Skip to content
2000
Volume 15, Issue 9
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Worldwide, Functional Gastrointestinal Disorders (FGIDs) are common, although their prevalence varies among cultures, ethnic groups, and geographic regions. FGIDs, now referred to as Disorders of Gut-Brain Interactions (DGBIs), encompass a variety of chronic or recurrent gastrointestinal symptoms that are not related to structural or morphological abnormalities. Irritable Bowel Syndrome (IBS) and Functional Dyspepsia are two of the most common examples of FGIDs. According to the Rome IV criteria established in 2016, these disorders are classified based on specific diagnostic guidelines. The Rome Foundation is expected to launch the updated Rome V criteria in 2026. IBS is one of the most common types of FGID. The causes of IBS include a range of factors such as dietary habits, psychological influences, and genetic predispositions. The role of neurotransmitters such as serotonin, norepinephrine, histamine, dopamine, and gamma-aminobutyric acid (GABA) has been identified in the development of IBS. Due to gender differences, it is anticipated that the symptoms and treatment approaches for men and women with IBS may vary. Studies have shown that IBS is more frequent in women than in men. Various treatment strategies are used for the management of IBS, including medications (such as laxatives, antidepressants, and analgesics), lifestyle modifications, and herbal approaches. Increasing emphasis is being placed on plant-based products and probiotics. Management often differs from one individual to another; a treatment that works for one person may not be effective for another. Different studies have suggested an association between obesity and FGIDs, particularly IBS. Some research indicates that obesity could exacerbate the inflammatory processes associated with IBS, while other studies suggest a bidirectional link between IBS and obesity. Common pathophysiological features found in both obesity and IBS include alterations in the gut microbiome, changes in intestinal permeability, visceral hypersensitivity, and low-grade inflammation.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155307220240910042807
2024-09-20
2025-09-07
Loading full text...

Full text loading...

References

  1. FikreeA. ByrneP. Management of functional gastrointestinal disorders.Clin. Med.2021211445210.7861/clinmed.2020‑0980 33479067
    [Google Scholar]
  2. OshimaT. MiwaH. Epidemiology of functional gastrointestinal disorders in Japan and in the world.J. Neurogastroenterol. Motil.201521332032910.5056/jnm14165 26095436
    [Google Scholar]
  3. SimonsJ. ShajeeU. PalssonO. SimrenM. SperberA.D. TörnblomH. WhiteheadW. AzizI. Disorders of gut‐brain interaction: Highly prevalent and burdensome yet under‐taught within medical education.United European Gastroenterol. J.202210773674410.1002/ueg2.12271 35781806
    [Google Scholar]
  4. ChandranS. PrakrithiS.N. MathurS. KishorM. RaoT.S.S. A review of functional gastrointestinal disorders: A primer for mental health professionals.Archives of Mental Health2018192708110.4103/AMH.AMH_25_18
    [Google Scholar]
  5. SperberA.D. BangdiwalaS.I. DrossmanD.A. GhoshalU.C. SimrenM. TackJ. WhiteheadW.E. DumitrascuD.L. FangX. FukudoS. KellowJ. OkekeE. QuigleyE.M.M. SchmulsonM. WhorwellP. ArchampongT. AdibiP. AndresenV. BenningaM.A. BonazB. BorS. FernandezL.B. ChoiS.C. CorazziariE.S. FrancisconiC. HaniA. LazebnikL. LeeY.Y. MulakA. RahmanM.M. SantosJ. SetshediM. SyamA.F. VannerS. WongR.K. Lopez-ColomboA. CostaV. DickmanR. KanazawaM. KeshteliA.H. KhatunR. MalekiI. PoitrasP. PratapN. StefanyukO. ThomsonS. ZeevenhoovenJ. PalssonO.S. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation Global Study.Gastroenterology2021160199114.e310.1053/j.gastro.2020.04.014 32294476
    [Google Scholar]
  6. DrossmanD.A. Functional gastrointestinal disorders: history, pathophysiology, clinical features, and Rome IV.Gastroenterology2016150612621279.e210.1053/j.gastro.2016.02.032 27144617
    [Google Scholar]
  7. HoltmannG. ShahA. MorrisonM. Pathophysiology of functional gastrointestinal disorders: a holistic overview.Dig. Dis.201735Suppl. 151310.1159/000485409 29421808
    [Google Scholar]
  8. MearinF. MalfertheinerP. Functional gastrointestinal disorders: complex treatments for complex pathophysiological mechanisms.Dig. Dis.2017351Suppl. 11410.1159/000485407 29421797
    [Google Scholar]
  9. BlackC.J. DrossmanD.A. TalleyN.J. RuddyJ. FordA.C. Functional gastrointestinal disorders: advances in understanding and management.Lancet2020396102631664167410.1016/S0140‑6736(20)32115‑2 33049221
    [Google Scholar]
  10. NelissenL.G. KoppenI.J.N. FollettF.R. Boggio-MarzetC. SapsM. GarzonK. BenningaM.A. Prevalence of functional gastrointestinal disorders among adolescents in Buenos Aires, Argentina.Revsta de Gastroenteroogía de México (English Edition)201883436737410.1016/j.rgmxen.2018.09.001 29914714
    [Google Scholar]
  11. SchmulsonM.J. DrossmanD.A. What is new in Rome IV.J. Neurogastroenterol. Motil.201723215116310.5056/jnm16214 28274109
    [Google Scholar]
  12. TackJ. DrossmanD.A. What’s new in Rome IV?Neurogastroenterol. Motil.2017299e1305310.1111/nmo.13053 28303651
    [Google Scholar]
  13. DrossmanD.A. HaslerW.L. RomeI.V. Rome IV-functional GI disorders: disorders of gut-brain interaction.Gastroenterology201615061257126110.1053/j.gastro.2016.03.035 27147121
    [Google Scholar]
  14. OkaP. ParrH. BarberioB. BlackC.J. SavarinoE.V. FordA.C. Global prevalence of irritable bowel syndrome according to Rome III or IV criteria: a systematic review and meta-analysis.Lancet Gastroenterol. Hepatol.202051090891710.1016/S2468‑1253(20)30217‑X 32702295
    [Google Scholar]
  15. LacyB.E. MearinF. ChangL. CheyW.D. LemboA.J. SimrenM. SpillerR. Bowel Disorders.Gastroenterology2016150613931407.e510.1053/j.gastro.2016.02.031 27144627
    [Google Scholar]
  16. WłodarczykJ. SzałwińskaP. Pathogenesis of irritable bowel syndrome.In: A comprehensive overview of irritable bowel syndrome.Academic Press202010.1016/B978‑0‑12‑821324‑7.00002‑2
    [Google Scholar]
  17. WeaverK.R. MelkusG.D.E. HendersonW.A. Irritable bowel syndrome.Am. J. Nurs.20171176485510.1097/01.NAJ.0000520253.57459.01 28541989
    [Google Scholar]
  18. HoltmannG.J. FordA.C. TalleyN.J. Pathophysiology of irritable bowel syndrome.Lancet Gastroenterol. Hepatol.20161213314610.1016/S2468‑1253(16)30023‑1 28404070
    [Google Scholar]
  19. LockeG.R.III AckermanM.J. ZinsmeisterA.R. ThapaP. FarrugiaG. Gastrointestinal symptoms in families of patients with an SCN5A-encoded cardiac channelopathy: evidence of an intestinal channelopathy.Am. J. Gastroenterol.200610161299130410.1111/j.1572‑0241.2006.00507.x 16771953
    [Google Scholar]
  20. StregeP.R. MazzoneA. BernardC.E. NeshatianL. GibbonsS.J. SaitoY.A. TesterD.J. CalvertM.L. MayerE.A. ChangL. AckermanM.J. BeyderA. FarrugiaG. Irritable bowel syndrome patients have SCN5A channelopathies that lead to decreased Na V 1.5 current and mechanosensitivity.Am. J. Physiol. Gastrointest. Liver Physiol.20183144G494G50310.1152/ajpgi.00016.2017 29167113
    [Google Scholar]
  21. SaitoY.A. StregeP.R. TesterD.J. LockeG.R.III TalleyN.J. BernardC.E. RaeJ.L. MakielskiJ.C. AckermanM.J. FarrugiaG. Sodium channel mutation in irritable bowel syndrome: evidence for an ion channelopathy.Am. J. Physiol. Gastrointest. Liver Physiol.20092962G211G21810.1152/ajpgi.90571.2008 19056759
    [Google Scholar]
  22. ZhuangX. XiongL. LiL. LiM. ChenM. Alterations of gut microbiota in patients with irritable bowel syndrome: A systematic review and meta‐analysis.J. Gastroenterol. Hepatol.2017321283810.1111/jgh.13471 27300149
    [Google Scholar]
  23. BhattaraiY. Muniz PedrogoD.A. KashyapP.C. Irritable bowel syndrome: a gut microbiota-related disorder?Am. J. Physiol. Gastrointest. Liver Physiol.20173121G52G6210.1152/ajpgi.00338.2016 27881403
    [Google Scholar]
  24. ShresthaB. PatelD. ShahH. HannaK.S. KaurH. AlazzehM.S. ThandavaramA. ChannarA. PurohitA. VenugopalS. The role of gut-microbiota in the pathophysiology and therapy of irritable bowel syndrome: A systematic review.Cureus2022148e2806410.7759/cureus.28064 36127988
    [Google Scholar]
  25. LeeK.N. LeeO.Y. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome.World J. Gastroenterol.201420278886889710.3748/wjg.v20.i27.8886 25083061
    [Google Scholar]
  26. JefferyI.B. O’TooleP.W. ÖhmanL. ClaessonM.J. DeaneJ. QuigleyE.M.M. SimrénM. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota.Gut2012617997100610.1136/gutjnl‑2011‑301501 22180058
    [Google Scholar]
  27. Jalanka-TuovinenJ. SalojärviJ. SalonenA. ImmonenO. GarsedK. KellyF.M. ZaitounA. PalvaA. SpillerR.C. de VosW.M. Faecal microbiota composition and host–microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome.Gut201463111737174510.1136/gutjnl‑2013‑305994 24310267
    [Google Scholar]
  28. CrouzetL. GaultierE. Del’HommeC. CartierC. DelmasE. DapoignyM. FioramontiJ. Bernalier-DonadilleA. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota.Neurogastroenterol. Motil.2013254e272e28210.1111/nmo.12103 23433203
    [Google Scholar]
  29. De PalmaG. LynchM.D.J. LuJ. DangV.T. DengY. JuryJ. UmehG. MirandaP.M. Pigrau PastorM. SidaniS. Pinto-SanchezM.I. PhilipV. McLeanP.G. HagelsiebM.G. SuretteM.G. BergonzelliG.E. VerduE.F. Britz-McKibbinP. NeufeldJ.D. CollinsS.M. BercikP. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice.Sci. Transl. Med.20179379eaaf639710.1126/scitranslmed.aaf6397 28251905
    [Google Scholar]
  30. El-SalhyM. GiljaO.H. GundersenD. HatlebakkJ.G. HauskenT. Interaction between ingested nutrients and gut endocrine cells in patients with irritable bowel syndrome.(Review). Int. J. Mol. Med.201434236337110.3892/ijmm.2014.1811 24939595
    [Google Scholar]
  31. Fritscher-RavensA. SchuppanD. EllrichmannM. SchochS. RöckenC. BraschJ. BethgeJ. BöttnerM. KloseJ. MillaP.J. Confocal endomicroscopy shows food-associated changes in the intestinal mucosa of patients with irritable bowel syndrome.Gastroenterology2014147510121020.e410.1053/j.gastro.2014.07.046 25083606
    [Google Scholar]
  32. El-SalhyM. PatcharatrakulT. GonlachanvitS. The role of diet in the pathophysiology and management of irritable bowel syndrome.Indian J. Gastroenterol.202140211111910.1007/s12664‑020‑01144‑6 33666892
    [Google Scholar]
  33. Fritscher-RavensA. PflaumT. MösingerM. RuchayZ. RöckenC. MillaP.J. DasM. BöttnerM. WedelT. SchuppanD. Many patients with irritable bowel syndrome have atypical food allergies not associated with immunoglobulin E.Gastroenterology20191571109118.e510.1053/j.gastro.2019.03.046 31100380
    [Google Scholar]
  34. De GiorgioR. VoltaU. GibsonP.R. Sensitivity to wheat, gluten and FODMAPs in IBS: facts or fiction?Gut201665116917810.1136/gutjnl‑2015‑309757 26078292
    [Google Scholar]
  35. VoltaU. Pinto-SanchezM.I. BoschettiE. CaioG. De GiorgioR. VerduE.F. Dietary triggers in irritable bowel syndrome: is there a role for gluten?J. Neurogastroenterol. Motil.201622454755710.5056/jnm16069 27426486
    [Google Scholar]
  36. RinninellaE. CintoniM. MeleM.C. GasbarriniA. Irritable bowel syndrome (IBS) and Non-Celiac Gluten Sensitivity (NCGS): where is the culprit hiding? Nutritional tips for gastroenterologists.Nutrients20191110249910.3390/nu11102499 31627386
    [Google Scholar]
  37. BelliniM. RossiA. Is a low FODMAP diet dangerous?Tech. Coloproctol.201822856957110.1007/s10151‑018‑1835‑9 30083779
    [Google Scholar]
  38. StaudacherH.M. WhelanK. The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS.Gut20176681517152710.1136/gutjnl‑2017‑313750 28592442
    [Google Scholar]
  39. KennedyP.J. CryanJ.F. DinanT.G. ClarkeG. Kynurenine pathway metabolism and the microbiota-gut-brain axis.Neuropharmacology201711239941210.1016/j.neuropharm.2016.07.002
    [Google Scholar]
  40. QinH.Y. ChengC.W. TangX.D. BianZ.X. Impact of psychological stress on irritable bowel syndrome.World J. Gastroenterol.20142039141261413110.3748/wjg.v20.i39.14126 25339801
    [Google Scholar]
  41. MittalR. DebsL.H. PatelA.P. NguyenD. PatelK. O’ConnorG. GratiM. MittalJ. YanD. EshraghiA.A. DeoS.K. DaunertS. LiuX.Z. Neurotransmitters: the critical modulators regulating gut–brain axis.J. Cell. Physiol.201723292359237210.1002/jcp.25518 27512962
    [Google Scholar]
  42. ChenM. RuanG. ChenL. YingS. LiG. XuF. XiaoZ. TianY. LvL. PingY. ChengY. WeiY. Neurotransmitter and intestinal interactions: focus on the microbiota-gut-brain axis in irritable bowel syndrome.Front. Endocrinol. (Lausanne)20221381710010.3389/fendo.2022.817100 35250873
    [Google Scholar]
  43. De DeurwaerdèreP. Di GiovanniG. Serotonin in health and disease.Int. J. Mol. Sci.20202110350010.3390/ijms21103500 32429111
    [Google Scholar]
  44. HasinD. PamporiZ.A. AarifO. BulbulK.H. SheikhA.A. BhatI.A. Happy hormones and their significance in animals and man.Int J Vet Sci Anim Husbandry201835100103
    [Google Scholar]
  45. BanskotaS. GhiaJ.E. KhanW.I. Serotonin in the gut: Blessing or a curse.Biochimie2019161566410.1016/j.biochi.2018.06.008 29909048
    [Google Scholar]
  46. ButnariuM. SaracI. Biochemistry of hormones that influences feelings.Annals Pharmacovigilance Drug2019
    [Google Scholar]
  47. GaoJ. XiongT. GrabauskasG. OwyangC. Mucosal serotonin reuptake transporter expression in irritable bowel syndrome is modulated by gut microbiota via mast cell-prostaglandin E2.Gastroenterology2022162719621974.e610.1053/j.gastro.2022.02.016 35167867
    [Google Scholar]
  48. JinD.C. CaoH.L. XuM.Q. WangS.N. WangY.M. YanF. WangB.M. Regulation of the serotonin transporter in the pathogenesis of irritable bowel syndrome.World J. Gastroenterol.201622368137814810.3748/wjg.v22.i36.8137 27688655
    [Google Scholar]
  49. LavoieB. LianJ.B. MaweG.M. Regulation of bone metabolism by serotonin.201710.1007/978‑3‑319‑66653‑2_3
    [Google Scholar]
  50. WaclawikováB. BullockA. SchwalbeM. AranzamendiC. NelemansS.A. van DijkG. El AidyS. Gut bacteria-derived 5-hydroxyindole is a potent stimulant of intestinal motility via its action on L-type calcium channels.PLoS Biol.2021191e300107010.1371/journal.pbio.3001070 33481771
    [Google Scholar]
  51. ChojnackiC. BłońskaA. KaczkaA. ChojnackiJ. StępieńA. GąsiorowskaA. Evaluation of serotonin and dopamine secretion and metabolism in patients with irritable bowel syndrome.Polish Archives of Internal Medicine20181281171171310.20452/pamw.4364 30398468
    [Google Scholar]
  52. ZelkasL. RaghupathiR. LumsdenA.L. MartinA.M. SunE. SpencerN.J. YoungR.L. KeatingD.J. Serotonin-secreting enteroendocrine cells respond via diverse mechanisms to acute and chronic changes in glucose availability.Nutr. Metab. (Lond.)20151215510.1186/s12986‑015‑0051‑0 26673561
    [Google Scholar]
  53. ZhengL.F. LiuS. ZhouL. ZhangX.L. YuX. ZhuJ.X. Dopamine and gastrointestinal motility.Dopamine Gut2021133202
    [Google Scholar]
  54. KleinM.O. BattagelloD.S. CardosoA.R. HauserD.N. BittencourtJ.C. CorreaR.G. Dopamine: functions, signaling, and association with neurological diseases.Cell. Mol. Neurobiol.2019391315910.1007/s10571‑018‑0632‑3 30446950
    [Google Scholar]
  55. KleinriddersA. PothosE.N. Impact of brain insulin signaling on dopamine function, food intake, reward, and emotional behavior.Curr. Nutr. Rep.201982839110.1007/s13668‑019‑0276‑z 31001792
    [Google Scholar]
  56. KeshteliA.H. MadsenK.L. MandalR. BoeckxstaensG.E. BercikP. De PalmaG. ReedD.E. WishartD. VannerS. DielemanL.A. Comparison of the metabolomic profiles of irritable bowel syndrome patients with ulcerative colitis patients and healthy controls: new insights into pathophysiology and potential biomarkers.Aliment. Pharmacol. Ther.201949672373210.1111/apt.15141 30706502
    [Google Scholar]
  57. WileyJ.W. TokuT. ChungO. Dopaminergic mechanisms in gastrointestinal motility.In: Regulatory Mechanisms in Gastrointestinal Function.CRC Press2017
    [Google Scholar]
  58. Loeza-AlcocerE. McPhersonT.P. GoldM.S. Peripheral GABA receptors regulate colonic afferent excitability and visceral nociception.J. Physiol.2019597133425343910.1113/JP278025 31077379
    [Google Scholar]
  59. AuteriM. ZizzoM. SerioR. The GABAergic system and the gastrointestinal physiopathology.Curr. Pharm. Des.201521344996501610.2174/1381612821666150914121518 26365138
    [Google Scholar]
  60. SeifiM. BrownJ.F. MillsJ. BhandariP. BelelliD. LambertJ.J. RudolphU. SwinnyJ.D. Molecular and functional diversity of GABA-A receptors in the enteric nervous system of the mouse colon.J. Neurosci.20143431103611037810.1523/JNEUROSCI.0441‑14.2014 25080596
    [Google Scholar]
  61. AggarwalS. AhujaV. PaulJ. Dysregulation of GABAergic signalling contributes in the pathogenesis of diarrhea-predominant irritable bowel syndrome.J. Neurogastroenterol. Motil.201824342243010.5056/jnm17100 29852727
    [Google Scholar]
  62. SaitoY.A. AlmazarA.E. TilkesK.E. ChoungR.S. Van NorstrandM.D. SchleckC.D. ZinsmeisterA.R. TalleyN.J. Randomised clinical trial: pregabalin vs placebo for irritable bowel syndrome.Aliment. Pharmacol. Ther.201949438939710.1111/apt.15077 30663077
    [Google Scholar]
  63. MuramatsuI. MasuokaT. UwadaJ. YoshikiH. YazamaT. LeeK.S. A new aspect of cholinergic transmission in the central nervous system.Nicotinic acetylcholine receptor signaling in neuroprotection.Springer201810.1007/978‑981‑10‑8488‑1_3
    [Google Scholar]
  64. HaamJ. YakelJ.L. Cholinergic modulation of the hippocampal region and memory function.J. Neurochem.2017142S2Suppl. 211112110.1111/jnc.14052 28791706
    [Google Scholar]
  65. ChenZ.R. HuangJ.B. YangS.L. HongF.F. Role of cholinergic signaling in Alzheimer’s disease.Molecules2022276181610.3390/molecules27061816 35335180
    [Google Scholar]
  66. BagweP.V. SathayeS. Significance of choline acetyltransferase enzyme in tackling neurodegenerative diseases.Curr. Mol. Biol. Rep.20228292210.1007/s40610‑022‑00148‑9
    [Google Scholar]
  67. RussellJ.P. MohammadiE. LigonC. LatorreR. JohnsonA.C. HoangB. KrullD. HoM.W.Y. EidamH.S. DeMartinoM.P. CheungM. OliffA.I. KumarS. Greenwood-Van MeerveldB. Enteric RET inhibition attenuates gastrointestinal secretion and motility via cholinergic signaling in rat colonic mucosal preparations.Neurogastroenterol. Motil.2019314e1347910.1111/nmo.13479 30311722
    [Google Scholar]
  68. UwadaJ. NakazawaH. MuramatsuI. MasuokaT. YazawaT. Role of muscarinic acetylcholine receptors in intestinal epithelial homeostasis: insights for the treatment of inflammatory bowel disease.Int. J. Mol. Sci.2023247650810.3390/ijms24076508 37047478
    [Google Scholar]
  69. DebB. PrichardD.O. BharuchaA.E. Constipation and fecal incontinence in the elderly.Curr. Gastroenterol. Rep.202022115410.1007/s11894‑020‑00791‑1 32839874
    [Google Scholar]
  70. FujikawaY. TominagaK. TanakaF. TanigawaT. WatanabeT. FujiwaraY. ArakawaT. Enteric glial cells are associated with stress‐induced colonic hyper‐contraction in maternally separated rats.Neurogastroenterol. Motil.20152771010102310.1111/nmo.12577 25960044
    [Google Scholar]
  71. DelvalleN.M. FriedD.E. Rivera-LopezG. GaudetteL. GulbransenB.D. Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility.Am. J. Physiol. Gastrointest. Liver Physiol.20183154G473G48310.1152/ajpgi.00155.2018 29927320
    [Google Scholar]
  72. FabisiakA. WłodarczykJ. FabisiakN. StorrM. FichnaJ. Targeting histamine receptors in irritable bowel syndrome: a critical appraisal.J. Neurogastroenterol. Motil.201723334134810.5056/jnm16203 28551943
    [Google Scholar]
  73. PassaniM.B. PanulaP. LinJ.S. Histamine in the brain.Front. Syst. Neurosci.201486410.3389/fnsys.2014.00064 24808830
    [Google Scholar]
  74. BarbaraG. StanghelliniV. De GiorgioR. CremonC. CottrellG.S. SantiniD. PasquinelliG. Morselli-LabateA.M. GradyE.F. BunnettN.W. CollinsS.M. CorinaldesiR. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome.Gastroenterology2004126369370210.1053/j.gastro.2003.11.055 14988823
    [Google Scholar]
  75. UrangaJ.A. MartínezV. AbaloR. Mast cell regulation and irritable bowel syndrome: effects of food components with potential nutraceutical use.Molecules20202518431410.3390/molecules25184314 32962285
    [Google Scholar]
  76. ChenH. NweP.K. YangY. RosenC.E. BieleckaA.A. KuchrooM. ClineG.W. KruseA.C. RingA.M. CrawfordJ.M. PalmN.W. A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology.Cell2019177512171231.e1810.1016/j.cell.2019.03.036 31006530
    [Google Scholar]
  77. YangX. LouJ. ShanW. DingJ. JinZ. HuY. DuQ. LiaoQ. XieR. XuJ. Pathophysiologic role of neurotransmitters in digestive diseases.Front. Physiol.20211256765010.3389/fphys.2021.567650 34194334
    [Google Scholar]
  78. MuralaS. BolluP.C. Norepinephrine.Neurochemistry in clinical practice.Springer International Publishing2022
    [Google Scholar]
  79. BurrR.L. JarrettM.E. CainK.C. JunS. HeitkemperM.M. Catecholamine and cortisol levels during sleep in women with irritable bowel syndrome.Neurogastroenterol. Motil.200921111148e9710.1111/j.1365‑2982.2009.01351.x 19573081
    [Google Scholar]
  80. ChoudhuryB.K. ShiX.Z. SarnaS.K. Norepinephrine mediates the transcriptional effects of heterotypic chronic stress on colonic motor function.Am. J. Physiol. Gastrointest. Liver Physiol.20092966G1238G124710.1152/ajpgi.90712.2008 19359422
    [Google Scholar]
  81. CamilleriM. Sex as a biological variable in irritable bowel syndrome.Neurogastroenterol. Motil.2020327e1380210.1111/nmo.13802 31943595
    [Google Scholar]
  82. ChoiY.J. KimN. YoonH. ShinC.M. ParkY.S. KimJ.W. KimY.S. LeeD.H. JungH.C. Overlap between irritable bowel syndrome and functional dyspepsia including subtype analyses.J. Gastroenterol. Hepatol.20173291553156110.1111/jgh.13756 28160607
    [Google Scholar]
  83. RastelliD. RobinsonA. LagomarsinoV.N. MatthewsL.T. HassanR. PerezK. DanW. YimP.D. MixerM. ProcheraA. ShepherdA. SunL. HallK. BallouS. LemboA. NeeJ. RaoM. Diminished androgen levels are linked to irritable bowel syndrome and cause bowel dysfunction in mice.J. Clin. Invest.20221322e15078910.1172/JCI150789 34847080
    [Google Scholar]
  84. AloisiA.M. Gonadal hormones and sex differences in pain reactivity.Clin. J. Pain200319316817410.1097/00002508‑200305000‑00004 12792555
    [Google Scholar]
  85. SpiegelB. Gravity and the gut: A hypothesis of irritable bowel syndrome.Am. J. Gastroenterol.2022117121933194710.14309/ajg.0000000000002066 36455220
    [Google Scholar]
  86. SpiegelB. New developments and the role of gravity in the pathogenesis of irritable bowel syndrome.Gastroenterol. Hepatol. (N. Y.)20231911670673 38405227
    [Google Scholar]
  87. KoY. HoV. Irritable bowel syndrome an update on diagnosis and management.Med. Today (Karachi)2021228
    [Google Scholar]
  88. CamilleriM. Diagnosis and treatment of irritable bowel syndrome: a review.JAMA2021325986587710.1001/jama.2020.22532 33651094
    [Google Scholar]
  89. HawrelakJ.A. WohlmuthH. PattinsonM. MyersS.P. GoldenbergJ.Z. HarnettJ. CooleyK. Van De VenterC. ReidR. WhittenD.L. Western herbal medicines in the treatment of irritable bowel syndrome: A systematic review and meta-analysis.Complement. Ther. Med.20204810223310.1016/j.ctim.2019.102233 31987249
    [Google Scholar]
  90. LuQ. TanD. LuoJ. YeY. ZuoM. WangS. LiC. Potential of natural products in the treatment of irritable bowel syndrome.Phytomedicine202210615441910.1016/j.phymed.2022.154419 36087525
    [Google Scholar]
  91. RoudsariN.M. LashgariN.A. MomtazS. FarzaeiM.H. MarquesA.M. AbdolghaffariA.H. Natural polyphenols for the prevention of irritable bowel syndrome: molecular mechanisms and targets; a comprehensive review.Daru201927275578010.1007/s40199‑019‑00284‑1 31273572
    [Google Scholar]
  92. Kurasiak-PopowskaD. RyńskaB. Stuper-SzablewskaK. Analysis of distribution of selected bioactive compounds in Camelina sativa from seeds to pomace and oil.Agronomy (Basel)20199416810.3390/agronomy9040168
    [Google Scholar]
  93. CojocariuR.O. BalmusI.M. LefterR. HritcuL. AbabeiD.C. CiobicaA. CopaciS. MotS.E.L. CopoloviciL. CopoloviciD.M. JurcoaneS. Camelina sativa methanolic and ethanolic extract potential in alleviating oxidative stress, memory deficits, and affective impairments in stress exposure-based irritable bowel syndrome mouse models.Oxid. Med. Cell. Longev.2020202012010.1155/2020/9510305 33425222
    [Google Scholar]
  94. SonH.J. JungK. ParkY.H. JeonH.J. KangM. RyuK.H. PyoS.S. EutameneH. BuenoL. SunW.S. Inhibitory effects of SKI3246, the rhizome extract of Atractylodes japonica, on visceral hypersensitivity in experimental irritable bowel syndrome rat models.Arch. Pharm. Res.201538564264910.1007/s12272‑014‑0454‑x 25070763
    [Google Scholar]
  95. OfodileL.N. KanifeU.C. ArojojoyeB.J. Antifungal activity of a Nigerian herbal plant Chrysanthellum americanum.J Life Phys Sci201036063
    [Google Scholar]
  96. CojocariuR. CiobicaA. BalmusI.M. GuenneS. TrifanA. StanciuC. HrițcuL. LefterR. Antioxidant capacity and behavioral relevance of a polyphenolic extract of Chrysanthellum americanum in a rat model of irritable bowel syndrome.Oxid. Med. Cell. Longev.2019201911310.1155/2019/3492767 31485290
    [Google Scholar]
  97. SunY. SuB. Chemical constituents of Coptis chinensis.Chem. Nat. Compd.20225861131113310.1007/s10600‑022‑03884‑7
    [Google Scholar]
  98. TjongY. IpS. LaoL. FongH.H.S. SungJ.J.Y. BermanB. CheC. Analgesic effect of Coptis chinensis rhizomes (Coptidis Rhizoma) extract on rat model of irritable bowel syndrome.J. Ethnopharmacol.2011135375476110.1016/j.jep.2011.04.007 21511022
    [Google Scholar]
  99. PetrisorG. MotelicaL. CraciunL.N. OpreaO.C. FicaiD. FicaiA. Melissa officinalis: composition, pharmacological effects and derived release systems—a review.Int. J. Mol. Sci.2022237359110.3390/ijms23073591 35408950
    [Google Scholar]
  100. DolatabadiF. AbdolghaffariA.H. FarzaeiM.H. BaeeriM. ZiaraniF.S. EslamiM. AbdollahiM. RahimiR. The protective effect of Melissa officinalis L. in visceral hypersensitivity in rat using 2 models of acid-induced colitis and stress-induced irritable bowel syndrome: a possible role of nitric oxide pathway.J. Neurogastroenterol. Motil.201824349050110.5056/jnm17035 29879761
    [Google Scholar]
  101. KumarN. KhuranaS. Phytochemicals and bioactive potential of Trachyspermum ammi L.Pharm. Lett.20181084856
    [Google Scholar]
  102. IzadpanahS. AbdolghaffariA.H. FarjadmandF. EftekhariM. BaeeriM. RahimifardM. Beneficial effects of Trachyspermum ammi (L.) Sprague on rat irritable bowel syndrome.Res J Pharmacogn2019625766[RJP].
    [Google Scholar]
  103. Al-SnafiP.D.A.E. The pharmacology and medical importance of Dolichos lablab (Lablab purpureus)- A review.IOSR J. Pharm.201772223010.9790/3013‑0702012230
    [Google Scholar]
  104. ChunE. YoonS. ParveenA. JinM. Alleviation of irritable bowel syndrome-like symptoms and control of gut and brain responses with oral administration of Dolichos lablab L. in a mouse model.Nutrients20181010147510.3390/nu10101475 30309025
    [Google Scholar]
  105. TiwariS. LataC. Identification of bioactive compounds in Berberis species and in vitro propagation for conservation and quality.Plants for immunity and conservation strategies.Springer202310.1007/978‑981‑99‑2824‑8_7
    [Google Scholar]
  106. ZhuH. LiL. LiS. YanQ. LiF. Effect of water extract from Berberis heteropoda Schrenk roots on diarrhea-predominant irritable bowel syndrome by adjusting intestinal flora.J. Ethnopharmacol.201923718219110.1016/j.jep.2019.03.045 30902748
    [Google Scholar]
  107. PandeyD.K. ChaudharyR. DeyA. NandyS. BanikR.M. MalikT. Current knowledge of Cinnamomum species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies.Bioactive Natural products in Drug Discovery.Springer2020127164
    [Google Scholar]
  108. LiuS. YangL. ZhengS. HouA. ManW. ZhangJ. WangS. WangX. YuH. JiangH. A review: the botany, ethnopharmacology, phytochemistry, pharmacology of Cinnamomi cortex.RSC Advances20211144274612749710.1039/D1RA04965H 35480649
    [Google Scholar]
  109. YuL. HuangC. YangW. RenZ. LiL. ChengH. LinC. ZhaiL. NingZ. WongH.X. HanQ. JiaW. BianZ. ZhaoL. Aqueous cinnamon extract ameliorates bowel dysfunction and enteric 5-HT synthesis in IBS rats.Front. Pharmacol.202313101048410.3389/fphar.2022.1010484 36699075
    [Google Scholar]
  110. TangM. LiaoK. WeiX. XieZ. FuC. JinW. Research progress and application of edible and medicinal plant Cynanchum thesioides.Shipin Anquan Zhiliang Jiance Xuebao2020112176847693
    [Google Scholar]
  111. LingpengP. JingzhuS. WeiL. EnqiW. YaqinL. Effect of water extracts from Cynanchum thesioides (Freyn) K. Schum. on visceral hypersensitivity and gut microbiota profile in maternally separated rats.J. Ethnopharmacol.202126411335210.1016/j.jep.2020.113352 32891821
    [Google Scholar]
  112. SharmaK. SahaiM. Chemical constituents of Zingiber officinale rhizome.J Med Plants Stud201861146149
    [Google Scholar]
  113. KumarG. KarthikL. RaoK.B. A review on pharmacological and phytochemical properties of Zingiber officinale Roscoe (Zingiberaceae).J. Pharm. Res.20114929632966
    [Google Scholar]
  114. ZhangC. HuangY. LiP. ChenX. LiuF. HouQ. Ginger relieves intestinal hypersensitivity of diarrhea predominant irritable bowel syndrome by inhibiting proinflammatory reaction.BMC Complementary Medicine and Therapie202020127910.1186/s12906‑020‑03059‑3 32928188
    [Google Scholar]
  115. WangX. ZhangP. ZhangX. Probiotics regulate gut microbiota: an effective method to improve immunity.Molecules20212619607610.3390/molecules26196076 34641619
    [Google Scholar]
  116. El-SaadonyM.T. AlagawanyM. PatraA.K. KarI. TiwariR. DawoodM.A.O. DhamaK. Abdel-LatifH.M.R. The functionality of probiotics in aquaculture: An overview.Fish Shellfish Immunol.2021117365210.1016/j.fsi.2021.07.007 34274422
    [Google Scholar]
  117. WenY. LiJ. LongQ. YueC. HeB. TangX. The efficacy and safety of probiotics for patients with constipation-predominant irritable bowel syndrome: A systematic review and meta-analysis based on seventeen randomized controlled trials.Int. J. Surg.20207911111910.1016/j.ijsu.2020.04.063 32387213
    [Google Scholar]
  118. Le Morvan de SequeiraC. KaeberM. CekinS.E. EnckP. MackI. The effect of probiotics on quality of life, depression and anxiety in patients with irritable bowel syndrome: A systematic review and meta-analysis.J. Clin. Med.20211016349710.3390/jcm10163497 34441793
    [Google Scholar]
  119. Rodiño-JaneiroB.K. VicarioM. Alonso-CotonerC. Pascua-GarcíaR. SantosJ. A review of microbiota and irritable bowel syndrome: future in therapies.Adv. Ther.201835328931010.1007/s12325‑018‑0673‑5 29498019
    [Google Scholar]
  120. Rodríguez-SojoM.J. Garcia-GarciaJ. Ruiz-MalagónA.J. Diez-EchaveP. Hidalgo-GarcíaL. Molina-TijerasJ.A. González-LozanoE. López-EscanezL. Rodríguez-CabezasM.E. Rodríguez-SánchezM.J. Rodríguez-NogalesA. MediavillaC. GalvezJ. Beneficial effects of Limosilactobacillus fermentum in the DCA experimental model of irritable bowel syndrome in rats.Nutrients20221512410.3390/nu15010024 36615683
    [Google Scholar]
  121. ChoiS.I. KimN. NamR.H. JangJ.Y. KimE.H. HaS. KangK. LeeW. ChoiH. KimY.R. SeokY.J. ShinC.M. LeeD.H. The protective effect of Roseburia faecis against repeated water avoidance stress-induced irritable bowel syndrome in a Wister rat model.J. Cancer Prev.20232839310510.15430/JCP.2023.28.3.93 37830115
    [Google Scholar]
  122. ZhangH. WangG. XiongZ. LiaoZ. QianY. SongX. SuiL. AiL. XiaY. Lactobacillus plantarum AR495 improves stress-induced irritable bowel syndrome in rats by targeting gut microbiota and Mast cell-PAR2-TRPV1 signaling pathway.Food Sci. Hum. Wellness202413269870810.26599/FSHW.2022.9250059
    [Google Scholar]
  123. JinX. HuY. LinT. GaoF. XuZ. HouX. YinY. KanS. ZhuH. ChenD. Selenium-enriched Bifidobacterium longum DD98 relieves irritable bowel syndrome induced by chronic unpredictable mild stress in mice.Food Funct.202314115355537410.1039/D2FO03408E 37212199
    [Google Scholar]
  124. ChooiY.C. DingC. MagkosF. The epidemiology of obesity.Metabolism20199261010.1016/j.metabol.2018.09.005 30253139
    [Google Scholar]
  125. LinX. LiH. Obesity: epidemiology, pathophysiology, and therapeutics.Front. Endocrinol.20211270697810.3389/fendo.2021.706978 34552557
    [Google Scholar]
  126. BlackC.J. StaudacherH.M. FordA.C. Efficacy of a low FODMAP diet in irritable bowel syndrome: systematic review and network meta-analysis.Gut20227161117112610.1136/gutjnl‑2021‑325214 34376515
    [Google Scholar]
  127. QuitadamoP. ZenzeriL. MozzilloE. CuccurulloI. RoccoA. FranzeseA. NardoneG. StaianoA. Gastric emptying time, esophageal pH-impedance parameters, quality of life, and gastrointestinal comorbidity in obese children and adolescents.J. Pediatr.2018194949910.1016/j.jpeds.2017.10.039 29229450
    [Google Scholar]
  128. Pickett-BlakelyO. Obesity and irritable bowel syndrome: a comprehensive review.Gastroenterol. Hepatol. (N. Y.)2014107411416 25904828
    [Google Scholar]
  129. KumbhareS.V. Francis-LyonP.A. KachruD. UdayT. IrudayanathanC. MuthukumarK.M. RicchettiR.R. Singh-RambiritchS. UgaldeJ. DulaiP.S. AlmonacidD.E. SinhaR. Digital therapeutics care utilizing genetic and gut microbiome signals for the management of functional gastrointestinal disorders: results from a preliminary retrospective study.Front. Microbiol.20221382691610.3389/fmicb.2022.826916 35391720
    [Google Scholar]
  130. YanpingW. GaoX. ChengY. LiuM. LiaoS. ZhouJ. HaoJ. JiangG. LuY. QuT. QinB. ChengY. The interaction between obesity and visceral hypersensitivity.J. Gastroenterol. Hepatol.202338337037710.1111/jgh.16083 36478286
    [Google Scholar]
  131. MirandaA. Visceral sensitivity.Pediatric neurogastroenterology: gastrointestinal motility disorders and disorders of gut brain interaction in children.ChamSpringer International Publishing20234359
    [Google Scholar]
  132. BehK.H. ChuahK.H. RappekN.A.M. MahadevaS. The association of body mass index with functional dyspepsia is independent of psychological morbidity: A cross-sectional study.PLoS One2021161e024551110.1371/journal.pone.0245511 33497382
    [Google Scholar]
  133. DongY. BerensS. EichW. SchaefertR. TesarzJ. Is body mass index associated with symptom severity and health-related quality of life in irritable bowel syndrome? A cross-sectional study.BMJ Open2018810e01945310.1136/bmjopen‑2017‑019453 30337304
    [Google Scholar]
  134. KawaiT. AutieriM.V. ScaliaR. Adipose tissue inflammation and metabolic dysfunction in obesity.Am. J. Physiol. Cell Physiol.20213203C375C39110.1152/ajpcell.00379.2020 33356944
    [Google Scholar]
/content/journals/npj/10.2174/0122103155307220240910042807
Loading
/content/journals/npj/10.2174/0122103155307220240910042807
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test