Skip to content
2000
Volume 15, Issue 8
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Aims

The aim of this study is to study preparation, characterization and sustained release of Encapsulated Cinnamon Essential Oil Microcapsules.

Background

In this work, encapsulated cinnamon essential oil (CEO) microcapsules were prepared, characterized, and analyzed for their sustained-release properties. CEO microcapsules were encapsulated from an alginate polymer using homogenization and extrusion, and the encapsulation mechanism used was ionic gelation. The potent antibacterial properties of natural cinnamon oil extracts and their shelf-life activity can be reduced or eliminated as a result of deterioration caused by light, heat, and oxygen exposure during production. High-speed homogenization was utilized for the encapsulation, which encloses and protects the volatile compounds from degradation.

Objective

The objective of this study is to synthesize sustained-release encapsulated cinnamon essential oil (CEO) microcapsules.

Methods

The preparation of encapsulated cinnamon oil was achieved through homogenization. The extrusion method was employed to obtain microcapsules encapsulating liquid active ingredients (AI) with alginate polymer to induce ionic gelation.

Results

SEM and Optical images reveal that all microcapsules maintain their spherical shape with clearly defined membranes. XPS analysis indicates the presence of oxygen (O), carbon (C), and sodium (Na) on the surface, suggesting the presence of an alginate-based ionic gelation. Chromatographic studies demonstrate a high encapsulation efficiency of 99%. The average microcapsule size is 261.5 nm for the fresh sample and 278 nm after 3.5 months. The zeta potential is -29.8 mV for the fresh sample and -28.2 mV after 3.5 months. Notably, there is no evidence of microcapsule agglomeration during the 3.5-month storage period as observed in the study. TGA data reveals that only 7.5% of the adsorbed water and essential oil mixture is lost at 40°C over 4 hours, in contrast to 11.7% for the adsorbed water material, indicating a sustained release of the encapsulated CEO from the microcapsules.

Conclusion

The microcapsules exhibited an impressive encapsulation efficiency of 99%, demonstrating stability over the 3.5-month investigation period and showcasing sustained-release properties.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155292898240902065307
2024-09-10
2025-09-06
Loading full text...

Full text loading...

References

  1. a KawatraP. RajagopalanR. Cinnamon: Mystic powers of a minute ingredient.Pharmacognosy Res.201575110.4103/0974‑8490.157990 26109781
    [Google Scholar]
  2. b ParanagamaP.A. WimalasenaS. JayatilakeG.S. JayawardenaA.L. SenanayakeU.M. MubarakA.M. A comparison of essential oil constituents of bark, leaf, root and fruit of cinnamon (Cinnamomum zeylanicum Blum) grown in Sri Lanka.J. Natl. Sci. Found. Sri Lanka2001293-414715310.4038/jnsfsr.v29i3‑4.2613
    [Google Scholar]
  3. SchmidtE. JirovetzL. BuchbauerG. EllerG.A. StoilovaI. KrastanovA. StoyanovaA. GeisslerM. Composition and antioxidant activities of the essential oil of cinnamon ( cinnamomum zeylanicum blume) leaves from Sri Lanka.J. Essent. Oil-Bear. Plants20069217018210.1080/0972060X.2006.10643490
    [Google Scholar]
  4. DhifiW. BelliliS. JaziS. BahloulN. MnifW. Essential oils’ chemical characterization and investigation of some biological activities: A critical review.Medicines (Basel)2016342510.3390/medicines3040025 28930135
    [Google Scholar]
  5. MoghaddamM. MehdizadehL. Chemistry of essential oils and factors influencing their constituents, soft chemistry and food fermentation.In: Handbook of Food Bioengineering.Academic Press2017379419
    [Google Scholar]
  6. HüsnüK. BaşerC. DemirciF. Chemistry of essential oils. In: Flavours and Fragrances.Springer Berlin Heidelberg2007
    [Google Scholar]
  7. BlowmanK. MagalhãesM. LemosM.F.L. CabralC. PiresI.M. Anticancer properties of essential oils and other natural products.Evid. Based Complement. Alternat. Med.2018201811210.1155/2018/3149362 29765461
    [Google Scholar]
  8. BhavaniramyaS. VishnupriyaS. Al-AboodyM.S. VijayakumarR. BaskaranD. Role of essential oils in food safety: Antimicrobial and antioxidant applications.Grain Oil Sci. Tech.201922495510.1016/j.gaost.2019.03.001
    [Google Scholar]
  9. WangZ.C. LuY. YanY. NisarT. FangZ. XiaN. GuoY. ChenD.W. Effective inhibition and simplified detection of lipid oxidation in tilapia (Oreochromis niloticus) fillets during ice storage.Aquaculture201951163418310.1016/j.aquaculture.2019.05.068
    [Google Scholar]
  10. AtarésL. BonillaJ. ChiraltA. Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils.J. Food Eng.2010100467868710.1016/j.jfoodeng.2010.05.018
    [Google Scholar]
  11. JamrózE. JuszczakL. KucharekM. Investigation of the physical properties, antioxidant and antimicrobial activity of ternary potato starch-furcellaran-gelatin films incorporated with lavender essential oil.Int. J. Biol. Macromol.20181141094110110.1016/j.ijbiomac.2018.04.014 29627470
    [Google Scholar]
  12. ZhengK. XiaoS. LiW. WangW. ChenH. YangF. QinC. Chitosan-acorn starch-eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties.Int. J. Biol. Macromol.201913534435210.1016/j.ijbiomac.2019.05.151 31128187
    [Google Scholar]
  13. AzadbakhtE. MaghsoudlouY. KhomiriM. KashiriM. Development and structural characterization of chitosan films containing Eucalyptus globulus essential oil: Potential as an antimicrobial carrier for packaging of sliced sausage.Food Packag. Shelf Life201817657210.1016/j.fpsl.2018.03.007
    [Google Scholar]
  14. PanY. DengZ. ShahidiF. Natural bioactive substances for the control of food-borne viruses and contaminants in food.Food Prod. Proces. Nut.2020212710.1186/s43014‑020‑00040‑y
    [Google Scholar]
  15. PerdonesÁ. EscricheI. ChiraltA. VargasM. Effect of chitosan-lemon essential oil coatings on volatile profile of strawberries during storage.Food Chem.201619797998610.1016/j.foodchem.2015.11.054
    [Google Scholar]
  16. Acevedo-FaniA. Salvia-TrujilloL. Rojas-GraüM.A. Martín-BellosoO. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties.Food Hydrocoll.20154716817710.1016/j.foodhyd.2015.01.032
    [Google Scholar]
  17. TurekC. StintzingF.C. Stability of Essential Oils: A Review.Compr. Rev. Food Sci. Food Saf.2013121405310.1111/1541‑4337.12006
    [Google Scholar]
  18. AhmadZ. HussainR. RiazM. KhanM.A. NadeemM. AkramK. RafayM. RashidM.F. AsifA.R. GhaffarA. Mitigation of toxic effects caused by tartrazine in wistar rats through oral administration of melon seed oil.Pak. J. Agric. Sci.201956435442
    [Google Scholar]
  19. ZuidamN. J. HeinrichE. Encapsulation of Aroma; springer link,201010.1007/978‑1‑4419‑1008‑0_5
    [Google Scholar]
  20. AlamM.S. KaurJ. KhairaH. GuptaK. Extrusion and extruded products: changes in quality attributes as affected by extrusion process parameters: a review.Crit. Rev. Food Sci. Nutr.201656344547310.1080/10408398.2013.779568 25574813
    [Google Scholar]
  21. KumarM. BishnoiR.S. ShuklaA.K. JainC.P. Techniques for formulation of nanoemulsion drug delivery system: a review.Prev. Nutr. Food Sci.201924322523410.3746/pnf.2019.24.3.225 31608247
    [Google Scholar]
  22. QianC. McClementsD.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size.Food Hydrocoll.20112551000100810.1016/j.foodhyd.2010.09.017
    [Google Scholar]
  23. a SodeifianG. AnsariK. Optimization of Ferulago Angulata oil extraction with supercritical carbon dioxide.J. Supercrit. Fluids2011571384310.1016/j.supflu.2011.02.002
    [Google Scholar]
  24. b SodeifianG. AziziJ. GhoreishiS.M. Response surface optimization of Smyrnium cordifolium Boiss (SCB) oil extraction via supercritical carbon dioxide.J. Supercrit. Fluids2014951710.1016/j.supflu.2014.07.023
    [Google Scholar]
  25. c SodeifianG. Saadati ArdestaniN. SajadianS.A. GhorbandoostS. Application of supercritical carbon dioxide to extract essential oil from Cleome coluteoides Boiss: Experimental, response surface and grey wolf optimization methodology.J. Supercrit. Fluids2016114556310.1016/j.supflu.2016.04.006
    [Google Scholar]
  26. d SodeifianG. SajadianS.A. Investigation of essential oil extraction and antioxidant activity of Echinophora platyloba DC. using supercritical carbon dioxide.J. Supercrit. Fluids2017121526210.1016/j.supflu.2016.11.014
    [Google Scholar]
  27. e SodeifianG. SajadianS.A. Saadati ArdestaniN. Optimization of essential oil extraction from Launaea acanthodes Boiss: Utilization of supercritical carbon dioxide and cosolvent.J. Supercrit. Fluids2016116465610.1016/j.supflu.2016.05.015
    [Google Scholar]
  28. f SodeifianG. SajadianS.A. Saadati ArdestaniN. Evaluation of the response surface and hybrid artificial neural network-genetic algorithm methodologies to determine extraction yield of Ferulago angulata through supercritical fluid.J. Taiwan Inst. Chem. Eng.20166016517310.1016/j.jtice.2015.11.003
    [Google Scholar]
  29. g SodeifianG. SajadianS.A. Saadati ArdestaniN. Experimental optimization and mathematical modeling of the supercritical fluid extraction of essential oil from Eryngium billardieri: Application of simulated annealing (SA) algorithm.J. Supercrit. Fluids201712714615710.1016/j.supflu.2017.04.007
    [Google Scholar]
  30. a SodeifianG. SajadianS.A. Saadati ArdestaniN. Supercritical fluid extraction of omega-3 from Dracocephalum kotschyi seed oil: Process optimization and oil properties.J. Supercrit. Fluids201711913914910.1016/j.supflu.2016.08.019
    [Google Scholar]
  31. b SodeifianG. GhorbandoostS. SajadianS.A. Saadati ArdestaniN. Extraction of oil from Pistacia khinjuk using supercritical carbon dioxide: Experimental and modeling.J. Supercrit. Fluids201611026527410.1016/j.supflu.2015.12.004
    [Google Scholar]
  32. c SodeifianG. ArdestaniN.S. SajadianS.A. MoghadamianK. Properties of Portulaca oleracea seed oil via supercritical fluid extraction: Experimental and optimization.J. Supercrit. Fluids2018135344410.1016/j.supflu.2017.12.026
    [Google Scholar]
  33. a SodeifianG. UsefiM.M.B. Solubility, extraction, and nanoparticles production in supercritical carbon dioxide: a mini‐review.ChemBioEng Rev.202310213316610.1002/cben.202200020
    [Google Scholar]
  34. b SodeifianG. SajadianS.A. RazmimaneshF. ArdestaniN.S. A comprehensive comparison among four different approaches for predicting the solubility of pharmaceutical solid compounds in supercritical carbon dioxide.Korean J. Chem. Eng.201835102097211610.1007/s11814‑018‑0125‑6
    [Google Scholar]
  35. a SodeifianG. SajadianS.A. Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC).J. Supercrit. Fluids201813323925210.1016/j.supflu.2017.10.015
    [Google Scholar]
  36. b Saadati ArdestaniN. SodeifianG. SajadianS.A. Preparation of phthalocyanine green nano pigment using supercritical CO2 gas antisolvent (GAS): experimental and modeling.Heliyon2020690494710.1016/j.heliyon.2020.e04947 32995627
    [Google Scholar]
  37. c RazmimaneshF. SodeifianG. SajadianS.A. An investigation into Sunitinib malate nanoparticle production by US- RESOLV method: Effect of type of polymer on dissolution rate and particle size distribution.J. Supercrit. Fluids202117010516310.1016/j.supflu.2021.105163
    [Google Scholar]
  38. d SodeifianG. SajadianS. A. DerakhsheshpourR. 2022
  39. e SodeifianG. SajadianS.A. Saadati ArdestaniN. RazmimaneshF. Production of Loratadine drug nanoparticles using ultrasonic-assisted Rapid expansion of supercritical solution into aqueous solution (US-RESSAS).J. Supercrit. Fluids201914724125310.1016/j.supflu.2018.11.007
    [Google Scholar]
  40. f SodeifianG. SajadianS.A. Utilization of ultrasonic-assisted RESOLV (US-RESOLV) with polymeric stabilizers for production of amiodarone hydrochloride nanoparticles: Optimization of the process parameters.Chem. Eng. Res. Des.201914226828410.1016/j.cherd.2018.12.020
    [Google Scholar]
  41. g SodeifianG. Saadati ArdestaniN. SajadianS.A. Soltani PanahH. Experimental measurements and thermodynamic modeling of Coumarin-7 solid solubility in supercritical carbon dioxide: Production of nanoparticles via RESS method.Fluid Phase Equilib.201948312214310.1016/j.fluid.2018.11.006
    [Google Scholar]
  42. h SodeifianG. SajadianS.A. DaneshyanS. Preparation of Aprepitant nanoparticles (efficient drug for coping with the effects of cancer treatment) by rapid expansion of supercritical solution with solid cosolvent (RESS-SC).J. Supercrit. Fluids2018140728410.1016/j.supflu.2018.06.009
    [Google Scholar]
  43. a AmeriA. SodeifianG. SajadianS.A. Lansoprazole loading of polymers by supercritical carbon dioxide impregnation: Impacts of process parameters.J. Supercrit. Fluids202016410489210.1016/j.supflu.2020.104892
    [Google Scholar]
  44. b FathiM. SodeifianG. SajadianS.A. Experimental study of ketoconazole impregnation into polyvinyl pyrrolidone and hydroxyl propyl methyl cellulose using supercritical carbon dioxide: Process optimization.J. Supercrit. Fluids202218810567410.1016/j.supflu.2022.105674
    [Google Scholar]
  45. SodeifianG. SajadianS.A. HonarvarB. Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide.Nat. Prod. Res.201832779580310.1080/14786419.2017.1361954 28783956
    [Google Scholar]
  46. DaneshyanS. SodeifianG. Synthesis of cyclic polystyrene in supercritical carbon dioxide green solvent.J. Supercrit. Fluids202218810567910.1016/j.supflu.2022.105679
    [Google Scholar]
  47. Niño-VásquezI.A. Muñiz-MárquezD. Ascacio-ValdésJ.A. Contreras-EsquivelJ.C. AguilarC.N. Rodríguez-HerreraR. Flores-GallegosA.C. Co-microencapsulation: a promising multi-approach technique for enhancement of functional properties.Bioengineered20221335168518910.1080/21655979.2022.2037363 35172666
    [Google Scholar]
  48. GuerriniL. Alvarez-PueblaR.A. Pazos-PerezN. Surface modifications of nanoparticles for stability in biological fluids.Materials (Basel)2018117115410.3390/ma11071154 29986436
    [Google Scholar]
  49. WissamZ. SamerH. Encapsulation of flaxseed oil extract in alginate-salep system by ionic gelation.Braz. J. Pharm. Sci.20195526110.1590/s2175‑97902019000200261
    [Google Scholar]
  50. SunX. FuH. BaoM. ZhangF. LiuW. LiY. LiY. LuJ. Preparation of slow-release microencapsulated fertilizer-Biostimulation remediation of marine oil spill pollution.J. Environ. Chem. Eng.202311210928310.1016/j.jece.2023.109283
    [Google Scholar]
  51. MerakchiA. BettayebS. DrouicheN. AdourL. LouniciH. Cross-linking and modification of sodium alginate biopolymer for dye removal in aqueous solution.Polym. Bull.20197673535355410.1007/s00289‑018‑2557‑x
    [Google Scholar]
  52. GravesR.A. MoiseyevR. FreemanT. MandalT.K. Effect of surfactant on the characteristics of biodegradable microcapsules.J. Biomater. Sci. Polym. Ed.200516558559610.1163/1568562053783696 16001718
    [Google Scholar]
  53. aEverything You Need to Know About ATR-FTIR Spectroscopy
    [Google Scholar]
  54. https://specac.com/everything-you-need-to-know-about-atr-ftir-spectroscopy/bAttenuated Total Reflectance (ATR)
  55. chttps://www.bruker.com/en/products-and-solutions/infrared-and-raman/ft-ir-routine-spectrometer/what-is-ft-ir-spectroscopy/atr-attenuated-total-reflectance.html TiernanH. ByrneB. KazarianS.G. ATR-FTIR spectroscopy and spectroscopic imaging for the analysis of biopharmaceuticals.Spectrochim. Acta A Mol. Biomol. Spectrosc.202024111863610.1016/j.saa.2020.118636 32610215
    [Google Scholar]
  56. MudunkotuwaI.A. MinshidA.A. GrassianV.H. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid–solid interface in environmentally and biologically relevant media.Analyst (Lond.)2014139587088110.1039/C3AN01684F 24350328
    [Google Scholar]
  57. GendeL.B. FlorisI. FritzR. EguarasM.J. Antimicrobial activity of cinnamon (Cinnamomum zeylanicum) essential oil and its main components against Paenibacillus larvae from Argentine.Bull. Insectol.20086114
    [Google Scholar]
  58. Ortiz-TafoyaM.C. TecanteA. Physicochemical characterization of sodium stearoyl lactylate (SSL), polyoxyethylene sorbitan monolaurate (Tween 20) and κ-carrageenan.Data Brief20181964265010.1016/j.dib.2018.05.064 29900364
    [Google Scholar]
  59. DaemiH. BarikaniM. Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles.Sci. Iran.20121962023202810.1016/j.scient.2012.10.005
    [Google Scholar]
  60. AchinnaP. a. K. Microencapsulation technology.J. Res. Angrau.2010
    [Google Scholar]
  61. SharifiF. JahangiriM. NazirI. AsimM.H. EbrahimnejadP. HupfaufA. GustR. Bernkop-SchnürchA. Zeta potential changing nanoemulsions based on a simple zwitterion.J. Colloid Interface Sci.202158512613710.1016/j.jcis.2020.11.054 33279695
    [Google Scholar]
  62. GohelM. SoniT. HingoraniL. PatelA. PatelN. Development and optimization of plant extract loaded nanoemulsion mixtures for the treatment of inflammatory disorder Curr.Res. Drug Discov.201412938
    [Google Scholar]
  63. WypychG. Ester — Glyceryl monostearate: Databook of Antistatics.Chemtec Publishing201410.1016/B978‑1‑895198‑61‑4.50012‑2
    [Google Scholar]
  64. PochapskiD.J. Carvalho dos SantosC. LeiteG.W. PulcinelliS.H. SantilliC.V. Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: effects of experimental conditions and electrokinetic models on the interpretation of results.Langmuir20213745133791338910.1021/acs.langmuir.1c02056 34637312
    [Google Scholar]
  65. ChangQ. Electrical Properties; Academic PressWilliams, P.M. Zeta Potential; Springer-Verlag Berlin: Heidelberg10.1016/B978‑0‑12‑809315‑3.00007‑42016
    [Google Scholar]
  66. LeickS. HenningS. DegenP. SuterD. RehageH. Deformation of liquid-filled calcium alginate capsules in a spinning drop apparatus.Phys. Chem. Chem. Phys.201012122950295810.1039/b921116k 20449386
    [Google Scholar]
  67. SmithM. ScudieroL. EspinalJ. McEwenJ.S. Garcia-PerezM. Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations.Carbon201611015517110.1016/j.carbon.2016.09.012
    [Google Scholar]
  68. a AraujoJ.R. ArchanjoB.S. de SouzaK.R. KwapinskiW. FalcãoN.P.S. NovotnyE.H. AcheteC.A. Selective extraction of humic acids from an anthropogenic Amazonian dark earth and from a chemically oxidized charcoal.Biol. Fertil. Soils20145081223123210.1007/s00374‑014‑0940‑9
    [Google Scholar]
  69. b KuznetsovM.V. ZhuravlevJ.F. GubanovV.A. XPS analysis of adsorption of oxygen molecules on the surface of Ti and TiNx films in vacuum.J. Electron Spectrosc. Relat. Phenom.199258316917610.1016/0368‑2048(92)80016‑2
    [Google Scholar]
  70. BeardB.C. Fresh cleaved single crystal nacl, xps spectra, al source.Surf. Sci. Spectra199322919610.1116/1.1247741
    [Google Scholar]
  71. BaerD.R. ThevuthasanS. Characterization of thin films and coatings.In: Handbook of Deposition Technologies for Films and Coatings.William Andrew201074986410.1016/B978‑0‑8155‑2031‑3.00016‑8
    [Google Scholar]
/content/journals/npj/10.2174/0122103155292898240902065307
Loading
/content/journals/npj/10.2174/0122103155292898240902065307
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test