/en/publications/reports/2019/06/test-no-203-fish-acute-toxicity-test_g1gh28f5/9789264069961-en.pdf
  55. NaY.R. SeokS.H. BaekM.W. LeeH.Y. KimD.J. ParkS.H. LeeH.K. ParkJ.H. Protective effects of vitamin E against 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) induced toxicity in zebrafish embryos.Ecotoxicol. Environ. Saf.200972371471910.1016/j.ecoenv.2008.09.015 18973944
    [Google Scholar]
  56. XiongY. ChenX. LiF. ChenZ. QinZ. Zebrafish larvae acute toxicity test: A promising alternative to the fish acute toxicity test.Aquat. Toxicol.202224610614310.1016/j.aquatox.2022.106143 35325807
    [Google Scholar]
  57. KimY.S. WonY.J. LimB.G. MinT.J. KimY.H. LeeI.O. Neuroprotective effects of magnesium l-threonate in a hypoxic zebrafish model.BMC Neurosci.20202112910.1186/s12868‑020‑00580‑6 32590943
    [Google Scholar]
  58. PekarovaM. KralovaJ. KubalaL. CizM. PapezikovaI. MacickováT. PecivovaJ. NosalR. LojekA. Carvedilol and adrenergic agonists suppress the lipopolysaccharide-induced NO production in RAW 264.7 macrophages via the adrenergic receptors.Acta Physiol. Pol.2009601143150 19439816
    [Google Scholar]
  59. IssacP.K. GuruA. VelayuthamM. PachaiappanR. ArasuM.V. Al-DhabiN.A. ChoiK.C. HarikrishnanR. ArockiarajJ. Oxidative stress induced antioxidant and neurotoxicity demonstrated in vivo zebrafish embryo or larval model and their normalization due to morin showing therapeutic implications.Life Sci.202128311986410.1016/j.lfs.2021.119864 34358548
    [Google Scholar]
  60. SiddhuN.S.S. GuruA. KumarS.R.C. AlmutairiB.O. AlmutairiM.H. JulietA. VijayakumarT.M. ArockiarajJ. Pro-inflammatory cytokine molecules from Boswellia serrata suppresses lipopolysaccharides induced inflammation demonstrated in an in-vivo zebrafish larval model.Mol. Biol. Rep.20224987425743510.1007/s11033‑022‑07544‑5 35716287
    [Google Scholar]
  61. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)).Method. Methods200125440240810.1006/meth.2001.1262 11846609
    [Google Scholar]
  62. GreenL.C. WagnerD.A. GlogowskiJ. SkipperP.L. WishnokJ.S. TannenbaumS.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids.Anal. Biochem.1982126113113810.1016/0003‑2697(82)90118‑X 7181105
    [Google Scholar]
  63. YangL. ZhouR. TongY. ChenP. ShenY. MiaoS. LiuX. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation.Neurobiol. Dis.202014010481410.1016/j.nbd.2020.104814 32087283
    [Google Scholar]
  64. HeP. YanS. ZhengJ. GaoY. ZhangS. LiuZ. LiuX. XiaoC. Eriodictyol attenuates LPS-induced neuroinflammation, amyloidogenesis, and cognitive impairments via the inhibition of NF-κB in male C57BL/6J mice and BV2 microglial cells.J. Agric. Food Chem.20186639102051021410.1021/acs.jafc.8b03731 30208700
    [Google Scholar]
  65. RaetzC.R.H. WhitfieldC. Lipopolysaccharide endotoxins.Annu. Rev. Biochem.200271163570010.1146/annurev.biochem.71.110601.135414 12045108
    [Google Scholar]
  66. SulakhiyaK. KumarP. GurjarS.S. BaruaC.C. HazarikaN.K. Beneficial effect of honokiol on lipopolysaccharide induced anxiety-like behavior and liver damage in mice.Pharmacol. Biochem. Behav.2015132798710.1016/j.pbb.2015.02.015 25725264
    [Google Scholar]
  67. YanZ. GibsonS.A. BuckleyJ.A. QinH. BenvenisteE.N. Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases.Clin. Immunol.201818941310.1016/j.clim.2016.09.014 27713030
    [Google Scholar]
  68. JainM. SinghM.K. ShyamH. MishraA. KumarS. KumarA. KushwahaJ. Role of JAK/STAT in the neuroinflammation and its Association with neurological disorders.Ann. Neurosci.2021283-419120010.1177/09727531211070532 35341232
    [Google Scholar]
  69. HoweK. ClarkM.D. TorrojaC.F. TorranceJ. BerthelotC. MuffatoM. CollinsJ.E. HumphrayS. McLarenK. MatthewsL. McLarenS. SealyI. CaccamoM. ChurcherC. ScottC. BarrettJ.C. KochR. RauchG.J. WhiteS. ChowW. KilianB. QuintaisL.T. Guerra-AssunçãoJ.A. ZhouY. GuY. YenJ. VogelJ.H. EyreT. RedmondS. BanerjeeR. ChiJ. FuB. LangleyE. MaguireS.F. LairdG.K. LloydD. KenyonE. DonaldsonS. SehraH. Almeida-KingJ. LovelandJ. TrevanionS. JonesM. QuailM. WilleyD. HuntA. BurtonJ. SimsS. McLayK. PlumbB. DavisJ. CleeC. OliverK. ClarkR. RiddleC. ElliottD. ThreadgoldG. HardenG. WareD. BegumS. MortimoreB. KerryG. HeathP. PhillimoreB. TraceyA. CorbyN. DunnM. JohnsonC. WoodJ. ClarkS. PelanS. GriffithsG. SmithM. GlitheroR. HowdenP. BarkerN. LloydC. StevensC. HarleyJ. HoltK. PanagiotidisG. LovellJ. BeasleyH. HendersonC. GordonD. AugerK. WrightD. CollinsJ. RaisenC. DyerL. LeungK. RobertsonL. AmbridgeK. LeongamornlertD. McGuireS. GilderthorpR. GriffithsC. ManthravadiD. NicholS. BarkerG. WhiteheadS. KayM. BrownJ. MurnaneC. GrayE. HumphriesM. SycamoreN. BarkerD. SaundersD. WallisJ. BabbageA. HammondS. Mashreghi-MohammadiM. BarrL. MartinS. WrayP. EllingtonA. MatthewsN. EllwoodM. WoodmanseyR. ClarkG. CooperJ.D. TromansA. GrafhamD. SkuceC. PandianR. AndrewsR. HarrisonE. KimberleyA. GarnettJ. FoskerN. HallR. GarnerP. KellyD. BirdC. PalmerS. GehringI. BergerA. DooleyC.M. Ersan-ÜrünZ. EserC. GeigerH. GeislerM. KarotkiL. KirnA. KonantzJ. KonantzM. OberländerM. Rudolph-GeigerS. TeuckeM. LanzC. RaddatzG. OsoegawaK. ZhuB. RappA. WidaaS. LangfordC. YangF. SchusterS.C. CarterN.P. HarrowJ. NingZ. HerreroJ. SearleS.M.J. EnrightA. GeislerR. PlasterkR.H.A. LeeC. WesterfieldM. JongD.P.J. ZonL.I. PostlethwaitJ.H. Nüsslein-VolhardC. HubbardT.J.P. CrolliusH.R. RogersJ. StempleD.L. The zebrafish reference genome sequence and its relationship to the human genome.Nature2013496744649850310.1038/nature12111 23594743
    [Google Scholar]
  70. ZahidH. TsangB. AhmedH. LeeR.C.Y. TranS. GerlaiR. Diazepam fails to alter anxiety-like responses but affects motor function in a white-black test paradigm in larval zebrafish (Danio rerio).Prog. Neuropsychopharmacol. Biol. Psychiatry20188312713610.1016/j.pnpbp.2018.01.012 29360490
    [Google Scholar]
  71. ColwillR.M. RaymondM.P. FerreiraL. EscuderoH. Visual discrimination learning in zebrafish (Danio rerio).Behav. Proc.2005701193110.1016/j.beproc.2005.03.001 15967284
    [Google Scholar]
/content/journals/npj/10.2174/0122103155348215250318064223
Loading
/content/journals/npj/10.2174/0122103155348215250318064223
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Alpha-phellandrene; lipopolysaccharides; neurogenic inflammation; RT-PCR; TNF-α; zebrafish
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test