Skip to content
2000
Volume 16, Issue 1
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Introduction

Three novel macrolactams, FW8-1 (), FW8-4 (), and FW60-20 (), were isolated from a culture of sp. The structures of these compounds were elucidated using Mass Spectrometry (MS) and comprehensive Nuclear Magnetic Resonance (NMR) analyses.

Methods

The relative configurations of compounds - were assigned through theoretical calculations of their NMR spectra.

Results

The isolation and determination of the relative configurations of these macrolactams have provided fresh perspectives on the biosynthetic pathways, leading to the formation of polyene macrolactams.

Conclusion

Further, virtual screening and bioactivity predictions have suggested compounds - to possess potential anti-tumor, anti-inflammatory, and neuroprotective properties.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155340964241009112348
2026-01-01
2025-10-22
Loading full text...

Full text loading...

References

  1. CarrollA.R. CoppB.R. DavisR.A. KeyzersR.A. PrinsepM.R. Marine natural products.Nat. Prod. Rep.202340227532510.1039/D2NP00083K 36786022
    [Google Scholar]
  2. HaqueN. ParveenS. TangT. WeiJ. HuangZ. Marine natural products in clinical use.Mar. Drugs202220852810.3390/md20080528 36005531
    [Google Scholar]
  3. HongG.L. KarunasagaraS. JungJ.Y. Scaphechinus mirabilis extract effectively inhibits the proliferation of BPH-1 and LNCaP prostate epithelial cells.Nat. Prod. J.2022122e030621193849
    [Google Scholar]
  4. DehghaniH. RashediniaM. MohebbiG. VazirizadehA. Studies on secondary metabolites and in vitro and in silico anticholinesterases activities of the sea urchin Echinometra mathaei crude venoms from the persian gulf-bushehr.Nat. Prod. J.2024142e22062321817510.2174/2210315514666230622144244
    [Google Scholar]
  5. HifnawyM.S. FoudaM.M. SayedA.M. MohammedR. HassanH.M. AbouZidS.F. RatebM.E. KellerA. AdamekM. ZiemertN. AbdelmohsenU.R. The genus Micromonospora as a model microorganism for bioactive natural product discovery.RSC Advances20201035209392095910.1039/D0RA04025H 35517724
    [Google Scholar]
  6. QiS. GuiM. LiH. YuC. LiH. ZengZ. SunP. Secondary metabolites from marine Micromonospora: Chemistry and bioactivities.Chem. Biodivers.2020174e200002410.1002/cbdv.202000024 32100940
    [Google Scholar]
  7. KimuraT. IwatsukiM. AsamiY. IshiyamaA. HokariR. OtoguroK. MatsumotoA. SatoN. ShiomiK. TakahashiY. ŌmuraS. NakashimaT. Anti-trypanosomal compound, sagamilactam, a new polyene macrocyclic lactam from Actinomadura sp. K13-0306.J. Antibiot. (Tokyo)2016691181882410.1038/ja.2016.28 27025350
    [Google Scholar]
  8. OhD.C. PoulsenM. CurrieC.R. ClardyJ. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp.Org. Lett.201113475275510.1021/ol102991d 21247188
    [Google Scholar]
  9. ShinY.H. BeomJ.Y. ChungB. ShinY. ByunW.S. MoonK. BaeM. LeeS.K. OhK.B. ShinJ. YoonY.J. OhD.C. Bombyxamycins A and B, cytotoxic macrocyclic lactams from an intestinal bacterium of the silkworm Bombyx mori.Org. Lett.20192161804180810.1021/acs.orglett.9b00384 30801193
    [Google Scholar]
  10. WangP. WangD. ZhangR. WangY. KongF. FuP. ZhuW. Novel macrolactams from a deep-sea-derived Streptomyces species.Mar. Drugs20201911310.3390/md19010013 33383849
    [Google Scholar]
  11. EdmondsL.C. DavidsonL. BertinoJ.S. Solubility and stability of amphotericin B in human serum.Ther. Drug Monit.198911332332610.1097/00007691‑198905000‑00015 2728090
    [Google Scholar]
  12. SousaF. NascimentoC. FerreiraD. ReisS. CostaP. Reviving the interest in the versatile drug nystatin: A multitude of strategies to increase its potential as an effective and safe antifungal agent.Adv. Drug Deliv. Rev.202319911496910.1016/j.addr.2023.114969 37348678
    [Google Scholar]
  13. HamillR.J. Amphotericin B formulations: A comparative review of efficacy and toxicity.Drugs201373991993410.1007/s40265‑013‑0069‑4 23729001
    [Google Scholar]
  14. ZhaoW. JiangH. LiuX.W. ZhouJ. WuB. Polyene macrolactams from marine and terrestrial sources: Structure, production strategies, biosynthesis and bioactivities.Mar. Drugs202220636010.3390/md20060360 35736163
    [Google Scholar]
  15. YanS. ZengM. WangH. ZhangH. Micromonospora: A prolific source of bioactive secondary metabolites with therapeutic potential.J. Med. Chem.202265138735877110.1021/acs.jmedchem.2c00626 35766919
    [Google Scholar]
  16. SunF. ChenL. ZhaoW. ZhouJ. FangZ. JiangH. A macrolactam compound FW05328-d and its efficient fermentation method.CN Patent 112939865A2021
  17. FeiS. JianZ. WeiZ. HongJ. Method for producing macrolide compound FW05328-1 through high-efficiency fermentation.CN Patent 112608952A2021
    [Google Scholar]
  18. HowarthA. ErmanisK. GoodmanJ.M. DP4-AI automated NMR data analysis: Straight from spectrometer to structure.Chem. Sci. (Camb.)202011174351435910.1039/D0SC00442A 34122893
    [Google Scholar]
  19. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. RobbM.A. CheesemanJ.R. ScalmaniG.V. PeterssonG.A. NakatsujiH. GaussView 5.0. Wallingford.Wallingford, CTGaussian, Inc.2016
    [Google Scholar]
  20. FrancoB.A. LucianoE.R. SarottiA.M. ZanardiM.M. DP4+App: Finding the best balance between computational cost and predictive capacity in the structure elucidation process by DP4+. Factors analysis and automation.J. Nat. Prod.202386102360236710.1021/acs.jnatprod.3c00566 37721602
    [Google Scholar]
  21. RexJ.H. GhannoumM.A. AlexanderB.D. AndesD. BrownS.D. DiekemaD.J. Espinel-IngroffA. FowlerC.L. JohnsonE.M. KnappC.C. M44-A2: Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts;Approved Guideline, 2nd.Wayne, PA, USAClinical and Laboratory Standards Institute2009
    [Google Scholar]
  22. YinX. WangX. LiY. WangJ. WangY. DengY. HouT. LiuH. LuoP. YaoX. CODD-Pred: A web server for efficient target identification and bioactivity prediction of small molecules.J. Chem. Inf. Model.202363206169617610.1021/acs.jcim.3c00685 37820365
    [Google Scholar]
  23. ChenX. WangY. MaN. TianJ. ShaoY. ZhuB. WongY.K. LiangZ. ZouC. WangJ. Target identification of natural medicine with chemical proteomics approach: Probe synthesis, target fishing and protein identification.Signal Transduct. Target. Ther.2020517210.1038/s41392‑020‑0186‑y 32435053
    [Google Scholar]
  24. GalatiS. Di StefanoM. MartinelliE. PoliG. TuccinardiT. Recent advances in in silico target fishing.Molecules20212617512410.3390/molecules26175124 34500568
    [Google Scholar]
  25. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  26. NieY.L. WuY.D. WangC.X. LinR. XieY. FangD.S. JiangH. LianY.Y. Structure elucidation and antitumour activity of a new macrolactam produced by marine-derived actinomycete Micromonospora sp. FIM05328.Nat. Prod. Res.201832182133213810.1080/14786419.2017.1366479 28823189
    [Google Scholar]
  27. BoothT.J. AltS. CaponR.J. WilkinsonB. Synchronous intramolecular cycloadditions of the polyene macrolactam polyketide heronamide C.Chem. Commun. (Camb.)201652386383638610.1039/C6CC01930G 27091090
    [Google Scholar]
  28. ZhaoW. JiangH. GeY. ZhouC. MaY. ZhouJ. XieY. WangY. WuB. Antimicrobial spiroketal macrolides and dichloro-diketopiperazine from Micromonospora sp. FIMYZ51.Fitoterapia202417510594610.1016/j.fitote.2024.105946 38575087
    [Google Scholar]
  29. AkhtarF. Muhammad SharifH. Arshad MallickM. ZahoorF. AbdulmalikA. BaigW. ShujaatN. GulS. BibiG. RamzanR. MurtazaG. Capsaicin: Its biological activities and in silico target fishing.Acta Pol. Pharm.2017742321329 29624237
    [Google Scholar]
  30. Prieto-MartínezF.D. NorinderU. Medina-FrancoJ.L. Cheminformatics explorations of natural products.Prog. Chem. Org. Nat. Prod.201911013510.1007/978‑3‑030‑14632‑0_1 31621009
    [Google Scholar]
  31. WuX.F. WeiX.H. WuY.Z. XiaG.Y. XiaH. WangL.Y. ShangH.C. LinS. Progress of target determination and mechanism of bioactive components of traditional Chinese medicine.Zhongguo Zhongyao Zazhi2022471745654573 36164861
    [Google Scholar]
  32. ZanardiM.M. SuárezA.G. SarottiA.M. Determination of the relative configuration of terminal and spiroepoxides by computational methods. Advantages of the inclusion of unscaled data.J. Org. Chem.20178241873187910.1021/acs.joc.6b02129 28209066
    [Google Scholar]
/content/journals/npj/10.2174/0122103155340964241009112348
Loading
/content/journals/npj/10.2174/0122103155340964241009112348
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test