Skip to content
2000
Volume 15, Issue 9
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Peripheral diabetic neuropathy (PDN) is a well-known impediment of diabetes mellitus. That is one of the common kinds of neuropathy, categorized by reduced neuronal function in the minor limbs including excruciating neurological pain. A medical examination is used to subclassify asymmetric and symmetric neuropathy. Diabetes is associated with several pathways, one of which is the activation of the polyol route, the production of oxidative stress, poly ADP-ribose polymerase, the formation of advanced glycation outputs, and the pathways of hexosamine. Although there are a few symptomatic and supportive treatments in use, like antiarrhythmics, tricyclic medications, aldose reductase, opioid analgesics, protein kinase C inhibitors, and incretin the results are unimpressive. To bridge this space, herbal product-based treatment can be a very successful replacement. This narrative review tries to understand the research currently accessible on the function of different biological entities in the treatment of PDN. These chemicals are essential for lowering aldose reductase activity, oxidative-nitrosative stress, and neuronal death. They improve axonal regeneration, nerve transmission velocity, as well as antioxidant molecules while controlling glucose and HbA1c%. (Malondialdehyde, catalase, superoxide dismutase). They are renowned for their ability to reduce heat and mechanical hyperalgesia as well as tactile allodynia. Thus, these substances need to have their animal study and clinical efficiency assessed. Natural compounds may be auspicious participants in the fight against PDN that provide a glimpse of optimism to those in need.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155334599240909074350
2024-09-19
2025-09-09
Loading full text...

Full text loading...

References

  1. WangY. LiW. PengW. ZhouJ. LiuZ. Acupuncture for postherpetic neuralgia.Medicine20189734e1198610.1097/MD.0000000000011986 30142834
    [Google Scholar]
  2. ArgoffC.E. Review of current guidelines on the care of postherpetic neuralgia.Postgrad. Med.2011123513414210.3810/pgm.2011.09.2469 21904096
    [Google Scholar]
  3. ZafeiriM. TsioutisC. KleinakiZ. ManolopoulosP. IoannidisI. DimitriadisG. Clinical characteristics of patients with co-existent diabetic peripheral neuropathy and depression: a systematic review.Exp. Clin. Endocrinol. Diabetes20211292778510.1055/a‑0741‑6937 30257266
    [Google Scholar]
  4. SloanG. ShilloP. SelvarajahD. WuJ. WilkinsonI.D. TraceyI. AnandP. TesfayeS. A new look at painful diabetic neuropathy.Diabetes Res. Clin. Pract.201814417719110.1016/j.diabres.2018.08.020 30201394
    [Google Scholar]
  5. LiuZ. PengW. LiuB. WangJ. WangY. MaoM. DengY. YuJ. LiawY. MuY. LuoY. XiaoX. WuX. ZiM. Clinical practice guideline of acupuncture for herpes zoster.Chin. J. Integr. Med.2013191586710.1007/s11655‑013‑1191‑y 23275016
    [Google Scholar]
  6. ForbesH.J. ThomasS.L. SmeethL. ClaytonT. FarmerR. BhaskaranK. LanganS.M. A systematic review and meta-analysis of risk factors for postherpetic neuralgia.Pain20161571305410.1097/j.pain.0000000000000307 26218719
    [Google Scholar]
  7. ZhuJ. HuZ. LuoY. LiuY. LuoW. DuX. LuoZ. HuJ. PengS. Diabetic peripheral neuropathy: pathogenetic mechanisms and treatment.Front. Endocrinol. (Lausanne)202414126537210.3389/fendo.2023.1265372 38264279
    [Google Scholar]
  8. LiuQ. ChenY. WangB. ChenY. LiB. GuanS. DuK. LiuX. YuY. LiuJ. WangZ. Arginine Biosynthesis Pathway Found to Play a Key Role in the Neuroprotective Effect of Liu-Wei-Luo-Bi (LWLB) Granules in Diabetic db/db Mice with Peripheral Neuropathy Using an Untargeted Metabolomics Strategy.Diabetes Metab. Syndr. Obes.2023164065408010.2147/DMSO.S423388 38106622
    [Google Scholar]
  9. ElliottJ. SloanG. StevensL. SelvarajahD. CruccuG. GandhiR.A. KemplerP. FullerJ.H. ChaturvediN. TesfayeS. Female sex is a risk factor for painful diabetic peripheral neuropathy: the EURODIAB prospective diabetes complications study.Diabetologia202467119019810.1007/s00125‑023‑06025‑z 37870649
    [Google Scholar]
  10. PattersonC.C. KarurangaS. SalpeaP. SaeediP. DahlquistG. SolteszG. OgleG.D. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract.201915710784210.1016/j.diabres.2019.107842 31518658
    [Google Scholar]
  11. LuY. WangW. LiuJ. XieM. LiuQ. LiS. Vascular complications of diabetes: A narrative review.Medicine (Baltimore)202310240e3528510.1097/MD.0000000000035285 37800828
    [Google Scholar]
  12. BäckrydE. ThemistocleousA. StenssonN. RiceA.S.C. TesfayeS. BennettD.L. GerdleB. GhafouriB. Serum levels of endocannabinoids and related lipids in painful vs painless diabetic neuropathy: results from the Pain in Neuropathy Study.Pain2024165122523210.1097/j.pain.0000000000003015 37578507
    [Google Scholar]
  13. SobhaniS. AsayeshH. SharifiF. DjalaliniaS. BaradaranH.R. ArzaghiS.M. MansourianM. RezapoorA. AnsariH. MasoudM.P. QorbaniM. Prevalence of diabetic peripheral neuropathy in Iran: a systematic review and meta-analysis.J. Diabetes Metab. Disord.20141319710.1186/s40200‑014‑0097‑y 25364702
    [Google Scholar]
  14. AlbersJ.W. Pop-BusuiR. Diabetic neuropathy: mechanisms, emerging treatments, and subtypes.Curr. Neurol. Neurosci. Rep.201414847310.1007/s11910‑014‑0473‑5 24954624
    [Google Scholar]
  15. CallaghanB.C. KerberK.A. LisabethL.L. MorgensternL.B. LongoriaR. RodgersA. LongwellP. FeldmanE.L. Role of neurologists and diagnostic tests on the management of distal symmetric polyneuropathy.JAMA Neurol.20147191143114910.1001/jamaneurol.2014.1279 25048157
    [Google Scholar]
  16. DyckP.J. AlbersJ.W. AndersenH. ArezzoJ.C. BiesselsG.J. BrilV. FeldmanE.L. LitchyW.J. O’BrienP.C. RussellJ.W. Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity.Diabetes Metab. Res. Rev.201127762062810.1002/dmrr.1226 21695763
    [Google Scholar]
  17. Pop-BusuiR. BoultonA.J.M. FeldmanE.L. BrilV. FreemanR. MalikR.A. SosenkoJ.M. ZieglerD. Diabetic neuropathy: a position statement by the American Diabetes Association.Diabetes Care201740113615410.2337/dc16‑2042 27999003
    [Google Scholar]
  18. TesfayeS. VileikyteL. RaymanG. SindrupS.H. PerkinsB.A. BaconjaM. VinikA.I. BoultonA.J.M. Painful diabetic peripheral neuropathy: consensus recommendations on diagnosis, assessment and management.Diabetes Metab. Res. Rev.201127762963810.1002/dmrr.1225 21695762
    [Google Scholar]
  19. MalikR.A. VevesA. TesfayeS. SmithG. CameronN. ZochodneD. LauriaG. Small fibre neuropathy: role in the diagnosis of diabetic sensorimotor polyneuropathy.Diabetes Metab. Res. Rev.201127767868410.1002/dmrr.1222 21695760
    [Google Scholar]
  20. SmithA.G. SingletonJ.R. Diabetic Neuropathy.Continuum (Minneap. Minn.)2012181608410.1212/01.CON.0000411568.34085.3e 22810070
    [Google Scholar]
  21. DworkinR.H. O’ConnorA.B. BackonjaM. FarrarJ.T. FinnerupN.B. JensenT.S. KalsoE.A. LoeserJ.D. MiaskowskiC. NurmikkoT.J. PortenoyR.K. RiceA.S.C. StaceyB.R. TreedeR.D. TurkD.C. WallaceM.S. Pharmacologic management of neuropathic pain: Evidence-based recommendations.Pain2007132323725110.1016/j.pain.2007.08.033 17920770
    [Google Scholar]
  22. FeldmanE.L. StevensM.J. ThomasP.K. BrownM.B. CanalN. GreeneD.A. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy.Diabetes Care199417111281128910.2337/diacare.17.11.1281 7821168
    [Google Scholar]
  23. PiccoliG.B. GrassiG. CabidduG. NazhaM. RoggeroS. CapizziI. De PascaleA. PriolaA.M. Di VicoC. MaxiaS. LoiV. AsunisA.M. PaniA. VeltriA. Diabetic kidney disease: a syndrome rather than a single disease.Rev. Diabet. Stud.2015121-28710910.1900/RDS.2015.12.87 26676663
    [Google Scholar]
  24. BrownleeM. The pathobiology of diabetic complications: a unifying mechanism.Diabetes200554616151625
    [Google Scholar]
  25. VincentA.M. RussellJ.W. LowP. FeldmanE.L. Oxidative stress in the pathogenesis of diabetic neuropathy.Endocr. Rev.200425461262810.1210/er.2003‑0019 15294884
    [Google Scholar]
  26. BrownleeM. Biochemistry and molecular cell biology of diabetic complications.Nature2001414686581382010.1038/414813a 11742414
    [Google Scholar]
  27. CameronN.E. EatonS.E.M. CotterM.A. TesfayeS. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy.Diabetologia200144111973198810.1007/s001250100001 11719828
    [Google Scholar]
  28. ApfelS.C. Nerve growth factor for the treatment of diabetic neuropathy: What went wrong, what went right, and what does the future hold?Int. Rev. Neurobiol.20025039341310.1016/S0074‑7742(02)50083‑0 12198818
    [Google Scholar]
  29. ZüchnerS. MersiyanovaI.V. MugliaM. Bissar-TadmouriN. RochelleJ. DadaliE.L. ZappiaM. NelisE. PatitucciA. SenderekJ. ParmanY. EvgrafovO. JongheP.D. TakahashiY. TsujiS. Pericak-VanceM.A. QuattroneA. BattologluE. PolyakovA.V. TimmermanV. SchröderJ.M. VanceJ.M. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A.Nat. Genet.200436544945110.1038/ng1341 15064763
    [Google Scholar]
  30. LiJ. LiC. HuangY. GuanP. HuangD. YuH. YangX. LiuL. Mendelian randomization analyses in ocular disease: a powerful approach to causal inference with human genetic data.J. Transl. Med.202220162110.1186/s12967‑022‑03822‑9 36572895
    [Google Scholar]
  31. BalharaY.P.S. SinghS. KalraS. Pragmatic Opioid Use in Painful Diabetic Neuropathy.Eur. Endocrinol.20201612124 32595765
    [Google Scholar]
  32. OlmstedZ.T. HadannyA. MarcheseA.M. DiMarzioM. KhazenO. ArgoffC. SukulV. PilitsisJ.G. Recommendations for Neuromodulation in Diabetic Neuropathic Pain.Frontiers in Pain Research2021272630810.3389/fpain.2021.726308 35295414
    [Google Scholar]
  33. LinQ. LiK. ChenY. XieJ. WuC. CuiC. DengB. Oxidative Stress in Diabetic Peripheral Neuropathy: Pathway and Mechanism-Based Treatment.Mol. Neurobiol.20236084574459410.1007/s12035‑023‑03342‑7 37115404
    [Google Scholar]
  34. SelvarajahD. KarD. KhuntiK. DaviesM.J. ScottA.R. WalkerJ. TesfayeS. Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention.Lancet Diabetes Endocrinol.201971293894810.1016/S2213‑8587(19)30081‑6 31624024
    [Google Scholar]
  35. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. ColagiuriS. GuariguataL. MotalaA.A. OgurtsovaK. ShawJ.E. BrightD. WilliamsR. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract.201915710784310.1016/j.diabres.2019.107843 31518657
    [Google Scholar]
  36. HossainS.M. HussainS.M. EkramA.R.M.S. Duloxetine in painful diabetic neuropathy: a systematic review.Clin. J. Pain201632111005101010.1097/AJP.0000000000000343 26710221
    [Google Scholar]
  37. BellowsB.K. NelsonR.E. OderdaG.M. LaFleurJ. Long-term cost-effectiveness of initiating treatment for painful diabetic neuropathy with pregabalin, duloxetine, gabapentin, or desipramine.Pain2016157120321310.1097/j.pain.0000000000000350 26397932
    [Google Scholar]
  38. SloanG. AlamU. SelvarajahD. TesfayeS. The Treatment of Painful Diabetic Neuropathy.Curr. Diabetes Rev.2022185e07072119455610.2174/1573399817666210707112413 34238163
    [Google Scholar]
  39. SloanG. SelvarajahD. TesfayeS. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy.Nat. Rev. Endocrinol.202117740042010.1038/s41574‑021‑00496‑z 34050323
    [Google Scholar]
  40. ZieglerD. GriesF.A. Alpha-lipoic acid in the treatment of diabetic peripheral and cardiac autonomic neuropathy.Diabetes199746Suppl. 2S62S6610.2337/diab.46.2.S62 9285502
    [Google Scholar]
  41. SadoskyA. MardekianJ. ParsonsB. HoppsM. BienenE.J. MarkmanJ. Healthcare utilization and costs in diabetes relative to the clinical spectrum of painful diabetic peripheral neuropathy.J. Diabetes Complications201529221221710.1016/j.jdiacomp.2014.10.013 25498300
    [Google Scholar]
  42. ZarezadehM. KhorshidiM. EmamiM. JanmohammadiP. Kord-varkanehH. MousaviS.M. MohammedS.H. SaedisomeoliaA. AlizadehS. Melatonin supplementation and pro-inflammatory mediators: a systematic review and meta-analysis of clinical trials.Eur. J. Nutr.20205951803181310.1007/s00394‑019‑02123‑0 31679041
    [Google Scholar]
  43. ChenW. BalanP. PopovichD.G. Review of Ginseng Anti-Diabetic Studies.Molecules20192424450110.3390/molecules24244501 31835292
    [Google Scholar]
  44. SalehiB. MishraA.P. NigamM. SenerB. KilicM. Sharifi-RadM. FokouP.V.T. MartinsN. Sharifi-RadJ. Resveratrol: A Double-Edged Sword in Health Benefits.Biomedicines2018639110.3390/biomedicines6030091 30205595
    [Google Scholar]
  45. LimD.W. YooG. LeeC. Dried Loquat Fruit Extract Containing Chlorogenic Acid Prevents Depressive-like Behaviors Induced by Repeated Corticosteroid Injections in Mice.Molecules20232814561210.3390/molecules28145612 37513484
    [Google Scholar]
  46. IqbalZ. AzmiS. YadavR. FerdousiM. KumarM. CuthbertsonD.J. LimJ. MalikR.A. AlamU. Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy.Clin. Ther.201840682884910.1016/j.clinthera.2018.04.001 29709457
    [Google Scholar]
  47. NakajimaH. KuboT. IharaH. HikidaT. DanjoT. NakatsujiM. ShahaniN. ItakuraM. OnoY. AzumaY.T. InuiT. KamiyaA. SawaA. TakeuchiT. Nuclear-translocated Glyceraldehyde-3-phosphate Dehydrogenase Promotes Poly(ADP-ribose) Polymerase-1 Activation during Oxidative/Nitrosative Stress in Stroke.J. Biol. Chem.201529023144931450310.1074/jbc.M114.635607 25882840
    [Google Scholar]
  48. FariasV.X. MacêdoF.H.P. OquendoM.B. ToméA.R. BáoS.N. CintraD.O.S. SantosC.F. AlbuquerqueA.A.C. HeimarkD.B. LarnerJ. FontelesM.C. Leal-CardosoJ.H. NascimentoN.R.F. Chronic treatment with d-chiro-inositol prevents autonomic and somatic neuropathy in STZ-induced diabetic mice.Diabetes Obes. Metab.201113324325010.1111/j.1463‑1326.2010.01344.x 21205116
    [Google Scholar]
  49. Al-AdwaniD.G. RennoW.M. OrabiK.Y. Neurotherapeutic effects of Ginkgo biloba extract and its terpene trilactone, ginkgolide B, on sciatic crush injury model: A new evidence.PLoS One20191412e022662610.1371/journal.pone.0226626 31877172
    [Google Scholar]
  50. RosenblattM. MindelJ. Spontaneous hyphema associated with ingestion of Ginkgo biloba extract.N. Engl. J. Med.1997336151108110810.1056/NEJM199704103361518 9091822
    [Google Scholar]
  51. KochE. Inhibition of platelet activating factor (PAF)-induced aggregation of human thrombocytes by ginkgolides: considerations on possible bleeding complications after oral intake of Ginkgo biloba extracts.Phytomedicine2005121-2101610.1016/j.phymed.2004.02.002 15693702
    [Google Scholar]
  52. BlumenthalM. The Complete German Commission E Monographs: Therapeutic Guide to Herbal Medicines.American Botanical Council1999
    [Google Scholar]
  53. BirksJ. EvansJ.G. Ginkgo biloba for cognitive impairment and dementia.Cochrane Database Syst. Rev.20091CD00312010.1002/14651858.CD003120.pub3
    [Google Scholar]
  54. ErnstE. PittlerM.H. Ginkgo biloba for Dementia.Clin. Drug Investig.199917430130810.2165/00044011‑199917040‑00006
    [Google Scholar]
  55. FakudzeN.T. AniogoE.C. GeorgeB.P. AbrahamseH. The Therapeutic Efficacy of Punica granatum and Its Bioactive Constituents with Special Reference to Photodynamic Therapy.Plants20221121282010.3390/plants11212820 36365273
    [Google Scholar]
  56. PottathilS. NainP. MorsyM.A. KaurJ. Al-DhubiabB.E. JaiswalS. NairA.B. Mechanisms of antidiabetic activity of methanolic extract of punica granatum leaves in nicotinamide/streptozotocin-induced type 2 diabetes in rats.Plants2020911160910.3390/plants9111609 33228177
    [Google Scholar]
  57. Guerrero-SolanoJ.A. Jaramillo-MoralesO.A. Velázquez-GonzálezC. De la O-Arciniega, M.; Castañeda-Ovando, A.; Betanzos-Cabrera, G.; Bautista, M. Pomegranate as a potential alternative of pain management: a review.Plants20209441910.3390/plants9040419 32235455
    [Google Scholar]
  58. MogaM.A. DimienescuO.G. BălanA. DimaL. TomaS.I. BîgiuN.F. BlidaruA. Pharmacological and therapeutic properties of Punica granatum phytochemicals: possible roles in breast cancer.Molecules2021264105410.3390/molecules26041054 33671442
    [Google Scholar]
  59. Flores-BazánT. Betanzos-CabreraG. Guerrero-SolanoJ.A. Negrete-DíazJ.V. German-PoncianoL.J. Olivo-RamírezD. Pomegranate (Punica granatum L.) and its phytochemicals as anxiolytic; an underreported effect with therapeutic potential: A systematic review.Brain Res.2023182014855410.1016/j.brainres.2023.148554 37640097
    [Google Scholar]
  60. RaafatK. SamyW. Amelioration of diabetes and painful diabetic neuropathy by Punica granatum L. Extract and its spray dried biopolymeric dispersions. Evid. based Compl.Alternative Med.20142014180495
    [Google Scholar]
  61. JurenkaJ.S. Therapeutic applications of pomegranate (Punica granatum L.): a review.Altern. Med. Rev.2008132128144 18590349
    [Google Scholar]
  62. Mertens-TalcottS.U. Jilma-StohlawetzP. RiosJ. HingoraniL. DerendorfH. Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum l.) polyphenols after ingestion of a standardized extract in healthy human volunteers.J. Agric. Food Chem.200654238956896110.1021/jf061674h 17090147
    [Google Scholar]
  63. BorgesG. DegeneveA. MullenW. CrozierA. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries.J. Agric. Food Chem.20105873901390910.1021/jf902263n 20000747
    [Google Scholar]
  64. HeberD. SchulmanR.N. SeeramN.P. Pomegranates: ancient roots to modern medicine.CRC press200610.1201/9781420009866
    [Google Scholar]
  65. MirmiranP. BahadoranZ. AziziF. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review.World J. Diabetes20145326728110.4239/wjd.v5.i3.267 24936248
    [Google Scholar]
  66. LiuZ. GongJ. HuangW. LuF. DongH. The Effect of Momordica charantia in the Treatment of Diabetes Mellitus: A Review.Evid. Based Complement. Alternat. Med.2021202111410.1155/2021/3796265 33510802
    [Google Scholar]
  67. YueJ. GuoP. JinY. LiM. HuX. WangW. WeiX. QiS. Momordica charantia polysaccharide ameliorates D-galactose-induced aging through the Nrf2/β-Catenin signaling pathway.Metab. Brain Dis.20233831067107710.1007/s11011‑022‑01103‑4 36287355
    [Google Scholar]
  68. ThiagarajanS. ArapocD.J. Husna ShafieN. KeongY.Y. BahariH. AdamZ. EiT. Momordica charantia (Indian and Chinese Bitter Melon) Extracts Inducing Apoptosis in Human Lung Cancer Cell Line A549 via ROS-Mediated Mitochodria Injury.Evid. Based Complement. Alternat. Med.201920191910.1155/2019/2821597 30956678
    [Google Scholar]
  69. DansA.M.L. VillarruzM.V.C. JimenoC.A. JavelosaM.A.U. ChuaJ. BautistaR. VelezG.G.B. The effect of Momordica charantia capsule preparation on glycemic control in Type 2 Diabetes Mellitus needs further studies.J. Clin. Epidemiol.200760655455910.1016/j.jclinepi.2006.07.009 17493509
    [Google Scholar]
  70. GroverJ.K. YadavS. VatsV. Medicinal plants of India with anti-diabetic potential.J. Ethnopharmacol.20028118110010.1016/S0378‑8741(02)00059‑4 12020931
    [Google Scholar]
  71. KarA. ChoudharyB.K. BandyopadhyayN.G. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats.J. Ethnopharmacol.200384110510810.1016/S0378‑8741(02)00144‑7 12499084
    [Google Scholar]
  72. BaldwaV.S. BhandariC.M. PangariaA. GoyalR.K. Clinical trial in patients with diabetes mellitus of an insulin-like compound obtained from plant source.Ups. J. Med. Sci.1977821394110.3109/03009737709179057 20078273
    [Google Scholar]
  73. ChB. RaoK. GandiS. GiriA. Abiotic elicitation of gymnemic acid in the suspension cultures of Gymnema sylvestre.World J. Microbiol. Biotechnol.201228274174710.1007/s11274‑011‑0870‑8 22806870
    [Google Scholar]
  74. TiwariP. MishraB.N. SangwanN.S. Phytochemical and pharmacological properties of Gymnema sylvestre: an important medicinal plant.BioMed Res. Int.2014201411810.1155/2014/830285 24511547
    [Google Scholar]
  75. Al-RomaiyanA. LiuB. Asare-AnaneH. MaityC.R. ChatterjeeS.K. KoleyN. BiswasT. ChatterjiA.K. HuangG-C. AmielS.A. PersaudS.J. JonesP.M. A novel Gymnema sylvestre extract stimulates insulin secretion from human islets in vivo and in vitro.Phytother. Res.20102491370137610.1002/ptr.3125 20812281
    [Google Scholar]
  76. ShanmugasundaramE.R.B. RajeswariG. BaskaranK. KumarB.R.R. ShanmugasundaramK.R. AhmathB.K. Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus.J. Ethnopharmacol.199030328129410.1016/0378‑8741(90)90107‑5 2259216
    [Google Scholar]
  77. BaskaranK. AhamathB.K. ShanmugasundaramK.R. ShanmugasundaramE.R.B. Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients.J. Ethnopharmacol.199030329530510.1016/0378‑8741(90)90108‑6 2259217
    [Google Scholar]
  78. PorchezhianE. DobriyalR.M. An overview on the advances of Gymnema sylvestre: chemistry, pharmacology and patents.ChemInform20033419chin.20031922310.1002/chin.200319223 12622244
    [Google Scholar]
  79. KanetkarP. SinghalR. KamatM. Gymnema sylvestre: a memoir.J. Clin. Biochem. Nutr.2007412778110.3164/jcbn.2007010 18193099
    [Google Scholar]
  80. ChișA. NoubissiP.A. PopO.L. MureșanC.I. Fokam TagneM.A. KamgangR. FodorA. Sitar-TăutA.V. CozmaA. OrășanO.H. HegheșS.C. VulturarR. SuharoschiR. Bioactive Compounds in Moringa oleifera: Mechanisms of Action, Focus on Their Anti-Inflammatory Properties.Plants20231312010.3390/plants13010020 38202328
    [Google Scholar]
  81. MthiyaneF.T. DludlaP.V. ZiqubuK. MthembuS.X.H. MuvhulawaN. HlengwaN. NkambuleB.B. Mazibuko-MbejeS.E. A Review on the Antidiabetic Properties of Moringa oleifera Extracts: Focusing on Oxidative Stress and Inflammation as Main Therapeutic Targets.Front. Pharmacol.20221394057210.3389/fphar.2022.940572 35899107
    [Google Scholar]
  82. DhongadeH.J. PaikraB.K. GidwaniB. Phytochemistry and pharmacology of Moringa oleifera Lam.J. Pharmacopuncture201720319420010.3831/KPI.2017.20.022 30087795
    [Google Scholar]
  83. AnwarF. LatifS. AshrafM. GilaniA.H. Moringa oleifera: a food plant with multiple medicinal uses.Phytother. Res.2007211172510.1002/ptr.2023 17089328
    [Google Scholar]
  84. StohsS.J. HartmanM.J. Review of the safety and efficacy of Moringa oleifera.Phytother. Res.201529679680410.1002/ptr.5325 25808883
    [Google Scholar]
  85. FaheyJ.W. Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1.Trees Life J.200515115
    [Google Scholar]
  86. IqbalS. BhangerM.I. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan.J. Food Compos. Anal.2006196-754455110.1016/j.jfca.2005.05.001
    [Google Scholar]
  87. De LeonardisA. AretiniA. AlfanoG. MacciolaV. RanalliG. Isolation of a hydroxytyrosol-rich extract from olive leaves (Olea Europaea L.) and evaluation of its antioxidant properties and bioactivity.Eur. Food Res. Technol.2008226465365910.1007/s00217‑007‑0574‑3
    [Google Scholar]
  88. Melguizo-RodríguezL. González-AcedoA. Illescas-MontesR. García-RecioE. Ramos-TorrecillasJ. Costela-RuizV.J. García-MartínezO. Biological effects of the olive tree and its derivatives on the skin.Food Funct.20221322114101142410.1039/D2FO01945K 36282027
    [Google Scholar]
  89. HussainS.Z. Olive (Olea europaea L.)—Morphology, Taxonomy, Composition and Health Benefits.Fruits Grown in Highland Regions of the Himalayas: Nutritional and Health Benefits.Springer202111712910.1007/978‑3‑030‑75502‑7_9
    [Google Scholar]
  90. BisignanoG. TomainoA. CascioR.L. CrisafiG. UccellaN. SaijaA. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol.J. Pharm. Pharmacol.201051897197410.1211/0022357991773258 10504039
    [Google Scholar]
  91. Aparicio-SotoM. Sánchez-HidalgoM. RosilloM.Á. CastejónM.L. Alarcón-de-la-LastraC. Extra virgin olive oil: a key functional food for prevention of immune-inflammatory diseases.Food Funct.20167114492450510.1039/C6FO01094F 27783083
    [Google Scholar]
  92. BucklandG. GonzalezC.A. The role of olive oil in disease prevention: a focus on the recent epidemiological evidence from cohort studies and dietary intervention trials.Br. J. Nutr.2015113S2Suppl. 2S94S10110.1017/S0007114514003936 26148926
    [Google Scholar]
  93. MazzonE. CuzzocreaS. Absence of functional peroxisome proliferator-activated receptor-α enhanced ileum permeability during experimental colitis.Shock200728219220110.1097/SHK.0b013e318033eb29 17515853
    [Google Scholar]
  94. NuzzoD. AmatoA. PiconeP. TerzoS. GalizziG. BoninaF.P. MulèF. Di CarloM. A natural dietary supplement with a combination of nutrients prevents neurodegeneration induced by a high fat diet in mice.Nutrients2018109113010.3390/nu10091130 30134549
    [Google Scholar]
  95. GrayN.E. Alcazar MaganaA. LakP. WrightK.M. QuinnJ. StevensJ.F. MaierC.S. SoumyanathA. Centella asiatica: phytochemistry and mechanisms of neuroprotection and cognitive enhancement.Phytochem. Rev.201817116119410.1007/s11101‑017‑9528‑y 31736679
    [Google Scholar]
  96. Elucidation of Antidiabetic Mechanism of Centella asiatica and Zingiber officinale-An in-vitro and in-vivo approach.Journal of Research in Pharmacy2023271
    [Google Scholar]
  97. GrayN.E. HarrisC.J. QuinnJ.F. SoumyanathA. Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive function in mice.J. Ethnopharmacol.2016180788610.1016/j.jep.2016.01.013 26785167
    [Google Scholar]
  98. GuptaD. BleakleyB. GuptaR.K. Dragon’s blood: Botany, chemistry and therapeutic uses.J. Ethnopharmacol.2008115336138010.1016/j.jep.2007.10.018 18060708
    [Google Scholar]
  99. JamesJ.T. DuberyI.A. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.).Urban. Molecules200914103922394110.3390/molecules14103922 19924039
    [Google Scholar]
  100. BylkaW. Centella asiatica in cosmetology.Adv. Dermatol. Allergol.2013301464910.5114/pdia.2013.33378
    [Google Scholar]
  101. DukeJ.A. Database of phytochemical constituents of GRAS herbs and other economic plants.Handbook of Phytochemical Constituent Grass, Herbs and Other Economic Plants.CRC Press1992
    [Google Scholar]
  102. KhanalP. PatilB.M. MandarB.K. DeyY.N. DuyuT. Network pharmacology-based assessment to elucidate the molecular mechanism of anti-diabetic action of Tinospora cordifolia.Clinical Phytoscience2019513510.1186/s40816‑019‑0131‑1
    [Google Scholar]
  103. MishraS. VermaN. BhattacharyaS. UsmanK. ReddyH. VermaN. AnjumB. SinghP. BharadwajS. BharadwajK. Efficacy and safety of Tinospora cordifolia (Tc) as an add-on therapy in patients with type-2 diabetes.International Journal of Research in Medical Sciences2015351109111310.5455/2320‑6012.ijrms20150515
    [Google Scholar]
  104. ChintalwarG. An immunologically active arabinogalactan from Tinospora cordifolia.Phytomed.20018348355
    [Google Scholar]
  105. NadkarniK. NadkarniA. A. ndian Materia Medica; Popular Prakashan, Bombay,1976
    [Google Scholar]
  106. SharmaR. AminH. Galib; Prajapati, P.K. Antidiabetic claims of Tinospora cordifolia (Willd.) Miers: critical appraisal and role in therapy.Asian Pac. J. Trop. Biomed.201551687810.1016/S2221‑1691(15)30173‑8
    [Google Scholar]
  107. MandarB.K. KhanalP. PatilB.M. DeyY.N. PashaI. In silico analysis of phytoconstituents from Tinospora cordifolia with targets related to diabetes and obesity.In Silico Pharmacol.202191310.1007/s40203‑020‑00063‑w 33442530
    [Google Scholar]
  108. ObandaD.N. HernandezA. RibnickyD. YuY. ZhangX.H. WangZ.Q. CefaluW.T. Bioactives of Artemisia dracunculus L. mitigate the role of ceramides in attenuating insulin signaling in rat skeletal muscle cells.Diabetes201261359760510.2337/db11‑0396 22315320
    [Google Scholar]
  109. El-AskaryH. SalemH.H. Abdel MotaalA. Potential mechanisms involved in the protective effect of dicaffeoylquinic acids from Artemisia annua L. leaves against diabetes and its complications.Molecules202227385710.3390/molecules27030857 35164118
    [Google Scholar]
  110. EkiertH. PajorJ. KlinP. RzepielaA. ŚlesakH. SzopaA. Significance of Artemisia vulgaris L.(Common Mugwort) in the history of medicine and its possible contemporary applications substantiated by phytochemical and pharmacological studies.Molecules20202519441510.3390/molecules25194415 32992959
    [Google Scholar]
  111. EkiertH. ŚwiątkowskaJ. KnutE. KlinP. RzepielaA. TomczykM. SzopaA. Artemisia dracunculus (Tarragon): A review of its traditional uses, phytochemistry and pharmacology.Front. Pharmacol.20211265399310.3389/fphar.2021.653993 33927629
    [Google Scholar]
  112. AissaouiA. El-HilalyJ. IsrailiZ.H. LyoussiB. Acute diuretic effect of continuous intravenous infusion of an aqueous extract of Coriandrum sativum L. in anesthetized rats.J. Ethnopharmacol.20081151899510.1016/j.jep.2007.09.007 17961943
    [Google Scholar]
  113. ZafarS. RasulA. IqbalJ. AnwarH. ImranA. JabeenF. ShabbirA. AkramR. MaqboolJ. SajidF. ArshadM.U. HussainG. IslamS. Calotropis procera (leaves) supplementation exerts curative effects on promoting functional recovery in a mouse model of peripheral nerve injury.Food Sci. Nutr.2021995016502710.1002/fsn3.2455 34532013
    [Google Scholar]
  114. AayeshaA.H. Neuro protection of Calotropis procera leaf extract in neuropathy-induced rat model.J. Propul. Technol.202344323042312
    [Google Scholar]
  115. DogaraA.M. A systematic review on the biological evaluation of Calotropis procera (Aiton) Dryand.Future Journal of Pharmaceutical Sciences2023911610.1186/s43094‑023‑00467‑3
    [Google Scholar]
  116. ObeseE. BineyR.P. HennehI.T. AnokwahD. AdakuduguE.A. WoodeE. AmeyawE.O. Antinociceptive effect of the hydroethanolic leaf extract of Calotropis procera (Ait) R. Br. (Apocynaceae): Possible involvement of glutamatergic, cytokines, opioidergic and adenosinergic pathways.J. Ethnopharmacol.202127811426110.1016/j.jep.2021.114261 34111540
    [Google Scholar]
  117. ThakurR. PuriH.S. HusainA. Major medicinal plants of india: central institute of medicinal and aromatic plants.Phytochemistry1989333740
    [Google Scholar]
  118. TiwariV. YadavV.K. Pharmacognostical and antidiabetic activity of leaves of Calotropis procera wild.Oxid. Med. Cell. Longev.20222011976948
    [Google Scholar]
  119. ZangiabadiN. Date fruit extract is a neuroprotective agent in diabetic peripheral neuropathy in streptozotocin-induced diabetic rats: a multimodal analysis.Oxid. Med. Cell. Longev.2011201197694810.1155/2011/976948
    [Google Scholar]
  120. VayalilP.K. Date fruits (Phoenix dactylifera Linn): an emerging medicinal food.Crit. Rev. Food Sci. Nutr.201252324927110.1080/10408398.2010.499824 22214443
    [Google Scholar]
  121. Al-FarsiM. AlasalvarC. MorrisA. BaronM. ShahidiF. Compositional and sensory characteristics of three native sun-dried date (Phoenix dactylifera L.) varieties grown in Oman.J. Agric. Food Chem.200553197586759110.1021/jf050578y 16159190
    [Google Scholar]
  122. AlkalbaniN.S. AlamM.Z. Al-NabulsiA. OsailiT.M. OlaimatA. LiuS-Q. Kamal-EldinA. AyyashM. Fermentation of Date Pulp Residues Using Saccharomyces cerevisiae and Pichia kudriavzevii—Insights into Biological Activities, Phenolic and Volatile Compounds, Untargeted Metabolomics, and Carbohydrate Analysis Post In Vitro Digestion.Fermentation (Basel)20239656110.3390/fermentation9060561
    [Google Scholar]
  123. KruegerR.R. Date palm (Phoenix dactylifera L.) biology and utilization, in The Date Palm Genome.Phylogeny, Biodiversity and MappingSpringer2021132810.1007/978‑3‑030‑73746‑7_1
    [Google Scholar]
  124. MajzoobiM. Effects of level and particle size of date fruit press cake on batter rheological properties and physical and nutritional properties of cake.J. Agric. Sci. Technol.2020221121133
    [Google Scholar]
  125. RaoV. PooniaA. Citrullus colocynthis (bitter apple): bioactive compounds, nutritional profile, nutraceutical properties and potential food applications: a review. Food Production.Processing and Nutrition202351410.1186/s43014‑022‑00118‑9
    [Google Scholar]
  126. OmaymaA. KhalidM.F. AliaaH.A. Biochemical effect of Citrullus colocynthis in experimental diabetes mellitus in rats.VMJG2013251218227
    [Google Scholar]
  127. Fallah HuseiniH. AlavianS.M. HeshmatR. HeydariM.R. AbolmaaliK. The efficacy of Liv-52 on liver cirrhotic patients: A randomized, double-blind, placebo-controlled first approach.Phytomedicine200512961962410.1016/j.phymed.2004.10.003 16194047
    [Google Scholar]
  128. BakhietA.O. AdamS.E. An estimation of Citrullus colocynthis toxicity for chicks.Vet. Hum. Toxicol.1995374356358 8540228
    [Google Scholar]
  129. RostamiN. MosavatS.H. HeydariradG. Arbab TaftiR. HeydariM. Efficacy of topical Citrullus colocynthis (bitter apple) extract oil in chemotherapy‐induced peripheral neuropathy: A pilot double‐blind randomized placebo‐controlled clinical trial.Phytother. Res.201933102685269110.1002/ptr.6442 31373112
    [Google Scholar]
  130. LiQ.Y. MunawarM. SaeedM. ShenJ.Q. KhanM.S. NoreenS. AlagawanyM. NaveedM. MadniA. LiC.X. Citrullus colocynthis (L.) Schrad (Bitter Apple Fruit): Promising traditional uses, pharmacological effects, aspects, and potential applications.Front. Pharmacol.20221279104910.3389/fphar.2021.791049 35145403
    [Google Scholar]
  131. EbrahimiE. MohammadzadehG. MansouriE. AberomandM. Effects of hydro-alcoholic leaf extract of Citrullus colocynthis on biochemical factors and histopathological changes in streptozotocin-induced diabetic rats.Jundishapur J. Nat. Pharm. Prod.201611310.17795/jjnpp‑33214
    [Google Scholar]
  132. KajalA. SinghR. Coriandrum sativum seeds extract mitigate progression of diabetic nephropathy in experimental rats via AGEs inhibition.PLoS One2019143e021314710.1371/journal.pone.0213147 30845182
    [Google Scholar]
  133. LixandruB.E. DrăceaN.O. DragomirescuC.C. DrăgulescuE.C. ColdeaI.L. AntonL. DobreE. RovinaruC. CodiţăI. Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay.Roum. Arch. Microbiol. Immunol.2010694224230 21462837
    [Google Scholar]
  134. MahendraP. BishtS. Ferula asafoetida: Traditional uses and pharmacological activity.Pharmacogn. Rev.201261214114610.4103/0973‑7847.99948 23055640
    [Google Scholar]
  135. MozaffarianV. A dictionary of Iranian plant names. Tehran.Farhang Moaser19963962396398
    [Google Scholar]
  136. CavanaghH.M.A. WilkinsonJ.M. Biological activities of Lavender essential oil.Phytother. Res.200216430130810.1002/ptr.1103 12112282
    [Google Scholar]
  137. SilvaB.N. TeixeiraJ.A. CadavezV. Gonzales-BarronU. Mild heat treatment and biopreservatives for artisanal raw milk cheeses: reducing microbial spoilage and extending shelf-life through thermisation, plant extracts and lactic acid bacteria.Foods20231217320610.3390/foods12173206 37685139
    [Google Scholar]
  138. OngW.Y. FarooquiT. KohH.L. FarooquiA.A. LingE.A. Protective effects of ginseng on neurological disorders.Front. Aging Neurosci.2015712910.3389/fnagi.2015.00129 26236231
    [Google Scholar]
  139. AtteleA.S. ZhouY.P. XieJ.T. WuJ.A. ZhangL. DeyL. PughW. RueP.A. PolonskyK.S. YuanC.S. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component.Diabetes20025161851185810.2337/diabetes.51.6.1851 12031973
    [Google Scholar]
  140. KimH.G. ChoJ.H. YooS.R. LeeJ.S. HanJ.M. LeeN.H. AhnY.C. SonC.G. Antifatigue effects of Panax ginseng C.A. Meyer: a randomised, double-blind, placebo-controlled trial.PLoS One201384e6127110.1371/journal.pone.0061271 23613825
    [Google Scholar]
  141. YinH.Q. Ginsenoside-Rg1 enhances angiogenesis and ameliorates ventricular remodeling in a rat model of myocardial infarction.J. Mol. Med.2011894363375
    [Google Scholar]
  142. ReayJ.L. KennedyD.O. ScholeyA.B. Single doses of Panax ginseng (G115) reduce blood glucose levels and improve cognitive performance during sustained mental activity.J. Psychopharmacol.200519435736510.1177/0269881105053286 15982990
    [Google Scholar]
  143. BahrkeM.S. MorganW.P. Evaluation of the ergogenic properties of ginseng.Sports Med.199418422924810.2165/00007256‑199418040‑00003 7817063
    [Google Scholar]
  144. WeilA. Integrative Oncology.Oxford University Press2014
    [Google Scholar]
  145. KimY.J. ZhangD. YangD.C. Biosynthesis and biotechnological production of ginsenosides.Biotechnol. Adv.201533671773510.1016/j.biotechadv.2015.03.001 25747290
    [Google Scholar]
  146. ParkH. LeeJ.H. SimJ.H. ParkJ. ChoiS.S. LeemJ.G. Effects of Curcumin Treatment in a Diabetic Neuropathic Pain Model of Rats: Involvement of c-Jun N-Terminal Kinase Located in the Astrocytes and Neurons of the Dorsal Root Ganglion.Pain Res. Manag.202120211910.1155/2021/8787231 33532012
    [Google Scholar]
  147. GroverM. ShahK. KhullarG. GuptaJ. BehlT. Investigation of the utility of Curcuma caesia in the treatment of diabetic neuropathy.J. Pharm. Pharmacol.201971572573210.1111/jphp.13075 30767224
    [Google Scholar]
  148. AggarwalB.B. YuanW. LiS. GuptaS.C. Curcumin‐free turmeric exhibits anti‐inflammatory and anticancer activities: Identification of novel components of turmeric.Mol. Nutr. Food Res.20135791529154210.1002/mnfr.201200838 23847105
    [Google Scholar]
  149. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of curcumin: lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑8 23143785
    [Google Scholar]
  150. ShehzadA. RehmanG. LeeY.S. Curcumin in inflammatory diseases.Biofactors2013391697710.1002/biof.1066 23281076
    [Google Scholar]
  151. HewlingsS. KalmanD. Curcumin: A review of its effects on human health.Foods20176109210.3390/foods6100092 29065496
    [Google Scholar]
  152. PrasadS. GuptaS.C. TyagiA.K. AggarwalB.B. Curcumin, a component of golden spice: From bedside to bench and back.Biotechnol. Adv.20143261053106410.1016/j.biotechadv.2014.04.004 24793420
    [Google Scholar]
  153. VisuvanathanT. ThanL.T.L. StanslasJ. ChewS.Y. VellasamyS. Revisiting Trigonella foenum-graecum L.: pharmacology and therapeutic potentialities.Plants20221111145010.3390/plants11111450 35684222
    [Google Scholar]
  154. SalmanM.T. QadeerF. Pharmacological actions and therapeutic potential of Trigonella foenum-graecum L.Fenugreek.Springer2021
    [Google Scholar]
  155. NeelakantanN. NarayananM. de SouzaR.J. van DamR.M. Effect of fenugreek (Trigonella foenum-graecumL.) intake on glycemia: a meta-analysis of clinical trials.Nutr. J.2014131710.1186/1475‑2891‑13‑7 24438170
    [Google Scholar]
  156. ShabbeerS. SobolewskiM. AnchooriR.K. KachhapS. HidalgoM. JimenoA. DavidsonN.E. CarducciM. KhanS.R. Fenugreek: A naturally occurring edible spice as an anticancer agent.Cancer Biol. Ther.20098327227810.4161/cbt.8.3.7443 19197146
    [Google Scholar]
  157. RajuJ. PatlollaJ.M.R. SwamyM.V. RaoC.V. Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells.Cancer Epidemiol. Biomarkers Prev.20041381392139810.1158/1055‑9965.1392.13.8 15298963
    [Google Scholar]
  158. Al-HaboriM. RamanA. Antidiabetic and hypocholesterolaemic effects of fenugreek.Phytother. Res.199812423324210.1002/(SICI)1099‑1573(199806)12:4<233:AID‑PTR294>3.0.CO;2‑V
    [Google Scholar]
  159. BrocaC. ManteghettiM. GrossR. BaissacY. JacobM. PetitP. SauvaireY. RibesG. 4-Hydroxyisoleucine: effects of synthetic and natural analogues on insulin secretion.Eur. J. Pharmacol.2000390333934510.1016/S0014‑2999(00)00030‑3 10708743
    [Google Scholar]
  160. TabatabaeiS.R.F. GhaderiS. Bahrami-TapeheburM. FarboodY. RashnoM. Aloe vera gel improves behavioral deficits and oxidative status in streptozotocin-induced diabetic rats.Biomed. Pharmacother.20179627929010.1016/j.biopha.2017.09.146 28988013
    [Google Scholar]
  161. BaynesJ.W. Role of oxidative stress in development of complications in diabetes.Diabetes199140440541210.2337/diab.40.4.405 2010041
    [Google Scholar]
  162. SurjusheA. VasaniR. SapleD.G. Aloe vera: A short review.Indian J. Dermatol.200853416316610.4103/0019‑5154.44785 19882025
    [Google Scholar]
  163. ErnstE. Adverse effects of herbal drugs in dermatology.Br. J. Dermatol.2000143592392910.1046/j.1365‑2133.2000.03822.x 11069498
    [Google Scholar]
  164. GuoX. MeiN. Aloe vera: A review of toxicity and adverse clinical effects.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.2016342779610.1080/10590501.2016.1166826 26986231
    [Google Scholar]
  165. LangmeadL. MakinsR.J. RamptonD.S. Anti‐inflammatory effects of aloe vera gel in human colorectal mucosa in vitro.Aliment. Pharmacol. Ther.200419552152710.1111/j.1365‑2036.2004.01874.x 14987320
    [Google Scholar]
  166. VoglerB.K. ErnstE. Aloe vera: a systematic review of its clinical effectiveness.Br. J. Gen. Pract.199949447823828 10885091
    [Google Scholar]
  167. BlairH.A. Capsaicin 8% Dermal Patch: A Review in Peripheral Neuropathic Pain.Drugs201878141489150010.1007/s40265‑018‑0982‑7 30251173
    [Google Scholar]
  168. AnandP. PriviteraR. DonatienP. FadaviH. TesfayeS. BravisV. MisraV.P. Reversing painful and non-painful diabetic neuropathy with the capsaicin 8% patch: Clinical evidence for pain relief and restoration of function via nerve fiber regeneration.Front. Neurol.20221399890410.3389/fneur.2022.998904 36388188
    [Google Scholar]
  169. Chung ManKyoC.M. CampbellJ. Use of capsaicin to treat pain: mechanistic and therapeutic considerations.Pharmaceuticals20169466
    [Google Scholar]
  170. DerryS. Topical capsaicin (high concentration) for chronic neuropathic pain in adults.Cochrane Database Syst. Rev.201711CD007393
    [Google Scholar]
  171. RainsC. BrysonH.M. Topical Capsaicin.Drugs Aging19957431732810.2165/00002512‑199507040‑00007 8535059
    [Google Scholar]
  172. DealC.L. SchnitzerT.J. LipsteinE. SeiboldJ.R. StevensR.M. LevyM.D. AlbertD. RenoldF. Treatment of arthritis with topical capsaicin: a double-blind trial.Clin. Ther.1991133383395 1954640
    [Google Scholar]
  173. BasithS. CuiM. HongS. ChoiS. Harnessing the therapeutic potential of capsaicin and its analogues in pain and other diseases.Molecules201621896610.3390/molecules21080966 27455231
    [Google Scholar]
  174. McCarthyG.M. McCartyD.J. Effect of topical capsaicin in the therapy of painful osteoarthritis of the hands.J. Rheumatol.1992194604607 1375648
    [Google Scholar]
  175. KosuwonW. Efficacy of symptomatic control of knee osteoarthritis with 0.0125% of capsaicin versus placebo.Med. J. Med. Assoc. Thailand201093101188
    [Google Scholar]
  176. HalatK.M. DennehyC.E. Botanicals and dietary supplements in diabetic peripheral neuropathy.J. Am. Board Fam. Med.2003161475710.3122/jabfm.16.1.47 12583650
    [Google Scholar]
  177. CameronN.E. CotterM.A. Effects of evening primrose oil treatment on sciatic nerve blood flow and endoneurial oxygen tension in streptozotocin-diabetic rats.Acta Diabetol.199431422022510.1007/BF00571955 7888693
    [Google Scholar]
  178. BelchJ.J.F. HillA. Evening primrose oil and borage oil in rheumatologic conditions.Am. J. Clin. Nutr.2000711Suppl.352S356S10.1093/ajcn/71.1.352S 10617996
    [Google Scholar]
  179. MankuM. MorseN. BelchJ. Effects of gamma-linolenic acid supplementation on plasma essential fatty acids.Prog. Lipid Res.198625469473
    [Google Scholar]
  180. JänttiJ. NikkariT. SolakiviT. VapaataloH. IsomäkiH. Evening primrose oil in rheumatoid arthritis: changes in serum lipids and fatty acids.Ann. Rheum. Dis.198948212412710.1136/ard.48.2.124 2649022
    [Google Scholar]
  181. HorrobinD.F. Effects of evening primrose oil in rheumatoid arthritis.Ann. Rheum. Dis.1989481196596610.1136/ard.48.11.965 2688567
    [Google Scholar]
  182. BelchJ.J.F. ShawB. O’DowdA. CurranL. ForbesC.D. SturrockR.D. Evening primrose oil (efamol) as a treatment for cold-induced vasospasm (Raynauds Phenomenon).Prog. Lipid Res.19862533534010.1016/0163‑7827(86)90070‑6
    [Google Scholar]
  183. RoghaniM. Analgesic effect of fenugreek leaf extract in male streptozotocin-diabetic rats.Faslnamah-i Giyahan-i Daruyi2003284146
    [Google Scholar]
  184. AnuradhaC.V. KaviarasanS. VijayalakshmiK. Fenugreek seed polyphenols inhibit RBC membrane Na+/K+-ATPase activity.Advances in Traditional Medicine200333129132
    [Google Scholar]
  185. Belaïd-NouiraY. BakhtaH. HaouasZ. Flehi-SlimI. NeffatiF. NajjarM.F. CheikhH.B. Fenugreek seeds, a hepatoprotector forage crop against chronic AlCl3 toxicity.BMC Vet. Res.2013912210.1186/1746‑6148‑9‑22 23363543
    [Google Scholar]
  186. HuF. LinJ. XiongL. LiZ. LiuW. ZhengY. Exploring the molecular mechanism of Xuebifang in the treatment of diabetic peripheral neuropathy based on bioinformatics and network pharmacology.Front. Endocrinol. (Lausanne)202415127581610.3389/fendo.2024.1275816 38390212
    [Google Scholar]
  187. TesfayeS. SelvarajahD. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy.Diabetes Metab. Res. Rev.201228S1Suppl. 181410.1002/dmrr.2239 22271716
    [Google Scholar]
  188. PinzurM.S. Diabetic peripheral neuropathy.Foot Ankle Clin.201116234534910.1016/j.fcl.2011.01.002 21600454
    [Google Scholar]
  189. ZhengY. Efficacy of Chinese herbal medicine in the treatment of moderate-severe painful diabetic peripheral neuropathy: a retrospective study.J. Diabetes Res.20192019403586110.1155/2019/4035861
    [Google Scholar]
  190. ChandrasekharK. KapoorJ. AnishettyS. A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults.Indian J. Psychol. Med.201234325526210.4103/0253‑7176.106022 23439798
    [Google Scholar]
  191. MishraL-C. SinghB.B. DagenaisS. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review.Altern. Med. Rev.200054334346 10956379
    [Google Scholar]
  192. MirjaliliM.H. MoyanoE. BonfillM. CusidoR.M. PalazónJ. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine.Molecules20091472373239310.3390/molecules14072373 19633611
    [Google Scholar]
  193. GuptaG.L. RanaA. Withania somnifera (Ashwagandha): a review.Pharmacogn. Rev.200711
    [Google Scholar]
  194. BaitharuI. JainV. DeepS.N. HotaK.B. HotaS.K. PrasadD. IlavazhaganG. Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats.J. Ethnopharmacol.2013145243144110.1016/j.jep.2012.10.063 23211660
    [Google Scholar]
  195. OlajideO.A. SarkerS.D. Alzheimer’s disease: natural products as inhibitors of neuroinflammation.Inflammopharmacology20202861439145510.1007/s10787‑020‑00751‑1 32930914
    [Google Scholar]
  196. IorioR. CelenzaG. PetriccaS. Multi-Target Effects of ß-Caryophyllene and Carnosic Acid at the Crossroads of Mitochondrial Dysfunction and Neurodegeneration: From Oxidative Stress to Microglia-Mediated Neuroinflammation.Antioxidants2022116119910.3390/antiox11061199 35740096
    [Google Scholar]
  197. SychrováA. KolárikováI. ŽemličkaM. ŠmejkalK. Natural compounds with dual antimicrobial and anti-inflammatory effects.Phytochem. Rev.20201961471150210.1007/s11101‑020‑09694‑5
    [Google Scholar]
  198. JiangW. LinY. QianL. LuS. ShenH. GeX. MiaoL. Mulberry Leaf Polysaccharides Attenuate Oxidative Stress Injury in Peripheral Blood Leukocytes by Regulating Endoplasmic Reticulum Stress.Antioxidants202413213610.3390/antiox13020136 38397734
    [Google Scholar]
  199. YangL. YoungbloodH. WuC. ZhangQ. Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation.Transl. Neurodegener.2020911910.1186/s40035‑020‑00197‑z 32475349
    [Google Scholar]
  200. AkramR. AnwarH. JavedM.S. ImranA. RasulA. MalikS.A. ManzoorM. IslamF. KhanI.U. SajidF. ImanT. ShahM.A. SunT. HussainG. ShahM.A. Natural molecules as promising players against diabetic peripheral neuropathy: an emerging nutraceutical approach.Int. J. Food Prop.202326189491410.1080/10942912.2023.2189569
    [Google Scholar]
  201. LiuP. ChenY. XiaoJ. ZhuW. YanX. ChenM. Protective effect of natural products in the metabolic-associated kidney diseases via regulating mitochondrial dysfunction.Front. Pharmacol.202313109339710.3389/fphar.2022.1093397 36712696
    [Google Scholar]
  202. FukuyamaY. KuboM. HaradaK. The search for, and chemistry and mechanism of, neurotrophic natural products.J. Nat. Med.202074464867110.1007/s11418‑020‑01431‑8 32643028
    [Google Scholar]
  203. KimbelK. Ginkgo biloba.Lancet19923408833147410.1016/0140‑6736(92)92668‑6 1360591
    [Google Scholar]
  204. NoorF. Ali AshfaqU. Rizwan JavedM. Hamzah SaleemM. AhmadA. Farhan AslamM. AslamS. Comprehensive computational analysis reveals human respiratory syncytial virus encoded microRNA and host specific target genes associated with antiviral immune responses and protein binding.J. King Saud Univ. Sci.202133710156210.1016/j.jksus.2021.101562
    [Google Scholar]
  205. WangX. WangZ.Y. ZhengJ.H. LiS. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches.Chin. J. Nat. Med.202119111110.1016/S1875‑5364(21)60001‑8 33516447
    [Google Scholar]
  206. GertschJ. Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixtures.Planta Med.201177111086109810.1055/s‑0030‑1270904 21412698
    [Google Scholar]
  207. Shamas-DinA. BindnerS. ChiX. LeberB. AndrewsD.W. FradinC. Distinct lipid effects on tBid and Bim activation of membrane permeabilization by pro-apoptotic Bax.Biochem. J.2015467349550510.1042/BJ20141291 25714678
    [Google Scholar]
  208. BajajS. OngS.T. ChandyK.G. Contributions of natural products to ion channel pharmacology.Nat. Prod. Rep.202037570371610.1039/C9NP00056A 32065187
    [Google Scholar]
  209. NoorF. SaleemM.H. AslamM.F. AhmadA. AslamS. Construction of miRNA-mRNA network for the identification of key biological markers and their associated pathways in IgA nephropathy by employing the integrated bioinformatics analysis.Saudi J. Biol. Sci.20212894938494510.1016/j.sjbs.2021.06.079 34466069
    [Google Scholar]
  210. KanowskiS. HerrmannW.M. StephanK. WierichW. HörrR. Proof of efficacy of the Ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of the Alzheimer type or multi-infarct dementia.Phytomedicine19974131310.1016/S0944‑7113(97)80021‑9 23195239
    [Google Scholar]
  211. InoueK. TsudaM. Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential.Nat. Rev. Neurosci.201819313815210.1038/nrn.2018.2 29416128
    [Google Scholar]
  212. Pop-BusuiR. AngL. BoultonA. FeldmanE. MarcusR. Mizokami-StoutK. SingletonJ.R. ZieglerD. Diagnosis and Treatment of Painful Diabetic Peripheral Neuropathy.ADA Clinical Compendia20222022113210.2337/db2022‑01 35544662
    [Google Scholar]
  213. LinB. WangY. ZhangP. YuanY. ZhangY. ChenG. Gut microbiota regulates neuropathic pain: potential mechanisms and therapeutic strategy.J. Headache Pain202021110310.1186/s10194‑020‑01170‑x 32807072
    [Google Scholar]
  214. AnanA. Baskin-BeyE.S. BronkS.F. WerneburgN.W. ShahV.H. GoresG.J. Proteasome inhibition induces hepatic stellate cell apoptosis.Hepatology200643233534410.1002/hep.21036 16440346
    [Google Scholar]
  215. MukherjeeP.K. BanerjeeS. KarA. Molecular combination networks in medicinal plants: understanding synergy by network pharmacology in Indian traditional medicine.Phytochem. Rev.202120469370310.1007/s11101‑020‑09730‑4
    [Google Scholar]
  216. Abdul ManapA.S. WeiTan A.C.; Leong, W.H.; Yin Chia, A.Y.; Vijayabalan, S.; Arya, A.; Wong, E.H.; Rizwan, F.; Bindal, U.; Koshy, S.; Madhavan, P. Synergistic Effects of Curcumin and Piperine as Potent Acetylcholine and Amyloidogenic Inhibitors With Significant Neuroprotective Activity in SH-SY5Y Cells via Computational Molecular Modeling and in vitro Assay.Front. Aging Neurosci.20191120610.3389/fnagi.2019.00206 31507403
    [Google Scholar]
  217. ShenH. ShengL. ChenZ. JiangL. SuH. YinL. OmaryM.B. RuiL. Mouse hepatocyte overexpression of NF‐κB‐inducing kinase (NIK) triggers fatal macrophage‐dependent liver injury and fibrosis.Hepatology20146062065207610.1002/hep.27348 25088600
    [Google Scholar]
  218. RafieiF. ZeraatiH. AbbasiK. GhasemiJ.B. ParsaeianM. Masoudi-NejadA. DeepTraSynergy: drug combinations using multimodal deep learning with transformers.Bioinformatics2023398btad43810.1093/bioinformatics/btad438 37467066
    [Google Scholar]
  219. ChenD. LiuX. YangY. YangH. LuP. Systematic synergy modeling: understanding drug synergy from a systems biology perspective.BMC Syst. Biol.2015915610.1186/s12918‑015‑0202‑y 26377814
    [Google Scholar]
  220. ChenD. ZhangH. LuP. LiuX. CaoH. Synergy evaluation by a pathway–pathway interaction network: a new way to predict drug combination.Mol. Biosyst.201612261462310.1039/C5MB00599J 26687590
    [Google Scholar]
  221. CokolM. ChuaH.N. TasanM. MutluB. WeinsteinZ.B. SuzukiY. NergizM.E. CostanzoM. BaryshnikovaA. GiaeverG. NislowC. MyersC.L. AndrewsB.J. BooneC. RothF.P. Systematic exploration of synergistic drug pairs.Mol. Syst. Biol.20117154410.1038/msb.2011.71 22068327
    [Google Scholar]
  222. CsermelyP. AgostonV. PongorS. The efficiency of multi-target drugs: the network approach might help drug design.Trends Pharmacol. Sci.200526417818210.1016/j.tips.2005.02.007 15808341
    [Google Scholar]
  223. DeocarisC.C. WidodoN. WadhwaR. KaulS.C. Merger of ayurveda and tissue culture-based functional genomics: inspirations from systems biology.J. Transl. Med.2008611410.1186/1479‑5876‑6‑14 18348714
    [Google Scholar]
  224. BanerjeeS. BhattacharjeeP. KarA. MukherjeeP.K. LC–MS/MS analysis and network pharmacology of Trigonella foenum-graecum – A plant from Ayurveda against hyperlipidemia and hyperglycemia with combination synergy.Phytomedicine20196015294410.1016/j.phymed.2019.152944 31178235
    [Google Scholar]
  225. ZarubinT. HanJ. Activation and signaling of the p38 MAP kinase pathway.Cell Res.2005151111810.1038/sj.cr.7290257 15686620
    [Google Scholar]
  226. MakinoA. FujinoK. ParrishN.F. HondaT. TomonagaK. Borna disease virus possesses an NF-ĸB inhibitory sequence in the nucleoprotein gene.Sci. Rep.201551869610.1038/srep08696 25733193
    [Google Scholar]
  227. ShobaG. JoyD. JosephT. MajeedM. RajendranR. SrinivasP. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers.Planta Med.199864435335610.1055/s‑2006‑957450 9619120
    [Google Scholar]
  228. BornstedtM.E. Vitamin D increases glucose stimulated insulin secretion from Insulin Producing Beta Cells (INS1E).Int. J. Endocrinol. Metab.2022171e74255
    [Google Scholar]
  229. InchingoloA.D. InchingoloA.M. MalcangiG. AvantarioP. AzzolliniD. BuongiornoS. ViapianoF. CampanelliM. CiociaA.M. De LeonardisN. de RuvoE. FerraraI. GarofoliG. MontenegroV. NettiA. PalmieriG. ManciniA. PatanoA. PirasF. MarinelliG. Di PedeC. LaudadioC. RaponeB. HazballaD. CorrieroA. FatoneM.C. PalermoA. LorussoF. ScaranoA. BordeaI.R. Di VenereD. InchingoloF. DipalmaG. Effects of resveratrol, curcumin and quercetin supplementation on bone metabolism—a systematic review.Nutrients20221417351910.3390/nu14173519 36079777
    [Google Scholar]
  230. SimaA.A. CalvaniM. MehraM. AmatoA. Acetyl-L-carnitine improves pain, nerve regeneration, and vibratory perception in patients with chronic diabetic neuropathy: an analysis of two randomized placebo-controlled trials.Diabetes Care2005281899410.2337/diacare.28.1.89 15616239
    [Google Scholar]
  231. ZieglerD. LowP.A. LitchyW.J. BoultonA.J.M. VinikA.I. FreemanR. SamigullinR. TritschlerH. MunzelU. MausJ. SchütteK. DyckP.J. Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: the NATHAN 1 trial.Diabetes Care20113492054206010.2337/dc11‑0503 21775755
    [Google Scholar]
  232. ReayJ.L. van SchaikP. WilsonC.J. A systematic review of research investigating the physiological and psychological effects of combining Ginkgo biloba and Panax ginseng into a single treatment in humans: Implications for research design and analysis.Brain Behav.201993e0121710.1002/brb3.1217 30729756
    [Google Scholar]
  233. AndersonR.A. ChengN. BrydenN.A. PolanskyM.M. ChengN. ChiJ. FengJ. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes.Diabetes199746111786179110.2337/diab.46.11.1786 9356027
    [Google Scholar]
  234. KhalafD. KrügerM. WehlandM. InfangerM. GrimmD. The effects of oral l-arginine and l-citrulline supplementation on blood pressure.Nutrients2019117167910.3390/nu11071679 31336573
    [Google Scholar]
  235. AskariV.R. KhosraviK. Baradaran RahimiV. GarzoliS. A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects.Pharmaceuticals (Basel)2023171710.3390/ph17010007 38275993
    [Google Scholar]
  236. BulusuK.C. GuhaR. MasonD.J. LewisR.P.I. MuratovE. Kalantar MotamediY. CokolM. BenderA. Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives.Drug Discov. Today201621222523810.1016/j.drudis.2015.09.003 26360051
    [Google Scholar]
  237. Debacq-ChainiauxF. BoilanE. Le MoutierJ.D. WeemaelsG. ToussaintO. p38(MAPK) in the senescence of human and murine fibroblasts.Adv. Exp. Med. Biol.201069412613710.1007/978‑1‑4419‑7002‑2_10 20886761
    [Google Scholar]
  238. ZhuX. LiQ. ChangR. YangD. SongZ. GuoQ. HuangC. Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model.PLoS One201493e9130310.1371/journal.pone.0091303 24603592
    [Google Scholar]
  239. KyriakisJ.M. AvruchJ. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation.Physiol. Rev.200181280786910.1152/physrev.2001.81.2.807 11274345
    [Google Scholar]
  240. HeidariN. Ameliorative effects of n-acetylcysteine as adjunct therapy on symptoms of painful Diabetic neuropathy.J. Pain Res.20191231473159
    [Google Scholar]
  241. ZieglerD. HanefeldM. RuhnauK.J. HascheH. LobischM. SchütteK. KerumG. MalessaR. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy.Diabetes Care19992281296130110.2337/diacare.22.8.1296 10480774
    [Google Scholar]
  242. VincentA.M. CallaghanB.C. SmithA.L. FeldmanE.L. Diabetic neuropathy: cellular mechanisms as therapeutic targets.Nat. Rev. Neurol.201171057358310.1038/nrneurol.2011.137 21912405
    [Google Scholar]
  243. ZieglerD. AmetovA. BarinovA. DyckP.J. GurievaI. LowP.A. MunzelU. YakhnoN. RazI. NovosadovaM. MausJ. SamigullinR. Oral treatment with α-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial.Diabetes Care200629112365237010.2337/dc06‑1216 17065669
    [Google Scholar]
  244. SkapekS.X. FerrariA. GuptaA.A. LupoP.J. ButlerE. ShipleyJ. BarrF.G. HawkinsD.S. Rhabdomyosarcoma.Nat. Rev. Dis. Primers20195111810.1038/s41572‑018‑0051‑2 30617281
    [Google Scholar]
  245. CaesarL.K. CechN.B. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2.Nat. Prod. Rep.201936686988810.1039/C9NP00011A 31187844
    [Google Scholar]
  246. WangY. WangR. WangY. PengR. WuY. YuanY. Ginkgo biloba extract mitigates liver fibrosis and apoptosis by regulating p38 MAPK, NF-κB/IκBα, and Bcl-2/Bax signaling.Drug Des. Devel. Ther.2015963036317 26664050
    [Google Scholar]
  247. ChandranU. PatwardhanB. Network ethnopharmacological evaluation of the immunomodulatory activity of Withania somnifera.J. Ethnopharmacol.201719725025610.1016/j.jep.2016.07.080 27487266
    [Google Scholar]
  248. SaggamA. LimgaokarK. BorseS. Chavan-GautamP. DixitS. TilluG. PatwardhanB. Withania somnifera (L.) Dunal: Opportunity for Clinical Repurposing in COVID-19 Management.Front. Pharmacol.20211262379510.3389/fphar.2021.623795 34012390
    [Google Scholar]
  249. SchwabeR.F. SchnablB. KweonY.O. BrennerD.A. CD40 activates NF-kappa B and c-Jun N-terminal kinase and enhances chemokine secretion on activated human hepatic stellate cells.J. Immunol.2001166116812681910.4049/jimmunol.166.11.6812 11359840
    [Google Scholar]
  250. Varela-ReyM. Montiel-DuarteC. Osés-PrietoJ.A. López-ZabalzaM.J. JaffrèzouJ.P. RojkindM. IraburuM.J. p38 MAPK mediates the regulation of α1(I) procollagen mRNA levels by TNF‐α and TGF‐β in a cell line of rat hepatic stellate cells.FEBS Lett.20025281-313313810.1016/S0014‑5793(02)03276‑3 12297293
    [Google Scholar]
  251. ZhangY.P. YaoX.X. ZhaoX. Interleukin-1 beta up-regulates tissue inhibitor of matrix metalloproteinase-1 mRNA and phosphorylation of c-jun N-terminal kinase and p38 in hepatic stellate cells.World J. Gastroenterol.20061291392139610.3748/wjg.v12.i9.1392 16552807
    [Google Scholar]
  252. ArafaE.S.A. RefaeyM.S. Abd El-GhafarO.A.M. HassaneinE.H.M. SayedA.M. The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition.Heliyon2021711e0835410.1016/j.heliyon.2021.e08354 34825082
    [Google Scholar]
  253. LeeU.E. FriedmanS.L. Mechanisms of hepatic fibrogenesis.Best Pract. Res. Clin. Gastroenterol.201125219520610.1016/j.bpg.2011.02.005 21497738
    [Google Scholar]
  254. LiD. FriedmanS. Liver fibrogenesis and the role of hepatic stellate cells: New insights and prospects for therapy.J. Gastroenterol. Hepatol.199914761863310.1046/j.1440‑1746.1999.01928.x 10440206
    [Google Scholar]
  255. FriedmanS.L. Hepatic fibrosis—Overview.Toxicology2008254312012910.1016/j.tox.2008.06.013 18662740
    [Google Scholar]
  256. FriedmanS.L. Mechanisms of hepatic fibrogenesis.Gastroenterology200813461655166910.1053/j.gastro.2008.03.003 18471545
    [Google Scholar]
  257. LeeK.S. BuckM. HouglumK. ChojkierM. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression.J. Clin. Invest.19959652461246810.1172/JCI118304 7593635
    [Google Scholar]
  258. MooreA. DerryS. EcclestonC. KalsoE. Expect analgesic failure; pursue analgesic success.BMJ2013346may03 1f269010.1136/bmj.f269023645858
    [Google Scholar]
  259. IoannidisJ.P.A. Why most published research findings are false.PLoS Med.200528e12410.1371/journal.pmed.0020124 16060722
    [Google Scholar]
  260. TesfayeS. WilhelmS. LledoA. SchachtA. TölleT. BouhassiraD. CruccuG. SkljarevskiV. FreynhagenR. Duloxetine and pregabalin: High-dose monotherapy or their combination? The “COMBO-DN study” – a multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain.Pain2013154122616262510.1016/j.pain.2013.05.043 23732189
    [Google Scholar]
  261. DonegaV. NijboerC.H. van VelthovenC.T.J. YoussefS.A. de BruinA. van BelF. KavelaarsA. HeijnenC.J. Assessment of long-term safety and efficacy of intranasal mesenchymal stem cell treatment for neonatal brain injury in the mouse.Pediatr. Res.201578552052610.1038/pr.2015.145 26270577
    [Google Scholar]
/content/journals/npj/10.2174/0122103155334599240909074350
Loading
/content/journals/npj/10.2174/0122103155334599240909074350
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test