Skip to content
2000
Volume 15, Issue 8
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

HIV/AIDS is one of the most widespread global diseases. It is caused by the human immunodeficiency virus (HIV), which leads to the development of acquired immunodeficiency syndrome (AIDS). In AIDS patients, the immune system progressively weakens, making them vulnerable to various infections and cancers. The virus can be transmitted through the exchange of bodily fluids such as blood, semen, vaginal fluid, and breast milk, where HIV can be found in both free virus particles and infected immune cells. Although drug resistance remains a challenge for HIV/AIDS treatment, researchers are exploring the use of natural substances in the development of anti-HIV drugs. Clinical trials based on plant-derived compounds are currently being conducted. Experimental research suggests that plants may have the potential to treat HIV. However, the identification of active compounds, testing of extracts, and creation of suitable bioassays are all complex processes. Natural product scientists face the challenge of separating these complicated extracts into their active components. Various phytochemicals found in Astragalus membranaceus Bunge, L, Combretum molle (R. Br. ex. G. Don.) Engl& Diels, (L.) Greuter, Helichrysum populifolium, (Masson) Sweet ex Decne, and Hypericumperf, have been investigated pharmacologically and pharmacokinetically. Further research is needed to optimize formulations and production in accordance with preclinical safety and efficacy studies.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155300377240831120327
2024-09-10
2025-09-03
Loading full text...

Full text loading...

References

  1. PathaniaS. RamakrishnanS.M. BaglerG. Phytochemica: A platform to explore phytochemicals of medicinal plants.Database20152015bav07510.1093/database/bav075 26255307
    [Google Scholar]
  2. ZhangY.J. GanR.Y. LiS. ZhouY. LiA.N. XuD.P. LiH.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases.Molecules20152012211382115610.3390/molecules201219753 26633317
    [Google Scholar]
  3. CorsonT.W. CrewsC.M. Molecular understanding and modern application of traditional medicines: Triumphs and trials.Cell2007130576977410.1016/j.cell.2007.08.021 17803898
    [Google Scholar]
  4. Castro-NallarE. Pérez-LosadaM. BurtonGF The evolution of HIV: Inferences using phylogenetics.Mol. Phylogenet. Evol.201262277779210.1016/j.ympev.2011.11.019
    [Google Scholar]
  5. AIDS and HIV infection: Information for United Nations employees and their families.1999Available from: https://www.unhcr.org/media/aids-and-hiv-infection-information-united-nations-employees-and-their-families
  6. AbbasiA.M. KhanM.A. ShahM.H. ShahM.M. PervezA. AhmadM. Ethnobotanical appraisal and cultural values of medicinally important wild edible vegetables of Lesser Himalayas-Pakistan.J. Ethnobiol. Ethnomed.2013916610.1186/1746‑4269‑9‑66 24034131
    [Google Scholar]
  7. AIDS monitoring 2021: Indicators for monitoring the 2016 United Nations political declaration on HIV and AIDS.2021Available from: https://www.unaids.org/sites/default/files/media_asset/global-aids-monitoring_en.pdf Accessed on 02-10-2022.
  8. MatthewsL.T. SmitJ.A. MooreL. MilfordC. GreenerR. MoseryF.N. RibaudoH. BennettK. CrankshawT.L. KaidaA. PsarosC. SafrenS.A. BangsbergD.R. Periconception HIV risk behavior among men and women reporting HIV-serodiscordant partners in KwaZulu-Natal, South Africa.AIDS Behav.201519122291230310.1007/s10461‑015‑1050‑x 26080688
    [Google Scholar]
  9. KellyJ.A. AmirkhanianY.A. The newest epidemic: A review of HIV/AIDS in Central and Eastern Europe.Int. J. STD AIDS200314636137110.1258/095646203765371231 12816662
    [Google Scholar]
  10. NaifH.M. Pathogenesis of HIV infection.Infect. Dis. Rep.2013511Suppl. 1e610.4081/idr.2013.s1.e6 24470970
    [Google Scholar]
  11. IV transmission, risk factors, and prevention, everyday health.2022Available from: https://www.everydayhealth.com/hiv/guide/transmission/ Accessed on 28-11-2022.
  12. AquaroS. BorrajoA. PellegrinoM. SvicherV. Mechanisms underlying of antiretroviral drugs in different cellular reservoirs with a focus on macrophages.Virulence202011140041310.1080/21505594.2020.1760443 32375558
    [Google Scholar]
  13. A, K.; S, C.; Rb, S.; H, V.; Ss, S.; A, G. A review on: HIV AIDS.Indian J. Pharm. Biol. Res.201643697310.30750/ijpbr.4.3.9
    [Google Scholar]
  14. GroceN.E. RohlederP. EideA.H. MacLachlanM. MallS. SwartzL. HIV issues and people with disabilities: A review and agenda for research.Soc. Sci. Med.201377314010.1016/j.socscimed.2012.10.024 23219851
    [Google Scholar]
  15. TripathiKD Essentials of Medical Pharmacology6th ed2008798810
    [Google Scholar]
  16. DwevediA. DwivediR. SharmaY. Exploration of phytochemicals found in Terminalia sp. and their antiretroviral activities.Pharmacogn. Rev.20161020738310.4103/0973‑7847.194048 28082788
    [Google Scholar]
  17. UckunF.M. ChelstromL.M. Tuel-AhlgrenL. DibirdikI. IrvinJ.D. LanglieM.C. MyersD.E. TXU (anti-CD7)-pokeweed antiviral protein as a potent inhibitor of human immunodeficiency virus.Antimicrob. Agents Chemother.199842238338810.1128/AAC.42.2.383 9527790
    [Google Scholar]
  18. SealA. AykkalR. GhoshM.G. GhoshM. Docking study of HIV-1 reverse transcriptase with phytochemicals.Bioinformation201151043043910.6026/97320630005430 21423889
    [Google Scholar]
  19. DouekD.C. RoedererM. KoupR.A. Emerging concepts in the immunopathogenesis of AIDS.Annu. Rev. Med.200960147148410.1146/annurev.med.60.041807.123549 18947296
    [Google Scholar]
  20. WeissR.A. How does HIV cause AIDS?Science199326051121273127910.1126/science.8493571 8493571
    [Google Scholar]
  21. SanjayK. Gene (HIV-1 protease) based drug (inhibitor) discovery.J. Adv. Bioinform. Appl. Res.20101172610.14302/issn.2324‑7339.jcrhap‑13‑edt.1.3
    [Google Scholar]
  22. RamalingamM. KarthikeyanS. Suresh KumarD. Docking studies of HIV-1 protease with phytochemicals from mappia foetida.Int. J. Comput. Appl.2012434162210.5120/6091‑8272
    [Google Scholar]
  23. SharmaB. Anti-HIV-1 drug toxicity and management strategies.Neurobehav. HIV Med.201132710.2147/NBHIV.S11748
    [Google Scholar]
  24. SharmaB. Attributes of host’s genetic factors in HIV-1 pathogenesis.Biochem. Anal. Biochem.2012144710.4172/2161‑1009.1000e109
    [Google Scholar]
  25. AsresK. SeyoumA. VeereshamC. BucarF. GibbonsS. Naturally derived anti‐HIV agents.Phytother. Res.200519755758110.1002/ptr.1629 16161055
    [Google Scholar]
  26. BeutlerJ.A. Natural products as a foundation for drug discovery.Curr. Protocols Pharmacol.200946111.12110.1002/0471141755.ph0911s46 20161632
    [Google Scholar]
  27. MaC. NakamuraN. MiyashiroH. HattoriM. KomatsuK. KawahataT. OtakeT. Screening of Chinese and Mongolian herbal drugs for anti‐human immunodeficiency virus type 1 (HIV‐1) activity.Phytother. Res.200216218618910.1002/ptr.922 11933126
    [Google Scholar]
  28. HelferM. KoppensteinerH. SchneiderM. RebensburgS. ForcisiS. MüllerC. Schmitt-KopplinP. SchindlerM. Brack-WernerR. The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor.PLoS One201491e8748710.1371/journal.pone.0087487 24489923
    [Google Scholar]
  29. KostovaI. Coumarins as inhibitors of HIV reverse transcriptase.Curr. HIV Res.20064334736310.2174/157016206777709393 16842086
    [Google Scholar]
  30. WangQ. DingZ. LiuJ. ZhengY. Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus.Antiviral Res.200464318919410.1016/S0166‑3542(04)00201‑3 15550272
    [Google Scholar]
  31. ChinsembuK.C. HedimbiM. Survey of plants with anti-HIV active compounds and their modes of action.Med. J. Zambia20093617818610.3390/ijms19051459
    [Google Scholar]
  32. MuleyB.P. KhadabadiS.S. BanaraseN.B. Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): A review.Trop. J. Pharm. Res.20098545546510.4314/tjpr.v8i5.48090
    [Google Scholar]
  33. AsresK. BucarF. Anti-HIV activity against immunodeficiency virus type 1 (HIV-I) and type II (HIV-II) of compounds isolated from the stem bark of Combretum molle.Ethiop. Med. J.20054311520 16370525
    [Google Scholar]
  34. GünthardH.F. SaagM.S. BensonC.A. del RioC. EronJ.J. GallantJ.E. HoyJ.F. MugaveroM.J. SaxP.E. ThompsonM.A. GandhiR.T. LandovitzR.J. SmithD.M. JacobsenD.M. VolberdingP.A. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2016 recommendations of the International Antiviral Society-USA panel.JAMA2016316219121010.1001/jama.2016.8900 27404187
    [Google Scholar]
  35. WuL. BaoJ. Anti-tumor and anti-viral activities of Galanthus nivalis agglutinin (GNA)-related lectins.Glycoconj. J.201330326927910.1007/s10719‑012‑9440‑z 22893111
    [Google Scholar]
  36. KapewangoloP. KnottM. ShithigonaR.E.K. UusikuS.L. Kandawa-SchulzM. In vitro anti-HIV and antioxidant activity of Hoodia gordonii (Apocynaceae), a commercial plant product.BMC Complement. Altern. Med.201616141110.1186/s12906‑016‑1403‑7 27776523
    [Google Scholar]
  37. ZhangH.J. Rumschlag-BoomsE. GuanY.F. WangD.Y. LiuK.L. LiW.F. NguyenV.H. CuongN.M. SoejartoD.D. FongH.H.S. RongL. Potent inhibitor of drug-resistant HIV-1 strains identified from the medicinal plant Justicia gendarussa.J. Nat. Prod.20178061798180710.1021/acs.jnatprod.7b00004 28613071
    [Google Scholar]
  38. BotY. MgbojikweL. NwosuC. Screening of the fruit pulp extract of Momordica balsamina for anti HIV property.Afr. J. Biotechnol.20076475210.4314/ajb.v6i1.56093
    [Google Scholar]
  39. EldeenI.M.S. SeowE-M. AbdullahR. SulaimanS.F. In vitro antibacterial, antioxidant, total phenolic contents and anti-HIV-1 reverse transcriptase activities of extracts of seven Phyllanthus sp.S. Afr. J. Bot.2011771757910.1016/j.sajb.2010.05.009
    [Google Scholar]
  40. a JiaY. WangL. LiJ. Astragalus membranaceus extract inhibits HIV-1 replication in vitro.J. Clin. Virol.201254214014610.3390/ijms19030800
    [Google Scholar]
  41. b DurazzoA. NazhandA. LucariniM. SilvaA.M. SoutoS.B. GuerraF. SeverinoP. ZaccardelliM. SoutoE.B. SantiniA. Astragalus (Astragalus membranaceus Bunge): Botanical, geographical, and historical aspects to pharmaceutical components and beneficial role.Rend. Lincei Sci. Fis. Nat.202132362564210.1007/s12210‑021‑01003‑2
    [Google Scholar]
  42. a GerenčerM. TurecekP.L. KistnerO. MittererA. In vitro anti-HIV activity of alkaloid extract from Chelidonium majus L.Antiviral Res.200672215315610.1016/j.antiviral.2006.03.008 16647765
    [Google Scholar]
  43. b ZielińskaS. Jezierska-DomaradzkaA. Wójciak-KosiorM. SowaI. JunkaA. MatkowskiA.M. Greater celandine’s ups and downs−21 centuries of medicinal uses of Chelidonium majus from the viewpoint of today’s pharmacology.Front. Pharmacol.2018929910.3389/fphar.2018.00299 29713277
    [Google Scholar]
  44. UkwuaniA.N. JimohA.A. Anti-retroviral effects of methanol extract of Combretum molle stem bark.Asian Pac. J. Trop. Biomed.20122970470710.1016/j.vetpar.2011.12.022
    [Google Scholar]
  45. BorgesA.R. WieczorekL. JohnsonB. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1.Virology201140818010.1016/j.virol.2010.09.004
    [Google Scholar]
  46. a TshibanguK.C. WorkuZ.B. De JonghM.A. Van WykA.E. MokwenaS.O. PeranovicV. Assessment of effectiveness of traditional herbal medicine in managing HIV/AIDS patients in South Africa.East Afr. Med. J.2004811049950410.4314/eamj.v81i10.9231 15715126
    [Google Scholar]
  47. b MaroyiA. Helichrysum cymosum (l.) D.don (asteraceae): Medicinal uses, chemistry, and biological activities.Asian J. Pharm. Clin. Res.201912192610.22159/ajpcr.2019.v12i7.33771
    [Google Scholar]
  48. a KlosM. van de VenterM. MilneP.J. TraoreH.N. MeyerD. OosthuizenV. In vitro anti-HIV activity of five selected South African medicinal plant extracts.J. Ethnopharmacol.2009124218218810.1016/j.jep.2009.04.043 19409474
    [Google Scholar]
  49. b BondeA.R. PinjariR.M. Hoodia Gordonii a herbal plant: A review.Int. J. Rural Dev. Environ. Health Res.2023798
    [Google Scholar]
  50. a SannaC. ScognamiglioM. Fiorentino, A Prenylated phloroglucinols from Hypericum scruglii, an endemic species of Sardinia (Italy), as new dual HIV-1 inhibitors effective on HIV-1 replication.PLoS One201811910.1371/journal.pone.0195168
    [Google Scholar]
  51. b VelingkarV.S. GuptaG.L. HegdeN.B. A current update on phytochemistry, pharmacology and herb–drug interactions of Hypericum perforatum.Phytochem. Rev.201716472574410.1007/s11101‑017‑9503‑7
    [Google Scholar]
  52. a TahirM. KhushtarM. FahadM. Phytochemistry and pharmacological profile of traditionally used medicinal plant Hyssop (Hyssopus officinalis L.).J. Appl. Pharm. Sci.20188713214010.7324/JAPS.2018.8721
    [Google Scholar]
  53. b FathiazadF. HamedeyazdanS. A review on Hyssopus officinalis L.: Composition and biological activities.Afr. J. Pharm. Pharmacol.201151959
    [Google Scholar]
  54. a WiartC. KumarK. YusofM.Y. Bitter Gourd (Momordica charantia) is a cornucopia of health: A review of its credited antidiabetic, anti-hiv, and antitumor properties.Curr. Mol. Med.20172019910910.2174/156652411795976583
    [Google Scholar]
  55. b AgrawalM. TyagiT. Therapeutic efficacy of Centella asiatica (L.) and Momordica charantia: As traditional medicinal plant.J. Plant Sci.2015319
    [Google Scholar]
  56. EspositoF. CarliI. Del VecchioC. XuL. CoronaA. GrandiN. PianoD. MaccioniE. DistintoS. ParolinC. TramontanoE. Sennoside A, derived from the traditional chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication.Phytomedicine201623121383139110.1016/j.phymed.2016.08.001 27765358
    [Google Scholar]
  57. OguntibejuO.O. MeyerS. AbouaY.G. Hypoxis hemerocallidea significantly reduced hyperglycaemia and hyperglycaemic-induced oxidative stress in the liver and kidney tissues of streptozotocin-induced diabetic male wistar rats.Evid. Based Complement. Alternat. Med.2016893436210.1155/2016/8934362
    [Google Scholar]
  58. MillsE. CooperC. SeelyD. KanferI. African herbal medicines in the treatment of HIV: Hypoxis and Sutherlandia. An overview of evidence and pharmacology.Nutr. J.2005411910.1186/1475‑2891‑4‑19 15927053
    [Google Scholar]
  59. van der KooyF. Reverse pharmacology and drug discovery: Artemisia annua and its anti-HIV activity. In: Artemisia annua - Pharmacology and Biotechnology. AftabT. FerreiraJ. KhanM. NaeemM. Berlin, HeidelbergSpringer201410.1007/978‑3‑642‑41027‑7_14
    [Google Scholar]
  60. KashmanY. GustafsonK.R. FullerR.W. CardellinaJ.H.II McMahonJ.B. CurrensM.J. BuckheitR.W.Jr HughesS.H. CraggG.M. BoydM.R. HIV inhibitory natural products. Part 7. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum.J. Med. Chem.199235152735274310.1021/jm00093a004 1379639
    [Google Scholar]
  61. GerenčerM. TurecekP.L. KistnerO. MittererA. Savidis-DachoH. BarrettN.P. In vitro and in vivo anti-retroviral activity of the substance purified from the aqueous extract of Chelidonium majus L.Antiviral Res.200672215315610.1016/j.antiviral.2006.03.008 16647765
    [Google Scholar]
  62. ZhaoY. HuaC. ShaY. WuP.Q. LiuQ.F. LuL. ZhouB. JiangS. FanY.Y. YueJ.M. Diterpenoids from Euphorbia lactea and their anti-HIV-1 activity.Phytochemistry202321311374510.1016/j.phytochem.2023.113745 37277012
    [Google Scholar]
  63. TerefeE.M. OkaleboF.A. DereseS. MuriukiJ. Mas-ClaretE. LangatM.K. Anti-HIV crotocascarin ω from Kenyan Croton dichogamus.Nat. Prod. Res.202337172809281610.1080/14786419.2022.2134998 36278900
    [Google Scholar]
  64. DingK. WuZ.Y. ZhangN. HeJ. ZhangF. WuJ.J. BaiH.J. ZhangW.K. LiL. XuJ.K. StelleratenoidsA.F. Stelleratenoids A−F, macrocyclic daphnane orthoesters with anti-HIV activity from the roots of Stellera chamaejasme L.Phytochemistry202321011364810.1016/j.phytochem.2023.113648 36963707
    [Google Scholar]
  65. UdomputtimekakulP. PompimonW. ChainokK. JiajaroenS. MeepowpanP. TataS. TasitP. RithchumponP. NuntasaenN. Krabasinolide A with anti-HIVs activity from the leaves and twigs of Croton krabas.J. Asian Nat. Prod. Res.202224876176810.1080/10286020.2021.1972979 34592877
    [Google Scholar]
  66. LiuY.P. GuoJ.M. XieZ. SuoX.Y. LiuZ.Y. QiaoZ.H. GuanR.Q. BianY. QiangL. FuY.H. Clausanisumine, a prenylated bicarbazole alkaloid from the fruits of Clausena anisum-olens and its potential anti-hiv activity.J. Org. Chem.20218624177221772610.1021/acs.joc.1c02020 34817178
    [Google Scholar]
  67. RakshitS. MoreA. GaikwadS. SeniyaC. GadeA. MuleyV.Y. MukherjeeA. KambleK. Role of diosgenin extracted from Helicteres isora L in suppression of HIV-1 replication: An in vitro preclinical study.Heliyon2024102e2435010.1016/j.heliyon.2024.e24350 38288021
    [Google Scholar]
  68. Al-MasriA.A. Identification of phytoconstituents from Albizia lebbeck as potential therapeutics against HIV-1 reverse transcriptase associated with infective endocarditis: In silico and in vitro approaches.Saudi J. Biol. Sci.202330910375110.1016/j.sjbs.2023.103751 37593463
    [Google Scholar]
  69. FobofouS.A.T. FrankeK. BrandtW. ManzinA. MadedduS. SerreliG. SannaG. WessjohannL.A. Bichromonol, a dimeric coumarin with anti-HIV activity from the stem bark of Hypericum roeperianum.Nat. Prod. Res.202337121947195310.1080/14786419.2022.2110094 35959682
    [Google Scholar]
  70. ZhaoY.Y. LiY.J. YuX.M. SuQ.T. WangL.W. ZhuY.S. FuY.H. ChenG.Y. LiuY.P. Bisabolane-type sesquiterpenoids with potential anti-inflammatory and anti-HIV activities from the stems and leaves of Morinda citrifolia.Nat. Prod. Res.202337121961196810.1080/14786419.2022.2112577 35975763
    [Google Scholar]
  71. ZhouY.Q. LiS.M. WeiX. YangX. XiaoJ.W. PanB.W. XieS.X. ZhouY. YangJ. WeiY. Identification and quantitative analysis of bioactive components from Potentilla kleiniana Wight et Arn with anti HIV-1 proteases activity.Nat. Prod. Res.202337234028403110.1080/14786419.2022.2162513 36584286
    [Google Scholar]
  72. ZhangH. CaiJ. LiC. DengL. ZhuH. HuangT. ZhaoJ. ZhouJ. DengK. HongZ. XiaJ. Wogonin inhibits latent HIV-1 reactivation by downregulating histone crotonylation.Phytomedicine202311615485510.1016/j.phymed.2023.154855 37172478
    [Google Scholar]
  73. SillapachaiyapornC. RangsinthP. NilkhetS. MoungkoteN. ChuchawankulS. HIV-1 protease and reverse transcriptase inhibitory activities of curcuma aeruginosa roxb. rhizome extracts and the phytochemical profile analysis: In vitro and in silico screening.Pharmaceuticals20211411111510.3390/ph14111115 34832897
    [Google Scholar]
  74. OtsukiK. ZhangM. KikuchiT. TsujiM. TejimaM. BaiZ.S. ZhouD. HuangL. ChenC.H. LeeK.H. LiN. KoikeK. LiW. Identification of anti-HIV macrocyclic daphnane orthoesters from Wikstroemia ligustrina by LC–MS analysis and phytochemical investigation.J. Nat. Med.20217541058106610.1007/s11418‑021‑01551‑9 34287744
    [Google Scholar]
  75. SillapachaiyapornC. NilkhetS. UngA.T. ChuchawankulS. Anti-HIV-1 protease activity of the crude extracts and isolated compounds from Auricularia polytricha.BMC Complement. Altern. Med.201919135110.1186/s12906‑019‑2766‑3 31805905
    [Google Scholar]
  76. GuzzoF. RussoR. SannaC. CelajO. CareddaA. CoronaA. TramontanoE. FiorentinoA. EspositoF. D’AbroscaB. Chemical characterization and anti-HIV-1 activity assessment of iridoids and flavonols from Scrophularia trifoliata.Molecules20212616477710.3390/molecules26164777 34443358
    [Google Scholar]
  77. ZhouD. OtsukiK. ZhangM. ChenG. BaiZ.S. YuH. KikuchiT. HuangL. ChenC.H. LiW. LiN. Anti-HIV tigliane-type diterpenoids from the aerial parts of Wikstroemia lichiangensis.J. Nat. Prod.20228561658166410.1021/acs.jnatprod.1c01195 35698995
    [Google Scholar]
  78. Emamzadeh YazdiS. HeymanH.M. PrinslooG. KlimkaitT. MeyerJ.J.M. Identification of anti-HIV biomarkers of Helichrysum species by NMR-based metabolomic analysis.Front. Pharmacol.20221390423110.3389/fphar.2022.904231 35935828
    [Google Scholar]
  79. SannaC. D’AbroscaB. FiorentinoA. GiammarinoF. VicentiI. CoronaA. CareddaA. TramontanoE. EspositoF. HIV-1 integrase inhibition activity by spiroketals derived from plagius flosculosus, an endemic plant of sardinia (Italy) and corsica (France).Pharmaceuticals2023168111810.3390/ph16081118 37631033
    [Google Scholar]
  80. MaiaC.M.A. PasettoS. SilvaJ.P.R. TavaresJ.F. CostaE.M.M.B. MurataR.M. Anandenanthera colubrina (Vell.) Brenan as an inhibitor of HIV-1 BaL infection.Nat. Prod. Res.20223661621162510.1080/14786419.2021.1892097 33729064
    [Google Scholar]
  81. ThongphichaiW. TuchindaP. PohmakotrM. ReutrakulV. AkkarawongsapatR. NapaswadC. LimthongkulJ. JenjittikulT. SaithongS. Anti-HIV-1 activities of constituents from the rhizomes of Boesenbergia thorelii.Fitoterapia201913910438810.1016/j.fitote.2019.104388 31655087
    [Google Scholar]
  82. OmoruyiB.E. IghodaroD.I. AfolayanA.J. BradleyG. Inhibition of HIV-1 protease by Carpobrotus edulis (L.).Evid. Based Complement. Alternat. Med.2020202011410.1155/2020/9648056 32595755
    [Google Scholar]
  83. MoeT.S. ChaturonrutsameeS. BunteangS. KuhakarnC. PrabpaiS. SurawatanawongP. ChairoungduaA. SuksenK. AkkarawongsapatR. LimthongkulJ. NapaswadC. NuntasaenN. ReutrakulV. Boesenmaxane diterpenoids from Boesenbergia maxwellii.J. Nat. Prod.202184251852610.1021/acs.jnatprod.0c00629 33372792
    [Google Scholar]
  84. SistaniP. DehghanG. SadeghiL. Structural and kinetic insights into HIV-1 reverse transcriptase inhibition by farnesiferol C.Int. J. Biol. Macromol.202117430931810.1016/j.ijbiomac.2021.01.173 33524481
    [Google Scholar]
  85. BektaşE. SahinH. BeldüzA.O. GülerH.İ. HIV‐1‐RT inhibition activity of Satureja spicigera (C.KOCH) BOISS. Aqueous extract and docking studies of phenolic compounds identified by RP‐HPLC‐DAD.J. Food Biochem.2022464e1392110.1111/jfbc.13921 34477237
    [Google Scholar]
  86. TaddeoV.A. NúñezM.J. BeltránM. CastilloU.G. MenjívarJ. JiménezI.A. AlcamíJ. BedoyaL.M. BazzocchiI.L. Withanolide-type steroids from Physalis nicandroides inhibit HIV transcription.J. Nat. Prod.202184102717272610.1021/acs.jnatprod.1c00637 34549952
    [Google Scholar]
  87. TaoL. ZhuoY.T. QiaoZ.H. LiJ. TangH.X. YuQ.M. LiuY.Y. LiuY.P. Prenylated coumarins from the fruits of Artocarpus heterophyllus with their potential anti-inflammatory and anti-HIV activities.Nat. Prod. Res.202236102526253310.1080/14786419.2021.1913590 33949253
    [Google Scholar]
  88. LiuY.P. YanG. XieY.T. LinT.C. ZhangW. LiJ. WuY.J. ZhouJ.Y. FuY.H. Bioactive prenylated coumarins as potential anti-inflammatory and anti-HIV agents from Clausena lenis.Bioorg. Chem.20209710369910.1016/j.bioorg.2020.103699 32146173
    [Google Scholar]
  89. MessiA.N. BonnetS.L. OwonaB.A. WilhelmA. KamtoE.L.D. NdongoJ.T. Siwe-NoundouX. PokaM. DemanaP.H. KrauseR.W.M. Ngo MbingJ. PegnyembD.E. BochetC.G. In vitro and in silico potential inhibitory effects of new biflavonoids from Ochna rhizomatosa on HIV-1 integrase and plasmodium falciparum.Pharmaceutics2022148170110.3390/pharmaceutics14081701 36015326
    [Google Scholar]
  90. a KemboiD. Siwe-NoundouX. KrauseR.W.M. LangatM.K. TembuV.J. Euphorbia diterpenes: An update of isolation, structure, pharmacological activities and structure–activity relationship.Molecules20212616505510.3390/molecules26165055 34443641
    [Google Scholar]
  91. b Popović-DjordjevićJ. QuispeC. GiordoR. KostićA. Katanić StankovićJS FokouPVT CarboneK. MartorellM. KumarM. PintusG. Sharifi-RadJ. DoceaAO Calina, D Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs.Eur. J. Med. Chem.202223311421710.1016/j.ejmech.2022.114217
    [Google Scholar]
  92. a MomohM.A. MuhamedU. AgbokeA.A. AkpabioE.I. OsonwaU.E. Immunological effect of aqueous extract of Vernonia amygdalina and a known immune booster called immunace® and their admixtures on HIV/AIDS clients: A comparative study.Asian Pac. J. Trop. Biomed.20122318118410.1016/S2221‑1691(12)60038‑0 23569894
    [Google Scholar]
  93. b EvbuomwanL. ChukwukaE.P. ObazenuE.I. IlevbareL. Antibacterial activity of Vernonia amygdalina leaf extracts against multidrug resistant bacterial isolates.J. Appl. Sci. Environ. Manag.20182211710.4314/jasem.v22i1.4
    [Google Scholar]
  94. a MaP. ZhangX.Y. XuL.J. WangZ. XiaoP.G. [Spectrum-effect relationship between anti-HIV 1 activities and ultra-performance liquid chromatography fingerprints of Rheum speciesZhongguo Zhongyao Zazhi2013381524342437 24228530
    [Google Scholar]
  95. b LeJ. JiH. ZhouX. WeiX. ChenY. FuY. MaY. HanQ. SunY. GaoY. WuH. Pharmacology, toxicology, and metabolism of sennoside A, A medicinal plant-derived natural compound.Front. Pharmacol.20211271458610.3389/fphar.2021.714586 34764866
    [Google Scholar]
  96. a ParkI.W. HanC. SongX. GreenL.A. WangT. LiuY. CenC. SongX. YangB. ChenG. HeJ.J. Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants.BMC Complement. Altern. Med.2009912910.1186/1472‑6882‑9‑29 19656383
    [Google Scholar]
  97. b XuJ.B. YueJ.M. Recent studies on the chemical constituents of Trigonostemon plants.Org. Chem. Front.20141101225125210.1039/C4QO00161C
    [Google Scholar]
  98. MatyangaC.M.J. MorseG.D. GundidzaM. NhachiC.F.B. African potato (Hypoxis hemerocallidea): A systematic review of its chemistry, pharmacology and ethno medicinal properties.BMC Complement. Med. Ther.202020118210.1186/s12906‑020‑02956‑x 32527245
    [Google Scholar]
  99. WilsonD. GogginK. WilliamsK. GerkovichM.M. GqaleniN. SyceJ. BartmanP. JohnsonQ. FolkW.R. Consumption of Sutherlandiafrutescens by HIV-seropositive South African adults: An adaptive double-blind randomized placebo controlled trial.PLoS One2015107e012852210.1371/journal.pone.0128522 26186450
    [Google Scholar]
  100. BrendlerT. van WykB.E. A historical, scientific and commercial perspective on the medicinal use of Pelargonium sidoides (Geraniaceae).J. Ethnopharmacol.2008119342043310.1016/j.jep.2008.07.037 18725280
    [Google Scholar]
  101. a TwinomujuniS.S. AtukundaE.C. MukonzoJ.K. Evaluation of the effect of Artemisia Annua L. and Moringa Oleifera Lam. on CD4 count and viral load among PLWH on HAART at Mbarara regional referral hospital: A double-blind randomized controlled clinical trial.Research Square202210.21203/rs.3.rs‑2201463/v1
    [Google Scholar]
  102. b DasS. Artemisia annua (Qinghao).Pharmacol. Rev.201234573
    [Google Scholar]
  103. a KalvatchevZ. WalderR. GarzaroD. Anti-HIV activity of extracts from Calendula officinalis flowers.Biomed. Pharmacother.199751417618010.1016/S0753‑3322(97)85587‑4 9207986
    [Google Scholar]
  104. b VermaPK RainaR. AgarwalS. KourH. Phytochemical ingredients and pharmacological potential of Calendula officinalis Linn.Pharm. Biomed. Res.20184117
    [Google Scholar]
  105. (a ZhengY. YangX.W. ScholsD. MoriM. BottaB. ChevignéA. MulingeM. SteinmetzA. SchmitJ.C. Seguin-DevauxC. Active components from Cassia abbreviata prevent HIV-1 entry by distinct mechanisms of action.Int. J. Mol. Sci.2021229505210.3390/ijms22095052 34068829
    [Google Scholar]
  106. (bi, N.; Mafoko, B.J. Cassia abbreviata Oliv. A review of its ethnomedicinal uses, toxicology, phytochemistry, possible propagation techniques and pharmacology.Afr. J. Pharm. Pharmacol.20137452901290610.5897/AJPP12.1017
    [Google Scholar]
  107. Rilpivirine.2023Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Rilpivirine
  108. HIV A6 Genome In ART Unsuccessful Patients On DOR (HIV-A6-DOR). C.N. Patent NCT05322083,2022
    [Google Scholar]
  109. Pilot study with isentress (Raltegravir) and epzicom (Abacavir/ Lamivudine) in treatment naive HIV-infected subjects (SHIELD). C.N. Patent NCT00740064,2009
    [Google Scholar]
  110. Observational study in patients with hiv infection type 1 after switching to a viramune®-containing therapy regimen. C.N. Patent NCT021913322014
    [Google Scholar]
  111. Effect of vicriviroc on HIV ribonucleic acid (RNA) levels in cerebrospinal fluid (Study P05241). C.N. Patent NCT006320732015
    [Google Scholar]
/content/journals/npj/10.2174/0122103155300377240831120327
Loading
/content/journals/npj/10.2174/0122103155300377240831120327
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AIDS; HIV; mechanism; pharmacophore; phytochemicals; potency
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test