Skip to content
2000
Volume 15, Issue 8
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

A lot of interest has been shown in edible films and coatings made from homo- and heteropolysaccharides as environmentally friendly substitutes for food packaging and preservation. This review delves into the various uses, characteristics, and working principles that underpin these biopolymer-based materials' ability to prolong food products' shelf lives and preserve their quality. Clarified are the structure-function correlations of a variety of polysaccharides, such as starch, chitosan, cellulose, and their blends, emphasizing their potential as barrier coverings against microbial, oxygen, and moisture contamination. Additionally, the addition of bioactive substances and nanomaterials to these films is covered, with a focus on how these materials improve the films' mechanical, antioxidant, and antibacterial qualities. The paper also discusses future options for research and case studies of these biopolymer-based systems. All things considered, the application of edible films and coatings based on homo- and heteropolysaccharide biopolymers offers viable options for environmentally friendly food packaging that preserves food quality and safety while lowering environmental impact. The need for this review arises from the growing demand for sustainable, environment-friendly alternatives to traditional plastic packaging.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155327879240903102010
2024-09-12
2025-10-29
Loading full text...

Full text loading...

References

  1. MarshK. BugusuB. Food packaging--roles, materials, and environmental issues.J. Food Sci.2007723R39R5510.1111/j.1750‑3841.2007.00301.x17995809
    [Google Scholar]
  2. PiergiovanniL LimboS PiergiovanniL LimboS Introduction to food packaging materials.Food packaging materials.Springer20161310.1007/978‑3‑319‑24732‑8_1
    [Google Scholar]
  3. KimYT MinB KimKW General characteristics of packaging materials for the food system.InInnovations in food packaging Academic Press.20141335
    [Google Scholar]
  4. KimYT WangH MinB Testing of physical, optical, electrical, thermal, and rheological properties for plastic packaging materials.Food Packaging MaterialsCRC Press201767102
    [Google Scholar]
  5. HosenM.D. HossainM.S. IslamM.A. HaqueA.N.M.A. NaebeM. Utilisation of natural wastes: Water-resistant semi-transparent paper for food packaging.J. Clean. Prod.202236413266510.1016/j.jclepro.2022.132665
    [Google Scholar]
  6. SørensenG. HoffmannJ. Moisture sorption in moulded fibre trays and effect on static compression strength.Packag. Technol. Sci.200316415916910.1002/pts.622
    [Google Scholar]
  7. SørensenG. RisboJ. Characterization of moulded‐fibre packaging with respect to water vapour sorption and permeation at different combinations of internal and external humidity.Packag. Technol. Sci.2005182596910.1002/pts.673
    [Google Scholar]
  8. BourtoomT. Edible films and coatings: characteristics and properties.Int. Food Res. J.2008153237248
    [Google Scholar]
  9. GennadiosA. HannaM.A. KurthL.B. Application of edible coatings on meats, poultry, and seafood: A review.Lebensm. Wiss. Technol.199730433735010.1006/fstl.1996.0202
    [Google Scholar]
  10. AnsorenaMR PeredaM MarcovichNE Edible films.Polymers for food applicationsSpringer201852410.1007/978‑3‑319‑94625‑2_2
    [Google Scholar]
  11. MohammedA.S.A. NaveedM. JostN. Polysaccharides; Classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities).J. Polym. Environ.20212982359237110.1007/s10924‑021‑02052‑233526994
    [Google Scholar]
  12. DelgadoLL MasuelliM Polysaccharides: Concepts and classification.Evolution Polym. Technol. J.201922
    [Google Scholar]
  13. GuerreiroA.C. GagoC.M.L. FaleiroM.L. MiguelM.G.C. AntunesM.D.C. The use of polysaccharide-based edible coatings enriched with essential oils to improve shelf-life of strawberries.Postharvest Biol. Technol.2015110516010.1016/j.postharvbio.2015.06.019
    [Google Scholar]
  14. AltafA. UsmaniZ. DarA.H. DashK.K. A comprehensive review of polysaccharide-based bionanocomposites for food packaging applications.Discover Food2022211010.1007/s44187‑022‑00011‑x
    [Google Scholar]
  15. KociraA. KozłowiczK. PanasiewiczK. StaniakM. Szpunar-KrokE. HortyńskaP. Polysaccharides as edible films and coatings: Characteristics and influence on fruit and vegetable quality—A review.Agronomy202111581310.3390/agronomy11050813
    [Google Scholar]
  16. KhanGM HasanMS RahamanMH AydidA RahmanMM HasanuzzamanM JahanR Jannat-Al-FoisalM Cellulose and its composites in textiles and food industry.Regenerated Cellulose and Composites: Morphology-Property RelationshipSpringer Nature SingaporeSingapore202322326410.1007/978‑981‑99‑1655‑9_9
    [Google Scholar]
  17. HaghighiH. GulloM. La ChinaS. PfeiferF. SieslerH.W. LicciardelloF. PulvirentiA. Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications.Food Hydrocoll.202111310645410.1016/j.foodhyd.2020.106454
    [Google Scholar]
  18. ZhangY. WangD. ChenY. LiuT. ZhangS. FanH. LiuH. LiY. Healthy function and high valued utilization of edible fungi.Food Sci. Hum. Wellness202110440842010.1016/j.fshw.2021.04.003
    [Google Scholar]
  19. LiS. JasimA. ZhaoW. FuL. UllahM.W. ShiZ. YangG. Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system.ES Materials & Manufacturing2018128414910.30919/esmm5f120
    [Google Scholar]
  20. HeX. LuW. SunC. KhalesiH. MataA. AndaleebR. FangY. Cellulose and cellulose derivatives: Different colloidal states and food-related applications.Carbohydr. Polym.202125511733410.1016/j.carbpol.2020.11733433436177
    [Google Scholar]
  21. CazónP. VelazquezG. RamírezJ.A. VázquezM. Polysaccharide-based films and coatings for food packaging: A review.Food Hydrocoll.20176813614810.1016/j.foodhyd.2016.09.009
    [Google Scholar]
  22. LudwickaK. KaczmarekM. BiałkowskaA. Bacterial nanocellulose—A biobased polymer for active and intelligent food packaging applications: Recent advances and developments.Polymers20201210220910.3390/polym1210220932993082
    [Google Scholar]
  23. YildirimS. Active packaging for food biopreservation.Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation,Woodhead Publishing201146048910.1533/9780857090522.3.460
    [Google Scholar]
  24. GuanQ.F. YangH.B. HanZ.M. LingZ.C. YuS.H. An all-natural bioinspired structural material for plastic replacement.Nat. Commun.2020111540110.1038/s41467‑020‑19174‑133144561
    [Google Scholar]
  25. LiuC. LuanP. LiQ. ChengZ. SunX. CaoD. ZhuH. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative.Matter2020362066207910.1016/j.matt.2020.10.004
    [Google Scholar]
  26. GuanQ.F. LingZ.C. HanZ.M. YangH.B. YuS.H. Ultra-strong, ultra-tough, transparent, and sustainable nanocomposite films for plastic substitute.Matter2020341308131710.1016/j.matt.2020.07.014
    [Google Scholar]
  27. XiaQ. ChenC. YaoY. LiJ. HeS. ZhouY. LiT. PanX. YaoY. HuL. A strong, biodegradable and recyclable lignocellulosic bioplastic.Nat. Sustain.20214762763510.1038/s41893‑021‑00702‑w
    [Google Scholar]
  28. SaediS. GarciaC.V. KimJ.T. ShinG.H. Physical and chemical modifications of cellulose fibers for food packaging applications.Cellulose202128148877889710.1007/s10570‑021‑04086‑0
    [Google Scholar]
  29. EzatiP. RhimJ.W. MolaeiR. PriyadarshiR. HanS. Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit.Postharvest Biol. Technol.202218611184510.1016/j.postharvbio.2022.111845
    [Google Scholar]
  30. MoghimiR. AliahmadiA. RafatiH. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging.Carbohydr. Polym.201717524124810.1016/j.carbpol.2017.07.08628917862
    [Google Scholar]
  31. YantiN.A. AhmadS.W. RamadhanL.O.A.N. Jamili Muzuni WalhidayahT. MamangkeyJ. Properties and application of edible modified bacterial cellulose film based sago liquid waste as food packaging.Polymers20211320357010.3390/polym1320357034685329
    [Google Scholar]
  32. AmorosoL. De FranceK.J. MilzC.I. SiqueiraG. ZimmermannT. NyströmG. Sustainable cellulose nanofiber films from carrot pomace as sprayable coatings for food packaging applications.ACS Sustain. Chem.& Eng.202210134235210.1021/acssuschemeng.1c06345
    [Google Scholar]
  33. LiuZ. LinD. Lopez-SanchezP. YangX. Characterizations of bacterial cellulose nanofibers reinforced edible films based on konjac glucomannan.Int. J. Biol. Macromol.202014563464510.1016/j.ijbiomac.2019.12.10931857167
    [Google Scholar]
  34. KolybabaM. TabilL.G. PanigrahiS. CrerarW.J. PowellT. WangB. Biodegradable polymers: Past, present, and future. InASABE/CSBE north central intersectional meeting.American Society of Agricultural and Biological Engineers20061
    [Google Scholar]
  35. Sadeghizadeh-YazdiJ HabibiM KamaliAA BanaeiM Application of edible and biodegradable starch-based films in food packaging: A systematic review and meta-analysis.Curr. Res. Nutr. Food Sci. J.20197362463710.12944/CRNFSJ.7.3.03
    [Google Scholar]
  36. ColussiR do NascimentoLÁ SinghJ Potential use of starch from different sources in the preparation of mucoadhesive films.Revista CIATEC – UPF202113119
    [Google Scholar]
  37. ShahU. NaqashF. GaniA. MasoodiF.A. Art and science behind modified starch edible films and coatings: A review.Compr. Rev. Food Sci. Food Saf.201615356858010.1111/1541‑4337.1219733401817
    [Google Scholar]
  38. SusmithaA. SasikumarK. RajanD. Padmakumar MA. NampoothiriK.M. Development and characterization of corn starch-gelatin based edible films incorporated with mango and pineapple for active packaging.Food Biosci.20214110097710.1016/j.fbio.2021.100977
    [Google Scholar]
  39. YaoX. QinY. ZhangM. ZhangJ. QianC. LiuJ. Development of active and smart packaging films based on starch, polyvinyl alcohol and betacyanins from different plant sources.Int. J. Biol. Macromol.202118335836810.1016/j.ijbiomac.2021.04.15233930449
    [Google Scholar]
  40. ChenH. AleeM. ChenY. ZhouY. YangM. AliA. LiuH. ChenL. YuL. Developing edible starch film used for packaging seasonings in instant noodles.Foods20211012310510.3390/foods1012310534945656
    [Google Scholar]
  41. NagarM. SharanagatV.S. KumarY. SinghL. Development and characterization of elephant foot yam starch–hydrocolloids based edible packaging film: Physical, optical, thermal and barrier properties.J. Food Sci. Technol.20205741331134110.1007/s13197‑019‑04167‑w32180629
    [Google Scholar]
  42. EmbuscadoME HuberKC Edible films and coatings for food applications.SpringerNew York, NY, USA2009
    [Google Scholar]
  43. LópezO.V. LecotC.J. ZaritzkyN.E. GarcíaM.A. Biodegradable packages development from starch based heat sealable films.J. Food Eng.2011105225426310.1016/j.jfoodeng.2011.02.029
    [Google Scholar]
  44. LópezO.V. GarcíaM.A. ZaritzkyN.E. Film forming capacity of chemically modified corn starches.Carbohydr. Polym.200873457358110.1016/j.carbpol.2007.12.02326048223
    [Google Scholar]
  45. VersinoF. GarcíaM.A. Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler.Ind. Crops Prod.20145830531410.1016/j.indcrop.2014.04.040
    [Google Scholar]
  46. LópezO.V. GarcíaM.A. Starch films from a novel (Pachyrhizus ahipa) and conventional sources: Development and characterization.Mater. Sci. Eng. C20123271931194010.1016/j.msec.2012.05.03534062678
    [Google Scholar]
  47. CuqB. GontardN. GuilbertS. Proteins as agricultural polymers for packaging production.Cereal Chem.19987511910.1094/CCHEM.1998.75.1.1
    [Google Scholar]
  48. LiJ. YeF. LiuJ. ZhaoG. Effects of octenylsuccination on physical, mechanical and moisture-proof properties of stretchable sweet potato starch film.Food Hydrocoll.20154622623210.1016/j.foodhyd.2014.12.017
    [Google Scholar]
  49. VásconezM.B. FloresS.K. CamposC.A. AlvaradoJ. GerschensonL.N. Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings.Food Res. Int.200942776276910.1016/j.foodres.2009.02.026
    [Google Scholar]
  50. MazerollesT. HeuzeyM.C. SolimanM. MartensH. KleppingerR. HuneaultM.A. Development of multilayer barrier films of thermoplastic starch and low-density polyethylene.J. Polym. Res.20202724410.1007/s10965‑020‑2015‑y
    [Google Scholar]
  51. ArvanitoyannisI. BiliaderisC.G. OgawaH. KawasakiN. Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: Part 1.Carbohydr. Polym.1998362-38910410.1016/S0144‑8617(98)00016‑2
    [Google Scholar]
  52. LiQ DunnET GrandmaisonEW GoosenMF Applications and properties of chitosan.Applications of Chitin and ChitosanCRC Press202032910.1201/9781003072812‑2
    [Google Scholar]
  53. Lizardi-MendozaJ MonalWM ValenciaFM Chemical characteristics and functional properties of chitosan.Chitosan in the Preservation of Agricultural CommoditiesAcademic Press201633110.1016/B978‑0‑12‑802735‑6.00001‑X
    [Google Scholar]
  54. PriyadarshiR. RhimJ.W. Chitosan-based biodegradable functional films for food packaging applications.Innov. Food Sci. Emerg. Technol.20206210234610.1016/j.ifset.2020.102346
    [Google Scholar]
  55. vA.K. HasanM. MangarajS. MP. VermaD.K. SrivastavP.P. Trends in edible packaging films and its prospective future in food: A review.Applied Food Research20222110011810.1016/j.afres.2022.100118
    [Google Scholar]
  56. NguyenT.T. Thi DaoU.T. Thi BuiQ.P. BachG.L. Ha ThucC.N. Ha ThucH. Enhanced antimicrobial activities and physiochemical properties of edible film based on chitosan incorporated with Sonneratia caseolaris (L.) Engl. leaf extract.Prog. Org. Coat.202014010548710.1016/j.porgcoat.2019.105487
    [Google Scholar]
  57. TokatlıK. DemirdövenA. Effects of chitosan edible film coatings on the physicochemical and microbiological qualities of sweet cherry (Prunus avium L.).Sci. Hortic.202025910865610.1016/j.scienta.2019.108656
    [Google Scholar]
  58. HuW. SarengaowaS. FengK. Effect of edible coating on the quality and antioxidant enzymatic activity of postharvest sweet cherry (Prunus avium L.) during storage.Coatings202212558110.3390/coatings12050581
    [Google Scholar]
  59. DuttaP.K. TripathiS. MehrotraG.K. DuttaJ. Perspectives for chitosan based antimicrobial films in food applications.Food Chem.200911441173118210.1016/j.foodchem.2008.11.047
    [Google Scholar]
  60. SorrentinoA. GorrasiG. VittoriaV. Potential perspectives of bio-nanocomposites for food packaging applications.Trends Food Sci. Technol.2007182849510.1016/j.tifs.2006.09.004
    [Google Scholar]
  61. AranazI. MengíbarM. HarrisR. PañosI. MirallesB. AcostaN. GaledG. HerasÁ. Functional characterization of chitin and chitosan.Curr. Chem. Biol.200932203230
    [Google Scholar]
  62. ComaV. Bioactive packaging technologies for extended shelf life of meat-based products.Meat Sci.2008781-29010310.1016/j.meatsci.2007.07.03522062099
    [Google Scholar]
  63. ElsabeeM.Z. AbdouE.S. Chitosan based edible films and coatings: A review.Mater. Sci. Eng. C20133341819184110.1016/j.msec.2013.01.01023498203
    [Google Scholar]
  64. CazónP. VázquezM. Mechanical and barrier properties of chitosan combined with other components as food packaging film.Environ. Chem. Lett.202018225726710.1007/s10311‑019‑00936‑3
    [Google Scholar]
  65. AiderM. Chitosan application for active bio-based films production and potential in the food industry: Review.Lebensm. Wiss. Technol.201043683784210.1016/j.lwt.2010.01.021
    [Google Scholar]
  66. HaghighiH. LicciardelloF. FavaP. SieslerH.W. PulvirentiA. Recent advances on chitosan-based films for sustainable food packaging applications.Food Packag. Shelf Life20202610055110.1016/j.fpsl.2020.100551
    [Google Scholar]
  67. VelickovaE. WinkelhausenE. KuzmanovaS. AlvesV.D. Moldão-MartinsM. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions.Lebensm. Wiss. Technol.2013522809210.1016/j.lwt.2013.02.004
    [Google Scholar]
  68. CuiH. YuanL. LiW. LinL. Edible film incorporated with chitosan and Artemisia annua oil nanoliposomes for inactivation of Escherichia coli O157:H7 on cherry tomato.Int. J. Food Sci. Technol.201752368769810.1111/ijfs.13322
    [Google Scholar]
  69. DoğanG. İzciL. Effects on quality properties of smoked rainbow trout ( Oncorhynchus mykiss ) fillets of chitosan films enriched with essential oils.J. Food Process. Preserv.2017411e1275710.1111/jfpp.12757
    [Google Scholar]
  70. FerreiraL.F. de AbreuG.F. LagoA.M.T. FigueiredoL.P. BorémF.M. MartinsM.A. BorgesS.V. DiasM.V. Development and application of biopolymer coatings to specialty green coffee beans: Influence on water content, color and sensory quality.Lebensm. Wiss. Technol.20189627428010.1016/j.lwt.2018.05.037
    [Google Scholar]
  71. PriyadarshiR. Sauraj KumarB. NegiY.S. Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life.Carbohydr. Polym.201819532933810.1016/j.carbpol.2018.04.08929804984
    [Google Scholar]
  72. LekjingS. A chitosan-based coating with or without clove oil extends the shelf life of cooked pork sausages in refrigerated storage.Meat Sci.201611119219710.1016/j.meatsci.2015.10.00326473294
    [Google Scholar]
  73. PitakN. RakshitS.K. Physical and antimicrobial properties of banana flour/chitosan biodegradable and self sealing films used for preserving Fresh-cut vegetables.Lebensm. Wiss. Technol.201144102310231510.1016/j.lwt.2011.05.024
    [Google Scholar]
  74. LecetaI. MolinaroS. GuerreroP. KerryJ.P. de la CabaK. Quality attributes of map packaged ready-to-eat baby carrots by using chitosan-based coatings.Postharvest Biol. Technol.201510014215010.1016/j.postharvbio.2014.09.022
    [Google Scholar]
  75. MohammadiA. HashemiM. HosseiniS.M. Postharvest treatment of nanochitosan-based coating loaded with Zataria multiflora essential oil improves antioxidant activity and extends shelf-life of cucumber.Innov. Food Sci. Emerg. Technol.20163358058810.1016/j.ifset.2015.10.015
    [Google Scholar]
  76. DuanJ. ParkS.I. DaeschelM.A. ZhaoY. Antimicrobial chitosan-lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese.J. Food Sci.2007729M355M36210.1111/j.1750‑3841.2007.00556.x18034728
    [Google Scholar]
  77. SouzaB.W.S. CerqueiraM.A. RuizH.A. MartinsJ.T. CasariegoA. TeixeiraJ.A. VicenteA.A. Effect of chitosan-based coatings on the shelf life of salmon (Salmo salar).J. Agric. Food Chem.20105821114561146210.1021/jf102366k20936790
    [Google Scholar]
  78. DjiouaT. CharlesF. FreireM.Jr FilgueirasH. Ducamp-CollinM.N. SallanonH. Combined effects of postharvest heat treatment and chitosan coating on quality of fresh‐cut mangoes ( Mangifera indica L. ).Int. J. Food Sci. Technol.201045484985510.1111/j.1365‑2621.2010.02209.x
    [Google Scholar]
  79. EleftheriadouM. PyrgiotakisG. DemokritouP. Nanotechnology to the rescue: Using nano-enabled approaches in microbiological food safety and quality.Curr. Opin. Biotechnol.201744879310.1016/j.copbio.2016.11.01227992831
    [Google Scholar]
  80. MostafaviF.S. ZaeimD. Agar-based edible films for food packaging applications - A review.Int. J. Biol. Macromol.20201591165117610.1016/j.ijbiomac.2020.05.12332442572
    [Google Scholar]
  81. RoyS. ChawlaR. SanthoshR. ThakurR. SarkarP. ZhangW. Agar-based edible films and food packaging application: A comprehensive review.Trends Food Sci. Technol.202314110419810.1016/j.tifs.2023.104198
    [Google Scholar]
  82. AmarieiS. UrsachiF. PetraruA. Development of new biodegradable agar-alginate membranes for food packaging.Membranes202212657610.3390/membranes1206057635736285
    [Google Scholar]
  83. MalagurskiI. LevicS. NesicA. MitricM. PavlovicV. Dimitrijevic-BrankovicS. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties.Carbohydr. Polym.2017175556210.1016/j.carbpol.2017.07.06428917900
    [Google Scholar]
  84. IsıkI. YenipazarH. SaygunA. Sahin YesilcubukN. Ozkan ZayimE. Catalgil GizH. Aloe vera oil-added agar gelatin edible films for kashar cheese packaging.ACS Omega2023821185161852210.1021/acsomega.3c0014737273584
    [Google Scholar]
  85. PanK. ZhongQ. Organic nanoparticles in foods: Fabrication, characterization, and utilization.Annu. Rev. Food Sci. Technol.20167124526610.1146/annurev‑food‑041715‑03321526735797
    [Google Scholar]
  86. CerqueiraM.A. CostaM.J. FuciñosC. PastranaL.M. VicenteA.A. Development of active and nanotechnology-based smart edible packaging systems: physical-chemical characterization.Food Bioprocess Technol.2014751472148210.1007/s11947‑013‑1117‑5
    [Google Scholar]
  87. CerqueiraMA VicenteAA PastranaLM Nanotechnology in food packaging: Opportunities and challenges.Nanomaterials for Food PackagingElsevier,201811110.1016/B978‑0‑323‑51271‑8.00001‑2
    [Google Scholar]
  88. KatiyarV. GhoshT. Nanotechnology in edible food packaging.SingaporeSpringer202110.1007/978‑981‑33‑6169‑0
    [Google Scholar]
  89. AlizadehZ. YousefiS. AhariH. Optimization of bioactive preservative coatings of starch nanocrystal and ultrasonic extract of sour lemon peel on chicken fillets.Int. J. Food Microbiol.2019300314210.1016/j.ijfoodmicro.2019.04.00231005779
    [Google Scholar]
  90. RoyK. ThoryR. SinhmarA. PatheraA.K. NainV. Development and characterization of nano starch-based composite films from mung bean (Vigna radiata).Int. J. Biol. Macromol.202014424225110.1016/j.ijbiomac.2019.12.11331846657
    [Google Scholar]
  91. CondésM.C. AñónM.C. MauriA.N. DufresneA. Amaranth protein films reinforced with maize starch nanocrystals.Food Hydrocoll.20154714615710.1016/j.foodhyd.2015.01.026
    [Google Scholar]
  92. ShiA. WangL. LiD. AdhikariB. Characterization of starch films containing starch nanoparticles.Carbohydr. Polym.201396259360110.1016/j.carbpol.2012.12.04223768605
    [Google Scholar]
  93. OliveiraA.V. da SilvaA.P. BarrosM.O. Nanocomposite films from mango kernel or corn starch with starch nanocrystals.Stärke20187011-12180002810.1002/star.201800028
    [Google Scholar]
  94. WangH. QianJ. DingF. Emerging chitosan-based films for food packaging applications.J. Agric. Food Chem.201866239541310.1021/acs.jafc.7b0452829257871
    [Google Scholar]
  95. de Oliveira FilhoJ.G. AlbieroB.R. CiprianoL. de Oliveira Nobre BezerraC.C. OldoniF.C.A. EgeaM.B. de AzeredoH.M.C. FerreiraM.D. Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils: A new functional material for food packaging applications.Cellulose202128106499651110.1007/s10570‑021‑03945‑0
    [Google Scholar]
  96. EfthymiouM.N. TsoukoE. PapagiannopoulosA. AthanasouliaI.G. GeorgiadouM. PispasS. BriassoulisD. TsironiT. KoutinasA. Development of biodegradable films using sunflower protein isolates and bacterial nanocellulose as innovative food packaging materials for fresh fruit preservation.Sci. Rep.2022121693510.1038/s41598‑022‑10913‑635484184
    [Google Scholar]
  97. Mohammadi sadatiS.M. Shahgholian-GhahfarrokhiN. ShahrousvandE. Mohammadi-RovshandehJ. ShahrousvandM. Edible chitosan/cellulose nanofiber nanocomposite films for potential use as food packaging.Mater. Technol.202237101276128810.1080/10667857.2021.1934367
    [Google Scholar]
  98. VianaR.M. SáN.M.S.M. BarrosM.O. BorgesM.F. AzeredoH.M.C. Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees.Carbohydr. Polym.2018196273210.1016/j.carbpol.2018.05.01729891296
    [Google Scholar]
  99. CaoL. GeT. MengF. XuS. LiJ. WangL. An edible oil packaging film with improved barrier properties and heat sealability from cassia gum incorporating carboxylated cellulose nano crystal whisker.Food Hydrocoll.20209810525110.1016/j.foodhyd.2019.105251
    [Google Scholar]
  100. WangW. ChenQ. ChenG. ShiY. LiX. XiongJ. LiY. Preparation and characterizations of apple pomace polyphenols modified cellulose/starch edible packaging films. Advances in Graphic Communication, Printing and Packaging Technology and Materials.Proceedings of 2020 11th China Academic Conference on Printing and Packaging, Springer, Singapore, 26 May 2021, pp 681–691.
    [Google Scholar]
  101. MileL NursyamH SetijawatiD SulistiyatiTD Effect of nano chitosan concentration and storage temperature on the physical characteristics of edible films of black mangrove starch-chitosan.Scientific J. Fish. Mar.2024161
    [Google Scholar]
  102. NgoT.M.P. NguyenT.H. DangT.M.Q. TranT.X. RachtanapunP. Characteristics and antimicrobial properties of active edible films based on pectin and nano chitosan.Int. J. Mol. Sci.2020216222410.3390/ijms2106222432210135
    [Google Scholar]
  103. ZhaoR. GuanW. ZhengP. TianF. ZhangZ. SunZ. CaiL. Development of edible composite film based on chitosan nanoparticles and their application in packaging of fresh red sea bream fillets.Food Control202213210854510.1016/j.foodcont.2021.108545
    [Google Scholar]
  104. LinD. ZhengY. HuangY. NiL. ZhaoJ. HuangC. ChenX. ChenX. WuZ. WuD. ChenH. ZhangQ. QinW. XingB. Investigation of the structural, physical properties, antioxidant, and antimicrobial activity of chitosan- nano-silicon aerogel composite edible films incorporated with okara powder.Carbohydr. Polym.202025011684210.1016/j.carbpol.2020.11684233049811
    [Google Scholar]
  105. SolihatI SetyawatiSR SulistiawatyL KhoirurrizalMF Synthesis and characterization of nano chitosan-avocado seed starch as edible films.Jurnal Kimia Riset202381
    [Google Scholar]
  106. HuangY. GuC. HeS. ZhuD. LiuX. ChenZ. Development and characterization of an edible chitosan–whey protein nano composite film for chestnut ( Castanea mollissima Bl.) preservation.J. Food Sci.20208572114212310.1111/1750‑3841.1517432519374
    [Google Scholar]
  107. TapilatuY. NugraheniP.S. GinzelT. LatumahinaM. LimmonG.V. BudhijantoW. Nano-chitosan utilization for fresh yellowfin tuna preservation.Aquat. Procedia2016728529510.1016/j.aqpro.2016.07.040
    [Google Scholar]
  108. MustafaM.A. AliA. ManickamS. Application of a chitosan-based nanoparticle formulation as an edible coating for tomatoes (Solanum lycopersicum L.).Acta Horticulturae10121012445452
    [Google Scholar]
  109. CuiB. FangY. GuoL. YuB. YuanC. ZouY. Methods for preparing food packaging films with antibacterial activity, and applications thereof.Patent AU2019271993B2,2019
  110. LanhaiL. MingM. Contains the edible film, edible film and preparation method thereof of nano-cellulose.Patent CN103254469B,2013
  111. Cristian TAPIA VILLANEUVA Edible bio-active films based on chitosan or a mixture of quinoa protein-chitosan; sheets having chitosan-tripolyphosphate-thymol nanoparticles; production method; bio-packaging comprising same; and use thereof in fresh fruit with a low ph.Patent US20190281845A1,2019
  112. ZhaoY. Nano-cellulose edible coatings and uses thereof.Patent US10400128B2,2015
  113. XieJ. TangZ. ChenC. WangJ. ZhangY. Method for use in preparing intelligent chromogenic antibacterial anti-oxidation protective film.Patent EP3428222B1,2017
  114. WangL. ChaoJ. LuL. ZhaoY. ZhangJ. ZhengQ. Potato starch-based edible composite food packaging film and preparation method thereof.Patent CN102702579B,2012
  115. ZhanH. ChenW. Gelatin-chitosan composite food packaging film and preparation method thereof.Patent CN101955670B,2010
  116. LiM.C. GuoD. JiminL.W. Edible collagen food packaging film and preparation method thereof.Patent CN102093722B,2011
  117. LuW.L. LixinL.H. Edible polysaccharide-protein composite packaging film and preparation method thereof.Patent CN101811596B,2009
  118. JiangF. ManX. YanW. NiX. Preparation method of complex polysaccharide film.Patent CN103601905B,2013
  119. SridharA. PonnuchamyM. KumarP.S. KapoorA. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: A review.Environ. Chem. Lett.20211921715173510.1007/s10311‑020‑01126‑233192209
    [Google Scholar]
  120. EzeohaS.L. EzenwanneJ.N. Production of biodegradable plastic packaging film from cassava starch.IOSR J. Eng.2013310142010.9790/3021‑031051420
    [Google Scholar]
  121. HamannD. PutonB.M.S. ColetR. SteffensJ. CeniG.C. CansianR.L. BackesG.T. Active edible films for application in meat products.Research, Society and Development2021107e1361071637910.33448/rsd‑v10i7.16379
    [Google Scholar]
  122. Díaz-MontesE. Castro-MuñozR. Edible films and coatings as food-quality preservers: An overview.Foods202110224910.3390/foods1002024933530469
    [Google Scholar]
  123. PriyaK ThirunavookarasuN ChidanandDV Recent advances in edible coating of food products and its legislations: A review.J. Agric. Food Res.202310062310.1016/j.jafr.2023.100623
    [Google Scholar]
  124. Senturk ParreidtT. MüllerK. SchmidM. Alginate-based edible films and coatings for food packaging applications.Foods201871017010.3390/foods710017030336642
    [Google Scholar]
  125. BhatiaL. JhaH. SarkarT. SarangiP.K. Food waste utilization for reducing carbon footprints towards sustainable and cleaner environment: A review.Int. J. Environ. Res. Public Health2023203231810.3390/ijerph2003231836767685
    [Google Scholar]
/content/journals/npj/10.2174/0122103155327879240903102010
Loading
/content/journals/npj/10.2174/0122103155327879240903102010
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test