Skip to content
2000
Volume 16, Issue 1
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Aims

Roxb. has been traditionally utilized as an ethnomedicinal agent for managing various ailments, including diabetes, jaundice, and rheumatic issues. This investigation aimed to evaluate the oral hypoglycemic and hypolipidemic effects of the hydroalcoholic extract of the aerial parts of (HAECR) in rats with diabetes induced by a high-fat diet (HFD) and streptozotocin (STZ). Additionally, the study sought to identify the bioactive compounds responsible for these effects in .

Background

To date, only a few attempts have been made to isolate the lead bioactive compound from , highlighting the need for further exploration of this herb through bioactivity-guided fractionation. The isolation and characterization of the responsible lead molecules could pave the way for developing a new, safer therapeutic option compared to conventionally used drugs.

Objectives

The study aims to evaluate the oral hypoglycemic and hypolipidemic activity of hydroalcoholic extract of the aerial parts of (HAECR) in a high-fat diet (HFD) and streptozotocin (STZ) induced diabetic rats, along with elucidating the responsible bioactive compounds of .

Methods

The hydroalcoholic plant extract was standardized by marker calibration by HPLC and, subsequently, phytochemical screening by LC-MS. Column chromatography was adopted to isolate bioactive compounds from the extract, which NMR, FT-IR, and MS spectroscopy subsequently characterized. Oral antihyperglycemic activity and toxicity studies were performed, and antioxidant activities were studied.

Results

No deaths or behavioural changes were observed during the toxicity study up to 2000 mg/kg oral dosing. Other toxicological parameters, such as deviations in organ weights, and haematological, and histological parameters, were also not observed. 250 mg/kg dose of HAECR exhibited significant antihyperglycemic activity (56.9% reduction in blood glucose level) in diabetic rats. In the HAECR-treated groups, significant reductions were observed compared to the control group, with cholesterol levels decreasing by 57%, triglycerides by 50%, SGPT by 50%, and SGOT by 30%. Considering the extensive analytical spectroscopy interpretation results, Quercetin and Stigmasterol are the two possible isolated compounds from our extract.

Conclusion

Thus, this study suggested the antihyperlipidemic and antihyperglycemic activity of HAECR, which may be attributed to phytomolecules such as Stigmasterol and Quercetin. Therefore, our findings from the investigated part of the herb could be regarded as an adjunctive agent for treating diabetes mellitus.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155332259250327084743
2025-04-09
2025-10-22
Loading full text...

Full text loading...

References

  1. PatilR. PatilR. AhirwarB. AhirwarD. Isolation and characterization of anti-diabetic component (bioactivity—guided fractionation) from Ocimum sanctum L. (Lamiaceae) aerial part.Asian Pac. J. Trop. Med.20114427828210.1016/S1995‑7645(11)60086‑2 21771470
    [Google Scholar]
  2. HalbanP.A. PolonskyK.S. BowdenD.W. HawkinsM.A. LingC. MatherK.J. PowersA.C. RhodesC.J. SusselL. WeirG.C. β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment.J. Clin. Endocrinol. Metab.20149961983199210.1210/jc.2014‑1425 24712577
    [Google Scholar]
  3. KuateD. KengneA.P.N. BiapaC.P.N. AzantsaB.G.K. MudaW.W.A.M.B. Tetrapleura tetraptera spice attenuates high-carbohydrate, high-fat diet-induced obese and type 2 diabetic rats with metabolic syndrome features.Lipids Health Dis.20151415010.1186/s12944‑015‑0051‑0 26003803
    [Google Scholar]
  4. KodlC.T. SeaquistE.R. Cognitive dysfunction and diabetes mellitus.Endocr. Rev.200829449451110.1210/er.2007‑0034 18436709
    [Google Scholar]
  5. Berlanga-AcostaJ. López-SauraP. Guillen-PérezI. Guillen-NietoG. Acevedo-CastroB. Herrera-MartínezL. Type 2 Diabetes Mellitus (T2DM): Biological Overview from Pathways to Organelles and its Translation toward a Torpid Wound Healing Process.J. Diabetes Metab.20134418
    [Google Scholar]
  6. Hernandez-RiendaL. del Olmo-GarcíaM.I. Merino-TorresJ.F. Impact of diabetes mellitus in patients with pancreatic neuro-endocrine tumors: Causes, consequences, and future perspectives.Metabolites20221211110310.3390/metabo12111103 36422243
    [Google Scholar]
  7. CiochinaM. BalabanD.V. ManucuG. JingaM. GheorgheC. The impact of pancreatic exocrine diseases on the β-cell and glucose metabolism—a review with currently available evidence.Biomolecules202212561810.3390/biom12050618 35625546
    [Google Scholar]
  8. AsogwaF.K. UgwuC.O. AliJ.I. Overview of diabetes and its curative approach using medicinal plants: A narrative review.GSC Advanced Research and Reviews202315193104
    [Google Scholar]
  9. KaneM. Abu-BakerA. BuschR. The utility of oral diabetes medications in type 2 diabetes of the young.Curr. Diabetes Rev.200511839210.2174/1573399052952569 18220585
    [Google Scholar]
  10. DeyL. AtteleA.S. YuanC.S. Alternative therapies for type 2 diabetes.Altern. Med. Rev.2002714558 11896745
    [Google Scholar]
  11. DeFronzoR.A. Pharmacologic therapy for type 2 diabetes mellitus.Ann. Intern. Med.1999131428130310.7326/0003‑4819‑131‑4‑199908170‑00008 10454950
    [Google Scholar]
  12. VeniD.K. GuptaN.V. Diabetes mellitus treatment: A rapid review on innovative therapies.Asian J. Pharm. Clin. Res.2019121465310.22159/ajpcr.2019.v12i1.28285
    [Google Scholar]
  13. OellgaardJ. GædeP. RossingP. RørthR. KøberL. ParvingH.H. PedersenO. Reduced risk of heart failure with intensified multifactorial intervention in individuals with type 2 diabetes and microalbuminuria: 21 years of follow-up in the randomised Steno-2 study.Diabetologia20186181724173310.1007/s00125‑018‑4642‑y 29850922
    [Google Scholar]
  14. GandaO.P. Antihyperglycemic drugs and cardiovascular outcomes in type 2 diabetes.Cleve. Clin. J. Med.201683>5 suppl 1)(Suppl. 1S11S1710.3949/ccjm.83.s1.03 27176677
    [Google Scholar]
  15. MilliganS. Combination therapy for the improvement of long-term macrovascular and microvascular outcomes in type 2 diabetes: Rationale and evidence for early initiation.J. Diabetes Complications20163061177118510.1016/j.jdiacomp.2016.03.010 27149916
    [Google Scholar]
  16. GædeP. PedersenO. Intensive integrated therapy of type 2 diabetes: Implications for long-term prognosis.Diabetes200453Suppl. 3S39S4710.2337/diabetes.53.suppl_3.S39 15561920
    [Google Scholar]
  17. Ulrich-MerzenichG.S. Combination screening of synthetic drugs and plant derived natural products—Potential and challenges for drug development.Synergy201411596910.1016/j.synres.2014.07.011
    [Google Scholar]
  18. ChandraV. YadavP. RaghuvanshiV. Diabetes and ethnomedicine: A comprehensive review of scientific literature on traditional medical practices.J. Pharm. Res.202382352368
    [Google Scholar]
  19. ShazhniA.J.R. RenuA. VijayaraghavanP. Insights of antidiabetic, anti-inflammatory and hepatoprotective properties of antimicrobial secondary metabolites of corm extract from Caladium x hortulanum.Saudi J. Biol. Sci.20182581755176110.1016/j.sjbs.2018.03.013 30591796
    [Google Scholar]
  20. TranN. PhamB. LeL. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery.Biology (Basel)20209925210.3390/biology9090252 32872226
    [Google Scholar]
  21. IbrahimM. RehmanK. HussainI. FarooqT. AliB. MajeedI. AkashM.S.H. Ethnopharmacological investigations of phytochemical constituents isolated from the genus Cuscuta.Crit. Rev. Eukaryot. Gene Expr.201727211315010.1615/CritRevEukaryotGeneExpr.2017019193 28845763
    [Google Scholar]
  22. NoureenS. NoreenS. GhummanS.A. BatoolF. BukhariS.N.A. The genus Cuscuta (Convolvolaceac): An updated review on indigenous uses, phytochemistry, and pharmacology.Iran. J. Basic Med. Sci.2019221112251252 32128087
    [Google Scholar]
  23. PanghalM. AryaV. YadavS. KumarS. YadavJ.P. Indigenous knowledge of medicinal plants used by saperas community of khetawas, jhajjar district, haryana, india.J. Ethnobiol. Ethnomed.201061410.1186/1746‑4269‑6‑4 20109179
    [Google Scholar]
  24. RazaM.A. MukhtarF. DanishM. Cuscuta reflexa and Carthamus oxyacantha: Potent sources of alternative and complimentary drug.Springerplus2015417610.1186/s40064‑015‑0854‑5 25741457
    [Google Scholar]
  25. RathD. KarD.M. PanigrahiS.K. MaharanaL. Antidiabetic effects of Cuscuta reflexa Roxb. in streptozotocin induced diabetic rats.J. Ethnopharmacol.201619244244910.1016/j.jep.2016.09.026 27649679
    [Google Scholar]
  26. O’NeillA.R. RanaS.K. An ethnobotanical analysis of parasitic plants (parijibi) in the nepal himalaya.J. Ethnobiol. Ethnomed.20161211410.1186/s13002‑016‑0086‑y 26912113
    [Google Scholar]
  27. GuidelinesO. Test No. 425: Acute oral toxicity: Up-and-down procedure.ParisOECD publishing2022
    [Google Scholar]
  28. OcdeO. Oecd/ocde 408. 2018;(June)2018Available from: https://www.oecd.org/en/publications/2018/06/test-no-408-repeated-dose-90-day-oral-toxicity-study-in-rodents_g1gh2931.html
    [Google Scholar]
  29. FurmanB.L. Streptozotocin‐induced diabetic models in mice and rats.Curr. Protocols Pharmacol.201570147.1-, 2010.1002/0471141755.ph0547s70 26331889
    [Google Scholar]
  30. DeedsM.C. AndersonJ.M. ArmstrongA.S. GastineauD.A. HiddingaH.J. JahangirA. EberhardtN.L. KudvaY.C. Single dose streptozotocin-induced diabetes: Considerations for study design in islet transplantation models.Lab. Anim.201145313114010.1258/la.2010.010090 21478271
    [Google Scholar]
  31. SanghavinN. JivaniN. A colorimetric method for the determination of nitrazepam.Talanta1979261636410.1016/0039‑9140(79)80158‑7 18962378
    [Google Scholar]
  32. LindseyA.P.J. IssacR. PrabhaM.L. RenittaR.E. CatherineA. SamrotA.V. AbiramiS. PrakashP. DhivaS. Evaluation of antidiabetic activity of sargassum tenerrimum in streptozotocin-induced diabetic mice.J. Pure Appl. Microbiol.20211542462247210.22207/JPAM.15.4.73
    [Google Scholar]
  33. PrihantiG.S. IsnainiF. YudistiaR. FaradillaA. RahmanM. Effect of black garlic extract on blood glucose, lipid profile, and sgpt-sgot of wistar rats diabetes mellitus model.Majalah Kedokteran Bandung2019512828710.15395/mkb.v51n2.1657
    [Google Scholar]
  34. MargataL. SilalahiJ. HarahapU. SatriaD. The effect of hydrolyzed virgin coconut oil on lipid profile and liver enzymes in dyslipidemic rats.Asian J. Pharm. Clin. Res.2018111040610.22159/ajpcr.2018.v11i10.27476
    [Google Scholar]
  35. JongF.X.H.H. GunawanA. SantosoM.W.A. Effects of sambiloto ethanol extract on fatty liver, sgot/sgpt levels, and lipid profile of wistar rats exposed to high-fat diet.Folia Medica Indonesiana201854212913410.20473/fmi.v54i2.8856
    [Google Scholar]
  36. RajaniM. AnandjiwalaS. BagulM.S. ParabiaM. Evaluation of free radical scavenging activity of an ayurvedic formulation.Panchvalkala. Indian J. Pharm. Sci.2008701313510.4103/0250‑474X.40328 20390077
    [Google Scholar]
  37. StănilăA. CioancaB. DiaconeasaZ. StănilăS. SimaN. SimaR.M. Phytochemical composition and antioxidant activity of various grain amaranth cultivars.Not. Bot. Horti Agrobot. Cluj-Napoca20194741153116010.15835/nbha47411714
    [Google Scholar]
  38. González-PalmaI. Escalona-BuendíaH.B. Ponce-AlquiciraE. Téllez-TéllezM. GuptaV.K. Díaz-GodínezG. Soriano-SantosJ. Evaluation of the antioxidant activity of aqueous and methanol extracts of pleurotus ostreatus in different growth stages.Front. Microbiol.20167109910.3389/fmicb.2016.01099 27462314
    [Google Scholar]
  39. AmarowiczR. PeggR.B. Natural antioxidants of plant origin.Adv. Food Nutr. Res.20199018110.1016/bs.afnr.2019.02.011 31445594
    [Google Scholar]
  40. ChengZ. LiY. Reducing power: The measure of antioxidant activities of reductant compounds?Redox Rep.20049421321710.1179/135100004225005994 15479565
    [Google Scholar]
  41. Sambandam, b.; Thiyagarajan, d; Ayyaswamy, A. Extraction and isolation of flavonoid quercetin from the leaves of trigonella foenum-graecum and their antioxidant activity.Int. J. Pharm. Pharm. Sci.201686120124
    [Google Scholar]
  42. RavishankaraM.N. ShrivastavaN. PadhH. RajaniM. Evaluation of antioxidant properties of root bark of Hemidesmus indicus.Phytomedicine20029215316010.1078/0944‑7113‑00104 11995949
    [Google Scholar]
  43. VaniT. RajaniM. SarkarS. ShishooC.J. Antioxidant properties of the ayurvedic formulation triphala and its constituents.Inter. J. Pharma.199735531331710.1080/09251619708951274
    [Google Scholar]
  44. NavarroM. MontillaM. MartínA. JiménezJ. UtrillaM. Free radical scavenger and antihepatotoxic activity of Rosmarinus tomentosus.Planta Med.199359431231410.1055/s‑2006‑959688 8372145
    [Google Scholar]
  45. Brand-WilliamsW. CuvelierM.E. BersetC. Use of a free radical method to evaluate antioxidant activity.Lebensm. Wiss. Technol.1995281253010.1016/S0023‑6438(95)80008‑5
    [Google Scholar]
  46. ShailajanS. JoshiH. Optimized separation and quantification of pharmacologically active markers optimized separation and quantification of pharmacologically active markers quercetin, kaempferol, ß-sitosterol and lupeol from Cuscuta reflexa roxb.J. Pharm. Res.20114618511853
    [Google Scholar]
  47. TewareK. Phytochemical extraction and tlc estimation of extract of Cuscuta reflexa (dodder).Int. J. Pharm. Sci. Rev. Res.2016510379384
    [Google Scholar]
  48. PretschE. BühlmannP. AffolterC. Structure determination of organic compounds: Tables of spectral data.Berlin, GermanySpringer200910.1007/978‑3‑540‑93810‑1
    [Google Scholar]
  49. MabryT.J. MarkhamK.R. ThomasM.B. The systematic identification of flavonoids. Springer-Verlag: Berlin-Heidelberg-New York197010232010.1016/0022‑2860(71)87109‑0
    [Google Scholar]
  50. TanrueanK. KaewnarinK. SuwannarachN. LumyongS. Comparative evaluation of phytochemicals, and antidiabetic and antioxidant activities of Cuscuta reflexa grown on different hosts in Northern Thailand.Nat. Prod. Commun.20171211934578X170120011410.1177/1934578X1701200114 30549823
    [Google Scholar]
  51. GuleriaA. ThakurU. DeviA. AnkalgiA. AshawatM.S. PradeshH. A review on a parasitic plant ‘Cuscuta reflexa roxb.’ for its traditional and pharmacological uses.IJSDR202278419425
    [Google Scholar]
  52. JainP.S. BariS.B. Isolation of lupeol, stigmasterol and campesterol from petroleum ether extract of woody stem of wrightia tinctoria.Asian J. Plant Sci.20109316316710.3923/ajps.2010.163.167
    [Google Scholar]
  53. HabibM.R. KarimM.R. Isolation of stigmasterol and β-sitosterol from methanolic extract of bark of calotropis gigantea (Linn.).R. Br. Pak. J. Biol. Sci.2009128614618
    [Google Scholar]
  54. DhanyaR. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy.Biomed. Pharmacother.202214611256010.1016/j.biopha.2021.112560 34953390
    [Google Scholar]
  55. HaiY. ZhangY. LiangY. MaX. QiX. XiaoJ. XueW. LuoY. YueT. Advance on the absorption, metabolism, and efficacy exertion of quercetin and its important derivatives.Food Front.20201442043410.1002/fft2.50
    [Google Scholar]
  56. DhanyaR. AryaA.D. NishaP. JayamurthyP. Quercetin, a lead compound against type 2 diabetes, ameliorates glucose uptake via the AMPK pathway in a skeletal muscle cell line.Front. Pharmacol.2017833610.3389/fphar.2017.00336 28642704
    [Google Scholar]
  57. HaddadP.S. EidH.M. NacharA. ThongF. SweeneyG. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes.Pharmacogn. Mag.20151141748110.4103/0973‑1296.149708 25709214
    [Google Scholar]
  58. SomsakN. PeerawitP. ChusriT. Hypoglycemic activity in diabetic rats of stigmasterol and sitosterol-3-O--D-glucopyranoside isolated from Pseuderanthemum palatiferum (Nees) Radlk. leaf extract.J. Med. Plants Res.201592062963510.5897/JMPR2014.5722
    [Google Scholar]
  59. PouloseN. SajayanA. RavindranA. ChandranA. PriyadharshiniG.B. SelvinJ. KiranG.S. Anti-diabetic potential of a stigmasterol from the seaweed Gelidium spinosum and its application in the formulation of nanoemulsion conjugate for the development of functional biscuits.Front. Nutr.2021869436210.3389/fnut.2021.694362 34604273
    [Google Scholar]
  60. WangJ. HuangM. YangJ. MaX. ZhengS. DengS. HuangY. YangX. ZhaoP. Anti-diabetic activity of stigmasterol from soybean oil by targeting the GLUT4 glucose transporter.Food Nutr. Res.2017611136411710.1080/16546628.2017.1364117 28970778
    [Google Scholar]
  61. RamuR. ShirahattiP.S. NayakavadiS. R, V.; Zameer, F.; Dhananjaya, B.L.; MN, P.N. The effect of a plant extract enriched in stigmasterol and β-sitosterol on glycaemic status and glucose metabolism in alloxan-induced diabetic rats.Food Funct.2016793999401110.1039/C6FO00343E 27711824
    [Google Scholar]
  62. KanwalA. KanwarN. BharatiS. SrivastavaP. SinghS.P. AmarS. Exploring new drug targets for type 2 diabetes: Success, challenges and opportunities.Biomedicines202210233110.3390/biomedicines10020331 35203540
    [Google Scholar]
  63. SolaD. RossiL. SchiancaG.P.C. MaffioliP. BiglioccaM. MellaR. CorlianòF. FraG.P. BartoliE. DerosaG. State of the art paper sulfonylureas and their use in clinical practice.Arch. Med. Sci.20154484084810.5114/aoms.2015.53304 26322096
    [Google Scholar]
  64. PoitoutV. RobertsonR.P. Glucolipotoxicity: Fuel excess and β-cell dysfunction.Endocr. Rev.200829335136610.1210/er.2007‑0023 18048763
    [Google Scholar]
  65. KorsgrenO. JanssonL. SandlerS. AnderssonA. Hyperglycemia-induced B cell toxicity. The fate of pancreatic islets transplanted into diabetic mice is dependent on their genetic background.J. Clin. Invest.19908662161216810.1172/JCI114955 2254465
    [Google Scholar]
  66. El-GhffarE.A.A. MostafaN.M. El-NasharH.A.S. EldahshanO.A. SingabA.N.B. Chilean pepper (Schinus polygamus) ameliorates the adverse effects of hyperglycaemia/dyslipidaemia in high fat diet/streptozotocin-induced type 2 diabetic rat model.Ind. Crops Prod.20221837114953
    [Google Scholar]
  67. EnginA. The definition and prevalence of obesity and metabolic syndrome.Adv. Exp. Med. Biol.201796011710.1007/978‑3‑319‑48382‑5_1 28585193
    [Google Scholar]
  68. KlopB. ElteJ. CabezasM. Dyslipidemia in obesity: Mechanisms and potential targets.Nutrients2013541218124010.3390/nu5041218 23584084
    [Google Scholar]
  69. MbakaG. OjewaleA. OgbonniaS. OtaD. Antihyperglycaemic and antihyperlipidaemic activities of aqueous ethanol root extract of pseudocedrela kotschyi on alloxan-induced diabetic rats.Br. J. Med. Med. Res.20144365839585210.9734/BJMMR/2014/7940
    [Google Scholar]
  70. YadavM. KhanK.K. BegM.Z. Medicinal plants used for the treatment of diabetes by the baiga tribe living in rewa district M.P.Indian J. Life Sci.20122199102
    [Google Scholar]
  71. MitraS. HalderA.K. GhoshN. MandalS.C. CordeiroM.N.D.S. Multi-model in silico characterization of 3-benzamidobenzoic acid derivatives as partial agonists of Farnesoid X receptor in the management of NAFLD.Comput. Biol. Med.202315710678910.1016/j.compbiomed.2023.106789 36963353
    [Google Scholar]
  72. MohamedJ. H, N.N.A.; H, Z.A.; B, B.S. Mechanisms of diabetes-induced liver damage: The role of oxidative stress and inflammation.Sultan Qaboos Univ. Med. J.2016162e132e14110.18295/squmj.2016.16.02.002 27226903
    [Google Scholar]
  73. EidiA. EidiM. EsmaeiliE. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats.Phytomedicine2006139-1062462910.1016/j.phymed.2005.09.010 17085291
    [Google Scholar]
/content/journals/npj/10.2174/0122103155332259250327084743
Loading
/content/journals/npj/10.2174/0122103155332259250327084743
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test