Skip to content
2000
Volume 15, Issue 8
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

The demand for Linn-based products is increasing due to their well-known therapeutic properties for treating various diseases, such as typhus, herpes, eczema, constipation, diarrhoea, gastroenteritis, and fungal skin diseases.

Objective

This study aims to compare the total yield of the extract, bioactive compounds, and antioxidant activity of leaves using various extraction methods.

Methods

Extractions were performed using conventional maceration, Soxhlet, and non-conventional Subcritical Carbon Dioxide Soxhlet (SCDS) methods. The antioxidant properties of the leaf extracts were determined by the DPPH radical scavenging activities.

Results

Conventional methods yield higher percentages of extracts than SCDS, ranging from 1.20% to 25.14%. Soxhlet extraction with methanol showed the highest yields (25.14%) compared to hexane extraction (11.24%), indicating the solvent's influence on extraction efficiency. The effect of the sample-to-soaking solvent ratio on the extracted yield varied from 1.20 to 2.45% in the SCDS method. GCMS analysis showed the presence of 18 compounds, with phytol acetate, dihydroactinidiolide, and hexadecenoic acid methyl ester being the dominant ones. The DPPH assay shows that the extracts have antioxidant activity. The SCDS extract with methanol as a solvent had the strongest potency with lowest IC value (0.693 ± 0.1725 mg/mL), while the extract with ethanol as a soaking solvent had the weakest potency (55.56 ± 2.29 mg/mL).

Conclusion

Although traditional techniques produced greater extract percentages, the SCDS method demonstrated potential for maintaining the bioactive components of leaf extracts. Overall, this research highlights the potential of the SCDS as an alternative extraction technique to maintain the quality of bioactive compounds in plant extracts.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155299703240521060228
2024-07-25
2025-09-06
Loading full text...

Full text loading...

References

  1. RahimN.A. FerdoshS. ZainuddinN.A. SarkerM.Z.I. Extraction methodologies, phytochemical constituents, and biological activities of Senna alata Linn: A review.Nat. Prod. J.2023132218
    [Google Scholar]
  2. FatmawatiS.; Yuliana, ; Purnomo, A.S.; Abu Bakar, M.F. Chemical constituents, usage and pharmacological activity of Cassia alata.Heliyon202067e0439610.1016/j.heliyon.2020.e04396 32685725
    [Google Scholar]
  3. YonJ.A.L. LeeS.K. KengJ.W. ChowS.C. LiewK.B. TeoS.S. Shaik MossadeqW.M. MarriottP.J. AkowuahG.A. MingL.C. GohB.H. ChewY.L. Cassia alata (Linnaeus) Roxburgh for skin: Natural remedies for atopic dermatitis in Asia and their pharmacological activities.Cosmetics2022101510.3390/cosmetics10010005
    [Google Scholar]
  4. KulipJ. An ethnobotanical survey of medicinal and other useful plants of Muruts in Sabah, Malaysia.Telopea2003101819810.7751/telopea20035608
    [Google Scholar]
  5. ChannaU. ShahA. BhattiS. MemonA. GhanghroA. GhanghroI. Phytochemical analysis and antibacterial properties of Cassia Senna alata.Rawal Med. J.2020223226
    [Google Scholar]
  6. OladejiO.S. AdelowoF.E. OluyoriA.P. The genus Senna (Fabaceae): A review on its traditional uses, botany, phytochemistry, pharmacology and toxicology.S. Afr. J. Bot.202113813210.1016/j.sajb.2020.11.017
    [Google Scholar]
  7. SonalMuley SonalM. LataK.B AjinkyaS.G. Sonal Muley Association of antioxidant to the genesis of psychiatric disorder.Int. J. Res. Pharm. Sci.202112158859310.26452/ijrps.v12i1.4124
    [Google Scholar]
  8. ChavesN. SantiagoA. AlíasJ.C. Quantification of the antioxidant activity of plant extracts: analysis of sensitivity and hierarchization based on the method used.Antioxidants2020917610.3390/antiox9010076 31952329
    [Google Scholar]
  9. ChuaL.Y.W. ChuaB.L. FigielA. ChongC.H. WojdyłoA. SzumnyA. LechK. Characterisation of the convective hot-air drying and vacuum microwave drying of Cassia alata: Antioxidant activity, essential oil volatile composition and quality studies.Molecules2019248162510.3390/molecules24081625 31022967
    [Google Scholar]
  10. OladejiO.S. AdelowoF. E. OluyoriA.P. BankoleD.T. Ethnobotanical description and biological activities of Senna alata.eCAM2020112
    [Google Scholar]
  11. PriyaR.R. BhaduhshaN. ManivannanV. GunasekaranT. Preliminary quantitative phytochemical, physicochemical and in vitro antioxidant activity of Senna alata hydroalcoholic leaf extract.IJLPR202212195102
    [Google Scholar]
  12. MonteiroJ.A. Ferreira JúniorJ.M. OliveiraI.R. BatistaF.L.A. PintoC.C.C. SilvaA.A.S. MoraisS.M. SilvaM.G.V. Bioactivity and toxicity of Senna cana and Senna pendula extracts.Biochem. Res. Int.2018201811010.1155/2018/8074306 29808121
    [Google Scholar]
  13. DhananiT. SinghR. ReddyN. TrivediA. KumarS. Comparison on extraction yield of sennoside A and sennoside B from senna (Cassia angustifolia) using conventional and non conventional extraction techniques and their quantification using a validated HPLC-PDA detection method.Nat. Prod. Res.20173191097110110.1080/14786419.2016.1258562 27855501
    [Google Scholar]
  14. 7(3.11), 94-100 SubukiI. MalekA.N.A. SaidinS.H. PisarM.M. Optimization of supercritical extraction conditions of Senna alata and evaluation of biological activity.Int. J. Eng. Technol201873.1194100
    [Google Scholar]
  15. GhafoorK. SarkerM.Z.I. Al-JuhaimiF.Y. BabikerE.E. AlkalthamM.S. AlmubarakA.K. Extraction and evaluation of bioactive compounds from date (phoenix dactylifera) seed using supercritical and subcritical CO2 techniques.Foods20221112180610.3390/foods11121806 35742004
    [Google Scholar]
  16. EasminS. SarkerM.Z.I. GhafoorK. FerdoshS. JaffriJ.M. AkandaM.J.H. Al-JuhaimiF.Y. BostanudinF.M. KhatibA. Extraction of α-glucosidase inhibitory compounds from Phaleria macrocarpa fruit flesh using solvent, sonication, and subcritical carbon dioxide soxhlet methods.J. Food Biochem.2017415e1239910.1111/jfbc.12399
    [Google Scholar]
  17. ChiaS.L. BooH.C. MuhamadK. SulaimanR. UmananF. ChongG.H. Effect of subcritical carbon dioxide extraction and bran stabilization methods on rice bran oil.J. Am. Chem. Soc.2015923393402
    [Google Scholar]
  18. Onyegeme-OkerentaB.M. NwosuT. WegwuM.O. Proximate and phytochemical composition of leaf extract of Senna alata (L.).Roxb. J. Pharmacogn. Phytochem.201762320326
    [Google Scholar]
  19. GritsanapanW. MangmeesriP. Standardized Senna leaf extract.J. Health Res.20092325964
    [Google Scholar]
  20. VanithaA. KalimuthuK. ChinnaduraiV. NishaK.M.J. Phytochemical screening, FTIR and GCMS analysis of aqueous extract of Caralluma bicolor – An endangered plant.Asian J. Pharm. Pharmacol.2019561122113010.31024/ajpp.2019.5.6.7
    [Google Scholar]
  21. HalimM. The phytochemicals, antioxidant and antimicrobial properties of senna alata and senna tora leaf extracts against bacterial strains causing skin infections.Bacterial Empire201921192510.36547/be.2019.2.1.19‑25
    [Google Scholar]
  22. NcubeS. AfolayanJ. OkohI. Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends.AJB200871217971806
    [Google Scholar]
  23. ZhangQ.W. LinL.G. YeW.C. Techniques for extraction and isolation of natural products: A comprehensive review.Chin. Med.20181312010.1186/s13020‑018‑0177‑x 29692864
    [Google Scholar]
  24. FaruqZ.U. RahmanU.A. BelloM. ObiankeM. AtikuF.A. Antibacterial activity of the active component of Cassia alata (Linn) leaves.Nig. J. Basic Appl. Sci.20101819710010.4314/njbas.v18i1.56850
    [Google Scholar]
  25. AltemimiA. LakhssassiN. BaharloueiA. WatsonD. LightfootD. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts.Plants2017644210.3390/plants6040042 28937585
    [Google Scholar]
  26. AhmadkelayehS. HawboldtK. Extraction of lipids and astaxanthin from crustacean by-products: A review on supercritical CO2 extraction.Trends Food Sci. Technol.20201039410810.1016/j.tifs.2020.07.016
    [Google Scholar]
  27. AbubakarA. HaqueM. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes.J. Pharm. Bioallied Sci.202012111010.4103/jpbs.JPBS_175_19 32801594
    [Google Scholar]
  28. JonesW.P. KinghornA.D. Extraction of plant secondary metabolites.Methods Mol. Biol.201286434136610.1007/978‑1‑61779‑624‑1_13 22367903
    [Google Scholar]
  29. StéphaneF.F.Y. JulesB.K.J. BatihaG.E. AliI. BrunoL.N. Extraction of bioactive compounds from medicinal plants and herbs.In: Natural Medicinal Plants.IntechOpen202210.5772/intechopen.98602
    [Google Scholar]
  30. SoedirgaL.C.; Hardoko, ; Prameswari, G. Determination of solvent and ratio sample-solvent towards the production of oligo-glucosamine obtained from fermented tiger shrimp (Penaeus monodon) shell’s chitin by using precipitation method.Food Res.2020462163216810.26656/fr.2017.4(6).255
    [Google Scholar]
  31. SinghC. UpadhyayR. TiwariK.N. Comparative analysis of the seasonal influence on polyphenolic content, antioxidant capacity, identification of bioactive constituents and hepatoprotective biomarkers by in silico docking analysis in Premna integrifolia L.Physiol. Mol. Biol. Plants202228122324910.1007/s12298‑021‑01120‑0 35221581
    [Google Scholar]
  32. Sharifi-RadM. Anil KumarN.V. ZuccaP. VaroniE.M. DiniL. PanzariniE. RajkovicJ. Tsouh FokouP.V. AzziniE. PelusoI. Prakash MishraA. NigamM. El RayessY. BeyrouthyM.E. PolitoL. IritiM. MartinsN. MartorellM. DoceaA.O. SetzerW.N. CalinaD. ChoW.C. Sharifi-RadJ. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases.Front. Physiol.20201169410.3389/fphys.2020.00694 32714204
    [Google Scholar]
  33. ShaabanM.T. GhalyM.F. FahmiS.M. Antibacterial activities of hexadecanoic acid methyl ester and green‐synthesized silver nanoparticles against multidrug‐resistant bacteria.J. Basic Microbiol.202161655756810.1002/jobm.202100061 33871873
    [Google Scholar]
  34. KangS.Y. UmJ.Y. ChungB.Y. LeeS.Y. ParkJ.S. KimJ.C. ParkC.W. KimH.O. Moisturizer in patients with inflammatory skin diseases.Medicina202258788810.3390/medicina58070888 35888607
    [Google Scholar]
  35. DasM. PrakashS. NayakC. ThangavelN. SinghS.K. ManisankarP. DeviK.P. Dihydroactinidiolide, a natural product against Aβ25-35 induced toxicity in Neuro2a cells: Synthesis, in silico and in vitro studies.Bioorg. Chem.20188134034910.1016/j.bioorg.2018.08.037 30189414
    [Google Scholar]
  36. DadiD.W. EmireS.A. HagosA.D. EunJ.B. Effect of ultrasound-assisted extraction of moringa stenopetala leaves on bioactive compounds and their antioxidant activity.Food Technol. Biotechnol.2019571778610.17113/ftb.57.01.19.5877 31316279
    [Google Scholar]
  37. Halim-LimS. RamliN.S. FadzilF.A. Abd RahimM.H.A. The antimicrobial and antioxidant properties of Cassia alata extraction under different temperature profiles.Food Res.202016
    [Google Scholar]
  38. Jeweldai Vedekoi, ; Sélestin, S. In vitro antioxidant property and phytochemical constituents of Senna alata leaves aqueous extract collected in Ngaoundéré (Cameroon).Pharm. Biosci. J.202020208152110.20510/ukjpb/8/i3/1592309659
    [Google Scholar]
  39. OlugbamiJ.O. GbadegesinM.A. OdunolaO.A. In vitro evaluation of the antioxidant potential, phenolic and flavonoid contents of the stem bark ethanol extract of Anogeissus leiocarpus.Afr. J. Med. Med. Sci.201443Suppl. 1101109 26681826
    [Google Scholar]
  40. OyebadeK.F. DaspanA.J. DenkokY. AlemikaT.E. OjerindeO.S. Antimicrobial, antioxidant and antiproliferative properties of the leaves of Senna siamea.J. Complement. Altern. Med. Res.20212229
    [Google Scholar]
  41. AngelinaM. MardhiyahA. DewiR.T. FajriahS. MuthiahN. EkapratiwiY. DewijantiI.D. SukirnoS. JamilahJ. HartatiS. Physicochemical and phytochemical standardization, and antibacterial evaluation of Cassia alata leaves from different locations in Indonesia.Pharmacia202168494795610.3897/pharmacia.68.e76835
    [Google Scholar]
/content/journals/npj/10.2174/0122103155299703240521060228
Loading
/content/journals/npj/10.2174/0122103155299703240521060228
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test