Skip to content
2000
Volume 15, Issue 8
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Licorice root is one kind of traditional Chinese Medicine, which has a long history of clinical use and has been widely considered by Chinese and foreign scholars. Many works on the chemical constituents (including flavonoids, triterpene, polysaccharides, alkaloids, and amino acids, .) together with their biological activities (including anti-oxidation, anti-tumor, enhancing the body's immunity, anti-fatigue, regulating the digestive system, lowering blood sugar, decreasing blood lipids and so on) have been achieved. In this mini-review, we comprehensively reviewed the recent progress of its constituents and biological activities by searching through CNKI, PubMed, Web of Science, Scopus, and Google Scholar databases to provide a comprehensive reference for the researchers.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155343052240906052136
2024-09-12
2025-09-06
Loading full text...

Full text loading...

/deliver/fulltext/npj/15/8/NPJ-15-8-08.html?itemId=/content/journals/npj/10.2174/0122103155343052240906052136&mimeType=html&fmt=ahah

References

  1. BehdadA. MohsenzadehS. AziziM. Comparison of phytochemical compounds of two Glycyrrhiza glabra L. populations and their relationship with the ecological factors.Acta Physiol. Plant.202042813310.1007/s11738‑020‑03121‑0
    [Google Scholar]
  2. El-Saber BatihaG. Magdy BeshbishyA. El-MleehA. Abdel-DaimM.M. Prasad DevkotaH. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae).Biomolecules202010335210.3390/biom1003035232106571
    [Google Scholar]
  3. WangL. YangR. YuanB. LiuY. LiuC. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb.Acta Pharm. Sin. B20155431031510.1016/j.apsb.2015.05.00526579460
    [Google Scholar]
  4. Glycyrrhiza glabra L. licorice naked licorice root.Available from: https://planta-medica.uz/glycyrrhiza-glabra-l-solodka-golaya-lakrichnyj-koren/
  5. Glycyrrhiza uralensis fisch. ex DC. (Fabaceae family) ural sweet.Available from: https://www.plantarium.ru/page/image/id/252466.html
  6. Available from: https://baike.baidu.com/pic/%E7%B2%97%E6%AF%9B%E7%94%98%E8%8D%89/4510357/0/0df431adcbef7609ec1212fb21dda3cc7cd99ebd
  7. ZhengY. WangH. YangM. PengG. DongT.T.X. XuM.L. TsimK.W.K. Prenylated flavonoids from roots of Glycyrrhiza uralensis induce differentiation of B16-F10 melanoma cells.Int. J. Mol. Sci.2018198242210.3390/ijms1908242230115883
    [Google Scholar]
  8. LiuC. MaQ. GongG. SuF. Research progress on structural modification of effective antitumor active ingredients in Licorice.Molecules20232815585510.3390/molecules2815585537570825
    [Google Scholar]
  9. YuJ. LiX. LiuH. PengY. WangX. XuY. Interaction behavior between five flavonoids and pepsin: Spectroscopic analysis and molecular docking.J. Mol. Struct.2021122312897810.1016/j.molstruc.2020.128978
    [Google Scholar]
  10. FanY.H. YeR. XuH.Y. FengX.H. MaC.M. Structures and in vitro antihepatic fibrosis activities of prenylated dihydrostilbenes and flavonoids from Glycyrrhiza uralensis leaves.J. Food Sci.20198451224123010.1111/1750‑3841.1459230990886
    [Google Scholar]
  11. WangB. DingY. ZhaoP. LiW. LiM. ZhuJ. YeS. Systems pharmacology-based drug discovery and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using flavonoids.Comput. Biol. Med.202214310524110.1016/j.compbiomed.2022.10524135114443
    [Google Scholar]
  12. PanJ. ZhangQ. ZhangC. YangW. LiuH. LvZ. LiuJ. JiaoZ. Inhibition of dipeptidyl peptidase-4 by flavonoids: Structure-sctivity relationship, kinetics and interaction mechanism.Front. Nutr.2022989242689242610.3389/fnut.2022.89242635634373
    [Google Scholar]
  13. LiA. ZhaoZ. ZhangS. ZhangZ. ShiY. Fungicidal activity and mechanism of action of glabridin from Glycyrrhiza glabra L.Int. J. Mol. Sci.202122201096610.3390/ijms22201096634681623
    [Google Scholar]
  14. zhuZ. TaoW. LiJ. GuoS. QianD. ShangE. SuS. DuanJ. Rapid determination of flavonoids in licorice and comparison of three licorice species.J. Sep. Sci.201639347348210.1002/jssc.20150068526608595
    [Google Scholar]
  15. BaiM. YaoG.D. RenQ. LiQ. LiuQ.B. ZhangY. WangX.B. HuangX.X. SongS.J. Triterpenoid saponins and flavonoids from licorice residues with anti-inflammatory activity.Ind. Crops Prod.2018125505810.1016/j.indcrop.2018.08.075
    [Google Scholar]
  16. YuP. LiQ. FengY. ChenY. MaS. DingX. Quantitative analysis of flavonoids in Glycyrrhiza uralensis Fisch by 1H-qNMR.J. Anal. Methods Chem.202120211610.1155/2021/665557233532111
    [Google Scholar]
  17. HaoY. WeiZ. WangZ. LiG. YaoY. DunB. Biotransformation of flavonoids improves antimicrobial and anti-breast cancer activities in vitro. Foods20211010236710.3390/foods1010236734681416
    [Google Scholar]
  18. ZhangQ. YeM. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice).J. Chromatogr. A20091216111954196910.1016/j.chroma.2008.07.07218703197
    [Google Scholar]
  19. ShaoX. ChenX. WangZ. ZhuC. DuY. TangD. JiS. Diprenylated flavonoids from licorice induce death of SW480 colorectal cancer cells by promoting autophagy: Activities of lupalbigenin and 6,8-diprenylgenistein.J. Ethnopharmacol.202229611548810.1016/j.jep.2022.11548835728712
    [Google Scholar]
  20. FuY. ChenJ. LiY.J. ZhengY.F. LiP. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice.Food Chem.201314121063107110.1016/j.foodchem.2013.03.08923790887
    [Google Scholar]
  21. WangR. ChenY. WangZ. CaoB. DuJ. DengT. YangM. HanJ. Antidepressant effect of licorice total flavonoids and liquiritin: A review.Heliyon2023911e2225110.1016/j.heliyon.2023.e2225138074876
    [Google Scholar]
  22. TianM. YanH. RowK.H. Extraction of glycyrrhizic acid and glabridin from licorice.Int. J. Mol. Sci.20089457157710.3390/ijms904057119325770
    [Google Scholar]
  23. Ika IriantiM. VinckenJ.P. van DinterenS. ter BeestE. PosK.M. Araya-CloutierC. Prenylated isoflavonoids from Fabaceae against the NorA efflux pump in Staphylococcus aureus.Sci. Rep.20231312254810.1038/s41598‑023‑48992‑838110428
    [Google Scholar]
  24. WangX.X. LiuG.Y. YangY.F. WuX.W. XuW. YangX.W. Intestinal Absorption of Triterpenoids and Flavonoids from Glycyrrhizae radix et rhizoma in the Human Caco-2 Monolayer Cell Model.Molecules20172210162710.3390/molecules2210162728961192
    [Google Scholar]
  25. WuS.C. YangZ.Q. LiuF. PengW.J. QuS.Q. LiQ. SongX.B. ZhuK. ShenJ.Z. Antibacterial effect and mode of action of flavonoids from Licorice against methicillin-resistant Staphylococcus aureus.Front. Microbiol.201910248910.3389/fmicb.2019.0248931749783
    [Google Scholar]
  26. WangD. LiangJ. ZhangJ. WangY. ChaiX. Natural chalcones in Chinese materia medica: Licorice.Evid. Based Complement. Alternat. Med.202020201382124810.1155/2020/382124832256642
    [Google Scholar]
  27. LiF. LiuB. LiT. WuQ. XuZ. GuY. LiW. WangP. MaT. LeiH. Review of constituents and biological activities of triterpene saponins from Glycyrrhizae radix et Rhizoma and its solubilization characteristics.Molecules20202517390410.3390/molecules2517390432867101
    [Google Scholar]
  28. RichardS.A. Exploring the pivotal immunomodulatory and anti-inflammatory potentials of Glycyrrhizic and Glycyrrhetinic acids.Mediators Inflamm.2021202111510.1155/2021/669956033505216
    [Google Scholar]
  29. WangY.C. YangY.S. Simultaneous quantification of flavonoids and triterpenoids in licorice using HPLC.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20078501-239239910.1016/j.jchromb.2006.12.03217224312
    [Google Scholar]
  30. ChiyoN. SekiH. KanamotoT. UedaH. KojomaM. MuranakaT. Glycyrrhizin production in Licorice hairy roots based on metabolic redirection of triterpenoid biosynthetic pathway by genome editing.Plant Cell Physiol.202465218519810.1093/pcp/pcad16138153756
    [Google Scholar]
  31. JainR. HusseinM.A. PierceS. MartensC. ShahagadkarP. MunirathinamG. Oncopreventive and oncotherapeutic potential of licorice triterpenoid compound glycyrrhizin and its derivatives: Molecular insights.Pharmacol. Res.20201035210.3390/biom1003035235192957
    [Google Scholar]
  32. RoziP. AbuduwailiA. MaS. BaoX. XuH. ZhuJ. YadikarN. WangJ. YangX. YiliA. Isolations, characterizations and bioactivities of polysaccharides from the seeds of three species Glycyrrhiza.Int. J. Biol. Macromol.202014536437110.1016/j.ijbiomac.2019.12.10731857172
    [Google Scholar]
  33. WuY. ZhouH. WeiK. ZhangT. CheY. NguyễnA.D. PanditaS. WanX. CuiX. ZhouB. LiC. Structure of a new glycyrrhiza polysaccharide and its immunomodulatory activity.Front. Immunol.202213100718610.3389/fimmu.2022.100718636238291
    [Google Scholar]
  34. AinN.U. WuS. LiX. LiD. ZhangZ. Isolation, characterization, pharmacology and biopolymer applications of licorice polysaccharides.Materials (Basel)20221510365410.3390/ma1510365435629680
    [Google Scholar]
  35. HasanA. ZhangM. ShangZ.P. YiY. KuangY. YuR. FanJ.J. HuangY.X. NijatD. QiaoX. YeM. Bioactive prenylated phenolic compounds from the aerial parts of Glycyrrhiza uralensis. Phytochemistry202220111328410.1016/j.phytochem.2022.11328435714736
    [Google Scholar]
  36. LiuY.Y. YangY.N. FengZ.M. JiangJ.S. ZhangP.C. Eight new triterpenoid saponins with antioxidant activity from the roots of Glycyrrhiza uralensis Fisch.Fitoterapia201913318619210.1016/j.fitote.2019.01.01430690123
    [Google Scholar]
  37. WeiM. MaY. LiuY. ZhouY. MenL. YueK. PiZ. LiuZ. LiuZ. Urinary metabolomics study on the anti-inflammation effects of flavonoids obtained from Glycyrrhiza. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2018108611010.1016/j.jchromb.2018.04.00729654981
    [Google Scholar]
  38. LeiteC.S. BonaféG.A. Carvalho SantosJ. MartinezC.A.R. OrtegaM.M. RibeiroM.L. The anti-inflammatory properties of licorice (Glycyrrhiza glabra)-derived compounds in intestinal disorders.Int. J. Mol. Sci.2022238412110.3390/ijms2308412135456938
    [Google Scholar]
  39. WangJ.W. XuW.R. YongJ.P. TangL.D. ZhangS.J. LiuL.J. WangY.L. RenX.W. Glycyrrhetinic acid-30-amide derivatives and the uses thereof.W.O. Patent 2007041969A12007
  40. JinR.F. LiuJ. ZhangJ.X. TianY.H. Effect of glycyrrhetinic acid and its derivative TY501 on the proliferation of murine macrophage RAW264.7.Yaowu Pingjia Yanjiu2011344255257
    [Google Scholar]
  41. JinR.F. GuoS. ZhangJ.X. DiZ.Q. TianY.H. Effect of Glycyrrhetinic acid derivative TY501 on the mice immune system.Chin. Med. J.2012922224
    [Google Scholar]
  42. GengY.Y. YuB. ZhouZ.X. HuQ.Q. XuW.R. TangL.D. Antifibrotic effect of TY501 on bleomycin-induced pulmonary fibrosis in rats and related mechanism.Zhongguo Yaolixue Tongbao2015312210215
    [Google Scholar]
  43. HanS. SunL. HeF. CheH. Anti-allergic activity of glycyrrhizic acid on IgE-mediated allergic reaction by regulation of allergy-related immune cells.Sci. Rep.201771722210.1038/s41598‑017‑07833‑128775294
    [Google Scholar]
  44. ShuJ. CuiX. LiuX. YuW. ZhangW. HuoX. LuC. Licochalcone A inhibits IgE-mediated allergic reaction through PLC/ERK/STAT3 pathway.Int. J. Immunopathol. Pharmacol.20223610.1177/0394632022113546236263976
    [Google Scholar]
  45. JiangT.Y. SunL. PuQ.R. ZhangY.N. CheH.L. Antiallergic effect of glycyrrhizic acid based on calcium ion transport regulation.Shipin Kexue2020411127132
    [Google Scholar]
  46. QuintanaS.E. CuevaC. Villanueva-BermejoD. Moreno-ArribasM.V. FornariT. García-RiscoM.R. Antioxidant and antimicrobial assessment of licorice supercritical extracts.Ind. Crops Prod.201913911149610.1016/j.indcrop.2019.111496
    [Google Scholar]
  47. MoustafaG.O. ShalabyA. NaglahA.M. MounierM.M. El-SayedH. AnwarM.M. NossierE.S. Synthesis, characterization, in vitro anticancer potentiality, and antimicrobial activities of novel peptide-glycyrrhetinic-acid-based derivatives.Molecules20212615457310.3390/molecules2615457334361728
    [Google Scholar]
  48. SongY. LiuH. YangY. HeJ. YangB. YangL. ZhouX. LiuL. WangP. YangS. Novel 18β-glycyrrhetinic acid amide derivatives show dual-acting capabilities for controlling plant bacterial diseases through ROS-mediated antibacterial efficiency and activating plant defense responses.J. Integr. Agric.20232292759277110.1016/j.jia.2022.10.009
    [Google Scholar]
  49. WuY. GuoY. HuangT. HuangD. LiuL. ShenC. JiangC. WangZ. ChenH. LiangP. Licorice flavonoid alleviates gastric ulcers by producing changes in gut microbiota and promoting mucus cell regeneration.Biomed. Pharmacother.202316911586810.1016/j.biopha.2023.11586837952360
    [Google Scholar]
  50. GuoY. WuY. HuangT. HuangD. ZengQ. WangZ. HuY. LiangP. ChenH. ZhengZ. LiangT. ZhaiD. JiangC. LiuL. ZhuH. LiuQ. Licorice flavonoid ameliorates ethanol-induced gastric ulcer in rats by suppressing apoptosis via PI3K/AKT signaling pathway.J. Ethnopharmacol.202432511773910.1016/j.jep.2024.11773938301986
    [Google Scholar]
  51. JeonY.D. KangS.H. BangK.S. ChangY.N. LeeJ.H. JinJ.S. Glycyrrhetic acid ameliorates dextran sulfate sodium-induced ulcerative colitis in vivo. Molecules201621452310.3390/molecules2104052327110761
    [Google Scholar]
  52. KongJ. XiangQ. GeW. WangY. XuF. ShiG. Network pharmacology mechanisms and experimental verification of licorice in the treatment of ulcerative colitis.J. Ethnopharmacol.202432411769110.1016/j.jep.2023.11769138176667
    [Google Scholar]
  53. ZuoJ. MengT. WangY. TangW. A review of the antiviral activities of glycyrrhizic acid, glycyrrhetinic acid and glycyrrhetinic acid monoglucuronide.Pharmaceuticals (Basel)202316564110.3390/ph1605064137242424
    [Google Scholar]
  54. LangerD. MlynarczykD.T. DlugaszewskaJ. TykarskaE. Potential of glycyrrhizic and glycyrrhetinic acids against influenza type A and B viruses: A perspective to develop new anti-influenza compounds and drug delivery systems.Eur. J. Med. Chem.202324611493410.1016/j.ejmech.2022.11493436455358
    [Google Scholar]
  55. MichaelisM. GeilerJ. NaczkP. SithisarnP. LeutzA. DoerrH.W. CinatlJ.Jr Glycyrrhizin exerts antioxidative effects in H5N1 influenza A virus-infected cells and inhibits virus replication and pro-inflammatory gene expression.PLoS One201165e1970510.1371/journal.pone.001970521611183
    [Google Scholar]
  56. UtsunomiyaT. KobayashiM. PollardR.B. SuzukiF. Glycyrrhizin, an active component of licorice roots, reduces morbidity and mortality of mice infected with lethal doses of influenza virus.Antimicrob. Agents Chemother.199741355155610.1128/AAC.41.3.5519055991
    [Google Scholar]
  57. HuanC. XuY. ZhangW. GuoT. PanH. GaoS. Research progress on the antiviral activity of glycyrrhizin and its derivatives in Liquorice.Front. Pharmacol.20211268067410.3389/fphar.2021.68067434295250
    [Google Scholar]
  58. HoeverG. BaltinaL. MichaelisM. KondratenkoR. BaltinaL. TolstikovG.A. DoerrH.W. CinatlJ.Jr Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus.J. Med. Chem.20054841256125910.1021/jm049300815715493
    [Google Scholar]
  59. ÁlvarezD.M. CastilloE. DuarteL.F. ArriagadaJ. CorralesN. FaríasM.A. HenríquezA. Agurto-MuñozC. GonzálezP.A. Current antivirals and novel botanical molecules interfering with herpes simplex virus infection.Front. Microbiol.20201113910.3389/fmicb.2020.0013932117158
    [Google Scholar]
  60. HuangW. XieP. ZhaoG.N. LiP. Experimental study on the mechanism of glycyrrhizin against herpes simplex virus I infection.J. Stroke Cerebrovasc. Dis.2007242189191
    [Google Scholar]
  61. ZhaoG.N. XieP. Experimental study of glycyrrhizin against herpes simplex virus I.Serpentine2008203182184
    [Google Scholar]
  62. ZhangD. LiangD. Mechanism of compound glycyrrhizin in treating novel coronavirus pneumonia.Linchuang Heli Yongyao Zazhi20231619173175
    [Google Scholar]
  63. GeF.J. ZengC.M. YanF.J. QianM.J. WangW.H. LuoP.H. WengQ.J. ZhuangR.X. XiJ.J. HuangJ.S. YangB. ZhuH. HeQ.J. Glycyrrhetinic acid: a potential drug for treating novel coronary pneumonia.J. Pharm. (Cairo)202156512111216
    [Google Scholar]
  64. YuS. ZhuY. XuJ. YaoG. ZhangP. WangM. ZhaoY. LinG. ChenH. ChenL. ZhangJ. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2.Phytomedicine20218515336410.1016/j.phymed.2020.15336433041173
    [Google Scholar]
  65. SunJ. ZhengQ. ZhangY.H. LiuC.S. ChenC.H. YanS.P. GuoX.M. HuS.P. ZhouY. WuY.F. Structure–Activity relationship (SAR) of 18β-glycyrrhetinic acid derivatives on their antitumor activity through the PPARγ receptor and caspase-3 pathway.J. Saudi Chem. Soc.202428210181510.1016/j.jscs.2024.101815
    [Google Scholar]
  66. DengN. QiaoM. LiY. LiangF. LiJ. LiuY. Anticancer effects of licochalcones: A review of the mechanisms.Front. Pharmacol.202314107450610.3389/fphar.2023.107450636755942
    [Google Scholar]
  67. LinR.C. YangS.F. ChiouH.L. HsiehS.C. WenS.H. LuK.H. HsiehY.H. Licochalcone A-induced apoptosis through the activation of p38MAPK pathway mediated mitochondrial pathways of apoptosis in human osteosarcoma cells in vitro and in vivo. Cells2019811144110.3390/cells811144131739642
    [Google Scholar]
  68. ZhangY. ShengZ. XiaoJ. LiY. HuangJ. JiaJ. ZengX. LiL. Advances in the roles of glycyrrhizic acid in cancer therapy.Front. Pharmacol.202314126517210.3389/fphar.2023.126517237649893
    [Google Scholar]
  69. BravoV. SerranoM. DuqueA. FerragudJ. CoronadoP.J. Glycyrrhizinic acid as an antiviral and anticancer agent in the treatment of human papillomavirus.J. Pers. Med.20231312163910.3390/jpm1312163938138866
    [Google Scholar]
  70. ChenQ. XiongF.L. ZhangX.Q. ZhouL.L. LiX.Y. SunY.N. LiuR. TangH. Study on the antitussive mechanism and antioxidant effect of glycyrrhizin on cough (lung yin deficiency syndrome) mice after infection.J. Central China Normal Univ.2020545841848
    [Google Scholar]
  71. ManQ. Comparative study on antitussive expectorant effects of endophytic microorganisms and different extracts from Glycyrrhizae radix et rhizoma.M.S Thesis , Gansu University of Traditional Chinese Medicine2017
    [Google Scholar]
  72. ZhangY.G. The effect of glycyrrhizic acid glycoside on the levels of interleukin-4-8-17 and interleukin-23 in the serum of patients with chronic urticaria.Shanxi Med. J.2016452145146
    [Google Scholar]
  73. ZhangM.F. ShenY.Q. ZhangY.X. Exploration of the skin pharmacology and clinical application of licorice and its active ingredients.China Health and Nutrition2013362146156
    [Google Scholar]
  74. TanH. ChenJ. LiY. LiY. ZhongY. LiG. LiuL. LiY. Glabridin, a bioactive component of licorice, ameliorates diabetic nephropathy by regulating ferroptosis and the VEGF/Akt/ERK pathways.Mol. Med.20222815810.1186/s10020‑022‑00481‑w35596156
    [Google Scholar]
  75. OlloquequiJ. EttchetoM. CanoA. FortunaA. BickerJ. Sánchez-LopezE. PazC. UreñaJ. VerdaguerE. AuladellC. CaminsA. LicochalconeA. A potential multitarget drug for Alzheimer’s disease treatment.Int. J. Mol. Sci.202324181417710.3390/ijms24181417737762479
    [Google Scholar]
  76. ZhangJ. WuX. ZhongB. LiaoQ. WangX. XieY. HeX. Review on the diverse biological effects of Glabridin.Drug Des. Devel. Ther.202317153710.2147/DDDT.S38598136647530
    [Google Scholar]
/content/journals/npj/10.2174/0122103155343052240906052136
Loading
/content/journals/npj/10.2174/0122103155343052240906052136
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test