Skip to content
2000
Volume 15, Issue 8
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

This review explores the potential of natural products, particularly curcumin and gingerol, as immune regulators and anti-inflammatory agents in combating SARS-CoV-2 infections epigenetic and antioxidant mechanisms. Oxidative stress induced by coronavirus infections can trigger severe immune responses, such as cytokine storms, often leading to therapy failure. This oxidative stress is exacerbated by depleted antioxidant defenses. The review examines how natural ingredients activate endogenous antioxidants through pathways like nuclear factor erythroid 2-related factor 2 (Nrf-2) activation, leading to gene expression changes without altering DNA structure. These changes enhance cellular defenses against oxidative stress and reduce inflammation, potentially mitigating the virus's effects. The methodology involved a literature review of scientific articles from databases such as Google Scholar, Elsevier, Science Direct, Scopus, and Wiley Online Library, focusing on publications from 2010 to 2023. Data were analyzed using deductive qualitative descriptive techniques, emphasizing the role of natural compounds in activating antioxidant responses to prevent or minimize cellular damage caused by COVID-19. The review underscores the significant role of diet and nutritional intake in supporting the body's antioxidant capacity by activating specific receptors that influence gene expression related to immune responses and cellular repair mechanisms. Flavonoids and anthocyanins are highlighted as key compounds in natural products with therapeutic potential against COVID-19. Overall, this research advocates for further exploration of natural products as viable options for preventing and treating COVID-19, suggesting that these compounds offer dual benefits of antiviral activity and immune modulation through epigenetic regulation and antioxidant support.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155323496240902062427
2024-09-10
2025-09-06
Loading full text...

Full text loading...

References

  1. BaroneM. UcciferriC. CipolloneG. MucilliF. Recombinant human angiotensin-converting enzyme 2 and COVID-19 acute respiratory distress syndrome: A theoretical or a real resource?Eurasian J Med Oncol20204213914010.14744/ejmo.2020.47992
    [Google Scholar]
  2. V’kovskiP. KratzelA. SteinerS. StalderH. ThielV. Coronavirus biology and replication: implications for SARS-CoV-2.Nat. Rev. Microbiol.202119315517010.1038/s41579‑020‑00468‑633116300
    [Google Scholar]
  3. PalM. BerhanuG. DesalegnC. KandiV. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update.Cureus2020123e742310.7759/cureus.742332337143
    [Google Scholar]
  4. RenR.L. ZhangA.H. WangX.J. Traditional Chinese medicine for COVID-19 treatment.Pharmacol Res.2020155104743Erratum in: Pharmacol Res. 2020 May;155:104768.
    [Google Scholar]
  5. ChernyakB.V. PopovaE.N. PrikhodkoA.S. GrebenchikovO.A. ZinovkinaL.A. ZinovkinR.A. COVID-19 and Oxidative Stress.Biochemistry (Mosc.)20208512-131543155310.1134/S000629792012006833705292
    [Google Scholar]
  6. ZandiK. MusallK. OoA. CaoD. LiangB. HassandarvishP. LanS. SlackR.L. KirbyK.A. BassitL. AmblardF. KimB. AbuBakarS. SarafianosS.G. SchinaziR.F. Baicalein and Baicalin Inhibit SARS-CoV-2 RNA-Dependent-RNA Polymerase.Microorganisms20219589310.3390/microorganisms905089333921971
    [Google Scholar]
  7. IddirM. BritoA. DingeoG. Fernandez Del CampoS.S. SamoudaH. La FranoM.R. BohnT. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis.Nutrients2020126156210.3390/nu1206156232471251
    [Google Scholar]
  8. HalliwellB. GutteridgeJ.M.C. Free Radicals in Biology and Medicine5th edOxford Academic Press201510.1093/acprof:oso/9780198717478.001.0001
    [Google Scholar]
  9. AruomaO.I. Free radicals, oxidative stress, and antioxidants in human health and disease.J. Am. Oil Chem. Soc.199875219921210.1007/s11746‑998‑0032‑932287334
    [Google Scholar]
  10. TahsinM.R. SultanaA. Mohtasim KhanM.S. JahanI. MimS.R. TithiT.I. AnantaM.F. AfrinS. AliM. HussainM.S. ChowdhuryJ.A. KabirS. ChowdhuryA.A. AmranM.S. AktarF. An evaluation of pharmacological healing potentialities of Terminalia Arjuna against several ailments on experimental rat models with an in-silico approach.Heliyon2021711e0822510.1016/j.heliyon.2021.e0822534816025
    [Google Scholar]
  11. AlghamdiS.S. SulimanR.S. AljammazN.A. KahtaniK.M. AljatliD.A. AlbadraniG.M. Natural Products as Novel Neuroprotective Agents; Computational Predictions of the Molecular Targets, ADME Properties, and Safety Profile.Plants202211454910.3390/plants1104054935214883
    [Google Scholar]
  12. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  13. AkramM. RashidA. ZainabR. LailaU. KhalilM.T. AnwarH. ThotakuraN. RiazM. Application and Research of Natural Products in Modern Medical Treatment.Journal of Modern Pharmacology and Pathology2023861211110.53964/jmpp.2023007
    [Google Scholar]
  14. PéterB. BoldizsárI. KovácsG.M. ErdeiA. BajtayZ. VörösA. RamsdenJ.J. SzabóI. BőszeS. HorvathR. Natural Compounds as Target Biomolecules in Cellular Adhesion and Migration: From Biomolecular Stimulation to Label-Free Discovery and Bioactivity-Based Isolation.Biomedicines2021912178110.3390/biomedicines912178134944597
    [Google Scholar]
  15. BirdA. Perceptions of epigenetics.Nature2007447714339639810.1038/nature0591317522671
    [Google Scholar]
  16. CarswellG. ChamberlinJ. BennettB.D. BushelP.R. ChorleyB.N. Persistent gene expression and DNA methylation alterations linked to carcinogenic effects of dichloroacetic acid.Front. Oncol.202414May138963410.3389/fonc.2024.138963438764585
    [Google Scholar]
  17. GuM. RenB. FangY. RenJ. LiuX. WangX. ZhouF. XiaoR. LuoX. YouL. ZhaoY. Epigenetic regulation in cancer.MedComm202452e49510.1002/mco2.49538374872
    [Google Scholar]
  18. FengS. TangD. WangY. LiX. BaoH. TangC. DongX. LiX. YangQ. YanY. YinZ. ShangT. ZhengK. HuangX. WeiZ. WangK. QiS. The mechanism of ferroptosis and its related diseases.Molecular Biomedicine2023413310.1186/s43556‑023‑00142‑237840106
    [Google Scholar]
  19. WenJ. WuY. LuoQ. DNA methyltransferases‐associated long non‐coding RNA PRKCQ‐AS1 regulate DNA methylation in myelodysplastic syndrome.Int. J. Lab. Hematol.2024Aprijlh.1429710.1111/ijlh.1429738679027
    [Google Scholar]
  20. SuhailS. ZajacJ. FossumC. LowaterH. McCrackenC. SeversonN. LaatschB. Narkiewicz-JodkoA. JohnsonB. LiebauJ. BhattacharyyaS. HatiS. Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review.Protein J.202039664465610.1007/s10930‑020‑09935‑833106987
    [Google Scholar]
  21. LauxmannM.A. SantucciN.E. Autrán-GómezA.M. “The SARS-CoV-2 coronavirus and the COVID-19 outbreak,” Int. Braz J Urol, vol. 46, no. Suppl 1 2020 618
  22. RabiF.A. Al ZoubiM.S. KasasbehG.A. SalamehD.M. Al-NasserA.D. SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far.Pathogens20209323110.3390/pathogens903023132245083
    [Google Scholar]
  23. LiA. ShiW. WangJ. WangX. ZhangY. LeiZ. JiaoX.Y. The gene knockout of angiotensin II type 1a receptor improves high-fat diet-induced obesity in rat via promoting adipose lipolysis.PLoS One2022177e026733110.1371/journal.pone.026733135802723
    [Google Scholar]
  24. ShanM. LiS. ZhangY. ChenY. ZhouY. ShiL. Maternal exercise upregulates the DNA methylation of Agtr1a to enhance vascular function in offspring of hypertensive rats.Hypertens. Res.202346365466610.1038/s41440‑022‑01124‑736539461
    [Google Scholar]
  25. VickersC. HalesP. KaushikV. DickL. GavinJ. TangJ. GodboutK. ParsonsT. BaronasE. HsiehF. ActonS. PataneM. NicholsA. TumminoP. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase.J. Biol. Chem.200227717148381484310.1074/jbc.M20058120011815627
    [Google Scholar]
  26. ZhangH. PenningerJ.M. LiY. ZhongN. SlutskyA.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target.Intensive Care Med.202046458659010.1007/s00134‑020‑05985‑932125455
    [Google Scholar]
  27. NiW. YangX. YangD. BaoJ. LiR. XiaoY. HouC. WangH. LiuJ. YangD. XuY. CaoZ. GaoZ. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19.Crit. Care202024142210.1186/s13054‑020‑03120‑032660650
    [Google Scholar]
  28. PatelV.B. ZhongJ.C. GrantM.B. OuditG.Y. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure.Circ. Res.201611881313132610.1161/CIRCRESAHA.116.30770827081112
    [Google Scholar]
  29. ScialoF. DanieleA. AmatoF. PastoreL. MateraM.G. CazzolaM. CastaldoG. BiancoA. ACE2: The Major Cell Entry Receptor for SARS-CoV-2.Lung2020198686787710.1007/s00408‑020‑00408‑433170317
    [Google Scholar]
  30. WenC.C. ShyurL.F. JanJ.T. LiangP.H. KuoC.J. ArulselvanP. WuJ.B. KuoS.C. YangN.S. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication.J. Tradit. Complement. Med.201111415010.1016/S2225‑4110(16)30055‑424716104
    [Google Scholar]
  31. PandaK. AlagarasuK. PatilP. AgrawalM. MoreA. KumarN.V. MainkarP.S. ParasharD. CherianS. In vitro antiviral activity of α-mangostin against dengue virus serotype-2 (DENV-2).Molecules20212610301610.3390/molecules2610301634069351
    [Google Scholar]
  32. AgrawalP. K. AgrawalC. BlundenG. Pharmacological Significance of Hesperidin and Hesperetin, Two Citrus Flavonoids, as Promising Antiviral Compounds for Prophylaxis Against and Combating COVID-19. Nat. Prod. Commun.2021161010.1177/1934578X211042540
    [Google Scholar]
  33. JaliliM. PatiS. RathB. BjørklundG. SinghR.B. Effect of Diet and Nutrients on Molecular Mechanism of Gene Expression Mediated by Nuclear Receptor and Epigenetic Modulation.Open Nutraceuticals J.201361273410.2174/1876396001306010027
    [Google Scholar]
  34. KimJ. ChaY.N. SurhY.J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders.Mutat. Res.20106901-2122310.1016/j.mrfmmm.2009.09.00719799917
    [Google Scholar]
  35. HeS. OwenD.R. JelinskyS.A. LinL.L. Lysine Methyltransferase SETD7 (SET7/9) Regulates ROS Signaling through mitochondria and NFE2L2/ARE pathway.Sci. Rep.2015511436810.1038/srep1436826435321
    [Google Scholar]
  36. RuwaliP. RaiN. KumarN. GautamP. Antiviral Potential of Medicinal Plants: An Overview.INTERNATIONAL RESEARCH JOURNAL OF PHARMACY20134681610.7897/2230‑8407.04603
    [Google Scholar]
  37. BaqiH.R. FaragH.A.M. El BilbeisiA.H.H. AskandarR.H. El AfifiA.M. Oxidative stress and its association with COVID-19: A narrative review.Kurdistan J. Appl. Res2020May9710510.24017/covid.11
    [Google Scholar]
  38. ZakaryanH. ArabyanE. OoA. ZandiK. Flavonoids: promising natural compounds against viral infections.Arch. Virol.201716292539255110.1007/s00705‑017‑3417‑y28547385
    [Google Scholar]
  39. ChenY. GuoY. PanY. ZhaoZ.J. Structure analysis of the receptor binding of 2019-nCoV.Biochem. Biophys. Res. Commun.2020525113514010.1016/j.bbrc.2020.02.07132081428
    [Google Scholar]
  40. HuangS. LiuY. ZhangY. ZhangR. ZhuC. FanL. PeiG. ZhangB. ShiY. Baicalein inhibits SARS-CoV-2/VSV replication with interfering mitochondrial oxidative phosphorylation in a mPTP dependent manner.Signal Transduct. Target. Ther.20205126610.1038/s41392‑020‑00353‑x33188163
    [Google Scholar]
  41. LiuH. YeF. SunQ. LiangH. LiC. LiS. LuR. HuangB. TanW. LaiL. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro.J. Enzyme Inhib. Med. Chem.202136149750310.1080/14756366.2021.187397733491508
    [Google Scholar]
  42. GargA. GargS. ZaneveldL.J.D. SinglaA.K. Chemistry and pharmacology of the citrus bioflavonoid hesperidin.Phytother. Res.200115865566910.1002/ptr.107411746857
    [Google Scholar]
  43. ChengF.J. HuynhT.K. YangC.S. HuD.W. ShenY.C. TuC.Y. WuY.C. TangC.H. HuangW.C. ChenY. HoC.Y. Hesperidin Is a Potential Inhibitor against SARS-CoV-2 Infection.Nutrients2021138280010.3390/nu1308280034444960
    [Google Scholar]
  44. KandeilA. MostafaA. KutkatO. MoatasimY. Al-KarmalawyA.A. RashadA.A. KayedA.E. KayedA.E. El-SheshenyR. KayaliG. AliM.A. Bioactive Polyphenolic Compounds Showing Strong Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus 2.Pathogens202110675810.3390/pathogens1006075834203977
    [Google Scholar]
  45. MeneguzzoF. CiriminnaR. ZabiniF. PagliaroM. Review of Evidence Available on Hesperidin-Rich Products as Potential Tools against COVID-19 and Hydrodynamic Cavitation-Based Extraction as a Method of Increasing Their Production.Processes (Basel)20208554910.3390/pr8050549
    [Google Scholar]
  46. ChengL. ZhengW. LiM. HuangJ. BaoS. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2 These authors contributed equally to this study Corresponding : Dr. Zhaocheng Ma : [email protected]Preprints2020
    [Google Scholar]
  47. FantiniJ. Di ScalaC. ChahinianH. YahiN. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection.Int. J. Antimicrob. Agents202055510596010.1016/j.ijantimicag.2020.10596032251731
    [Google Scholar]
  48. CecílioA.B. FariaD.B. OliveiraP.C. CaldasS. OliveiraD.A. SobralM.E.G. DuarteM.G.R. MoreiraC.P.S. SilvaC.G. AlmeidaV.L. Screening of Brazilian medicinal plants for antiviral activity against rotavirus.J. Ethnopharmacol.2012141397598110.1016/j.jep.2012.03.03122469769
    [Google Scholar]
  49. Seidman-SorsbyA. Moscona-NissanA. Cruz-ZermeñoM. González-ChávezA. Dysentery as the First Manifestation of Severe COVID-19.Cureus20211312e2036810.7759/cureus.2036835036202
    [Google Scholar]
  50. SugiyantoZ. YohanB. HadisaputroS. DharmanaE. SuhartiC. Winarto DjamiatunK. RahmiF.L. SasmonoR.T. Inhibitory Effect of Alpha-Mangostin to Dengue Virus Replication and Cytokines Expression in Human Peripheral Blood Mononuclear Cells.Nat. Prod. Bioprospect.20199534534910.1007/s13659‑019‑00218‑z31538308
    [Google Scholar]
  51. MahmudS. PaulG.K. AfrozeM. IslamS. GuptS.B.R. RazuM.H. BiswasS. ZamanS. UddinM.S. KhanM. CacciolaN.A. EmranT.B. SalehM.A. CapassoR. Simal-GandaraJ. Efficacy of Phytochemicals Derived from Avicennia officinalis for the Management of COVID-19: A Combined in silico and Biochemical Study.Molecules2021268221010.3390/molecules2608221033921289
    [Google Scholar]
  52. ParkJ.Y. Jae JeongH. Hoon KimJ. Min KimY. ParkS.J. KimD. Hun ParkK. Song LeeW. Bae RyuY. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus.Biol. Pharm. Bull.201235112036204210.1248/bpb.b12‑0062322971649
    [Google Scholar]
  53. WangX. LinS. TangR.W.L. LeeH.C. ChanH.H. ChoiS.S.A. LeungK.W. WebbS.E. MillerA.L. TsimK.W.K. Polygoni multiflori radix extracts inhibit SARS-CoV-2 pseudovirus entry in HEK293T cells and zebrafish larvae.Phytomedicine2022102January15415410.1016/j.phymed.2022.15415435576740
    [Google Scholar]
  54. TitoA. ColantuonoA. PironeL. PedoneE. IntartagliaD. GiamundoG. ConteI. VitaglioneP. AponeF. Pomegranate Peel Extract as an Inhibitor of SARS-CoV-2 Spike Binding to Human ACE2 Receptor (in vitro): A Promising Source of Novel Antiviral Drugs.Front Chem.2021963818710.3389/fchem.2021.63818733996744
    [Google Scholar]
  55. AlexovaR. AlexandrovaS. DragomanovaS. KalfinR. SolakA. MehanS. PetraliaM.C. FagoneP. ManganoK. NicolettiF. TanchevaL. Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L.Molecules2023289377210.3390/molecules2809377237175181
    [Google Scholar]
  56. SuručićR. TravarM. PetkovićM. TubićB. StojiljkovićM.P. GrabežM. ŠavikinK. ZdunićG. ŠkrbićR. Pomegranate peel extract polyphenols attenuate the SARS-CoV-2 S-glycoprotein binding ability to ACE2 Receptor: In silico and in vitro studies.Bioorg. Chem.2021114May10514510.1016/j.bioorg.2021.10514534246969
    [Google Scholar]
  57. Sa-ngiamsuntornK. SuksatuA. PewkliangY. ThongsriP. KanjanasiriratP. ManopwisedjaroenS. CharoensutthivarakulS. WongtrakoongateP. PitipornS. ChaopreechaJ. KongsomrosS. JearawuttanakulK. WannaloW. KhemawootP. ChutipongtanateS. BorwornpinyoS. ThitithanyanontA. HongengS. Anti-SARS-CoV-2 Activity of Andrographis paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives.J. Nat. Prod.20218441261127010.1021/acs.jnatprod.0c0132433844528
    [Google Scholar]
  58. EnmozhiS.K. RajaK. SebastineI. JosephJ. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach.J. Biomol. Struct. Dyn.20203991710.1080/07391102.2020.176013632329419
    [Google Scholar]
  59. JoS. KimS. ShinD.H. KimM.S. Inhibition of SARS-CoV 3CL protease by flavonoids.J. Enzyme Inhib. Med. Chem.202035114515110.1080/14756366.2019.169048031724441
    [Google Scholar]
  60. MeiJ. ZhouY. YangX. ZhangF. LiuX. YuB. Active components in Ephedra sinica stapf disrupt the interaction between ACE2 and SARS-CoV-2 RBD: Potent COVID-19 therapeutic agents.J. Ethnopharmacol.2021278January11430310.1016/j.jep.2021.11430334102269
    [Google Scholar]
  61. GiordanoD. FacchianoA. CarboneV. Food plant secondary metabolites antiviral activity and their possible roles in SARS-cov-2 treatment: an overview.Molecules2023286247010.3390/molecules2806247036985442
    [Google Scholar]
  62. OwisA.I. El-HawaryM.S. El AmirD. AlyO.M. AbdelmohsenU.R. KamelM.S. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease.RSC Advances20201033195701957510.1039/D0RA03582C35515460
    [Google Scholar]
  63. YarmolinskyL. HuleihelM. ZaccaiM. Ben-ShabatS. Potent antiviral flavone glycosides from Ficus benjamina leaves.Fitoterapia201283236236710.1016/j.fitote.2011.11.01422155188
    [Google Scholar]
  64. ChaoI.C. WangC.M. LiS.P. LinL.G. YeW.C. ZhangQ.W. Simultaneous Quantification of Three Curcuminoids and Three Volatile Components of Curcuma longa Using Pressurized Liquid Extraction and High-Performance Liquid Chromatography.Molecules2018237156810.3390/molecules2307156829958431
    [Google Scholar]
  65. HalderP. PalU. PaladhiP. DuttaS. PaulP. PalS. DasD. GangulyA. DuttaI. MandalS. RayA. GhoshS. Evaluation of potency of the selected bioactive molecules from Indian medicinal plants with MPro of SARS-CoV-2 through in silico analysis.J. Ayurveda Integr. Med.202213210044910.1016/j.jaim.2021.05.00334054246
    [Google Scholar]
  66. GocA. SumeraW. RathM. NiedzwieckiA. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions.PLoS One2021166e025348910.1371/journal.pone.025348934138966
    [Google Scholar]
  67. GocA. RathM. NiedzwieckiA. Composition of naturally occurring compounds decreases activity of Omicron and SARS-CoV-2 RdRp complex.Eur. J. Microbiol. Immunol. (Bp.)2022122394510.1556/1886.2022.0000935895480
    [Google Scholar]
  68. ElsharkawyE. AlqurashiM. AlshathlyM. HuqA.K.M.M. Antiviral Activity of Curcuminoids Derived from Deverra tortuosa Plant. J. Food Biochem. 202420242024554887110.1155/2024/5548871
    [Google Scholar]
  69. DuR. CooperL. ChenZ. LeeH. RongL. CuiQ. Discovery of chebulagic acid and punicalagin as novel allosteric inhibitors of SARS-CoV-2 3CLpro.Antiviral Res.2021190January10507510.1016/j.antiviral.2021.10507533872675
    [Google Scholar]
  70. SuručićR. TubićB. StojiljkovićM.P. DjuricD.M. TravarM. GrabežM. ŠavikinK. ŠkrbićR. Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization.Mol. Cell. Biochem.202147621179119310.1007/s11010‑020‑03981‑733200379
    [Google Scholar]
  71. AbdizadehR. HadizadehF. AbdizadehT. In silico analysis and identification of antiviral coumarin derivatives against 3-chymotrypsin-like main protease of the novel coronavirus SARS-CoV-2.Mol. Divers.20222621053107610.1007/s11030‑021‑10230‑634213728
    [Google Scholar]
  72. ÖzdemirM. KöksoyB. CeyhanD. SayınK. ErçağE. BulutM. YalçınB. Design and in silico study of the novel coumarin derivatives against SARS-CoV-2 main enzymes.J. Biomol. Struct. Dyn.202240114905492010.1080/07391102.2020.186326333357038
    [Google Scholar]
  73. LinC.H. ChangH.J. LinM.W. YangX.R. LeeC.H. LinC.S. Inhibitory Efficacy of Main Components of Scutellaria baicalensis on the Interaction between Spike Protein of SARS-CoV-2 and Human Angiotensin-Converting Enzyme II.Int. J. Mol. Sci.2024255293510.3390/ijms2505293538474182
    [Google Scholar]
  74. ParaisoI.L. RevelJ.S. StevensJ.F. Potential use of polyphenols in the battle against COVID-19.Curr. Opin. Food Sci.20203214915510.1016/j.cofs.2020.08.00432923374
    [Google Scholar]
  75. ChenY. WangL. LiuX. WangF. AnY. ZhaoW. TianJ. KongD. ZhangW. XuY. BaY. ZhouH. The Genus Broussonetia: An Updated Review of Phytochemistry, Pharmacology and Applications.Molecules20222716534410.3390/molecules2716534436014582
    [Google Scholar]
/content/journals/npj/10.2174/0122103155323496240902062427
Loading
/content/journals/npj/10.2174/0122103155323496240902062427
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Antioxidant; epigenetic regulation; natural products; Nrf-2 activation; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test