Skip to content
2000
Volume 15, Issue 7
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

The prevalence of parasites in Thailand, primarily transmitted through contaminated vegetables, poses a significant public health concern. Ensuring the safety of natural produce from both parasites and chemical residues necessitates robust sanitation measures.

Objective

This study aims to develop effective vegetable-washing solutions using papaya seed extract with potent anti-parasitic properties contamination in fresh vegetables.

Methods

Fresh vegetables contaminated with larvae, , and spp. eggs were subjected to various treatments: distilled water, tap water, vinegar (5%), papaya seeds extract (200 mg/L), lauryl glucoside (1%) from coconut oil, papaya seeds extract combined with lauryl glucoside, and Albendazole as a standard drug. Immersion for 5 minutes was followed by parasite observation using the sedimentation method over 60 minutes, examining inhibitory effects on parasite larvae movement.

Results

Papaya seed extract achieved the most rapid cessation within 10 minutes for larvae movement, followed by vinegar and papaya seed extract combined with lauryl glucoside. Furthermore, papaya seed extract combined with lauryl glucoside exhibited the highest efficacy in the sedimentation larval and parasite eggs, followed by lauryl glucoside solution and papaya seed extract, surpassing the control group.

Conclusion

Papaya seeds extract immobilized larvae, while lauryl glucoside effectively eliminated parasite eggs from vegetables. Natural and organic compounds derived from papaya and coconut oil exhibit inherent diversification in their properties. These compounds originate from natural sources, showcasing distinct characteristics attributed to their organic nature. These results indicate the potential for developing natural extract-based products as future vegetable-washing solutions, emphasizing their significance against parasitic efficacy.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155322731240822075823
2024-09-02
2025-10-13
Loading full text...

Full text loading...

References

  1. BogitshB.J. CarterC.E. OeltmannT.N. Human parasitology.4th edTennesseeAcademic Press201344810.1016/B978‑0‑12‑415915‑0.00001‑7
    [Google Scholar]
  2. KrainaraS. ThummajitsakulS. PanthongV. DitthakesornT. SuwanklangM. KosuwinR. Detection of parasitic contamination and coliform bacteria in vegetables from ongkharak market in nakhon nayok province.Dis. Control J.202210.14456/dcj.2022.52
    [Google Scholar]
  3. PrawitthanaS. NatreewaranatS. Parasitic contamination of raw vegetables in 4 markets of Phitsanulok province.Forensic Med. J.201358993
    [Google Scholar]
  4. UlukanligilM. SeyrekA. AslanG. OzbilgeH. AtayS. Environmental pollution with soil-transmitted helminths in Sanliurfa, Turkey.Mem. Inst. Oswaldo Cruz200196790390910.1590/S0074‑02762001000700004 11685253
    [Google Scholar]
  5. AktarW. SenguptaD. ChowdhuryA. Impact of pesticides use in agriculture: Their benefits and hazards.Interdiscip. Toxicol.20092111210.2478/v10102‑009‑0001‑7 21217838
    [Google Scholar]
  6. TandonV. YadavA.K. RoyB. DasB. Phytochemicals as cure of worm infections in traditional medicine systems.Emerging trends in zoology. SrivastavaU.C. KumarS. New DelhiNarendra Publishing2011351378
    [Google Scholar]
  7. SodeifianG. SajadianS.A. Investigation of essential oil extraction and antioxidant activity of Echinophora platyloba DC. using supercritical carbon dioxide.J. Supercrit. Fluids2017121526210.1016/j.supflu.2016.11.014
    [Google Scholar]
  8. SodeifianG. AziziJ. GhoreishiS.M. Response surface optimization of Smyrnium cordifolium Boiss (SCB) oil extraction via supercritical carbon dioxide.J. Supercrit. Fluids2014951710.1016/j.supflu.2014.07.023
    [Google Scholar]
  9. SodeifianG. GhorbandoostS. SajadianS.A. Saadati ArdestaniN. Extraction of oil from Pistacia khinjuk using supercritical carbon dioxide: Experimental and modeling.J. Supercrit. Fluids201611026527410.1016/j.supflu.2015.12.004
    [Google Scholar]
  10. SodeifianG. UsefiM.M.B. Solubility, extraction, and nanoparticles production in supercritical carbon dioxide: A mini‐review.ChemBioEng Rev.202310213316610.1002/cben.202200020
    [Google Scholar]
  11. SodeifianG. SajadianS.A. Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC).J. Supercrit. Fluids2018133123925210.1016/j.supflu.2017.10.015
    [Google Scholar]
  12. RazmimaneshF. SodeifianG. SajadianS.A. An investigation into Sunitinib malate nanoparticle production by US- RESOLV method: Effect of type of polymer on dissolution rate and particle size distribution.J. Supercrit. Fluids202117010516310.1016/j.supflu.2021.105163
    [Google Scholar]
  13. AmeriA. SodeifianG. SajadianS.A. Lansoprazole loading of polymers by supercritical carbon dioxide impregnation: Impacts of process parameters.J. Supercrit. Fluids202016410489210.1016/j.supflu.2020.104892
    [Google Scholar]
  14. SodeifianG. SajadianS.A. HonarvarB. Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide.Nat. Prod. Res.201832779580310.1080/14786419.2017.1361954 28783956
    [Google Scholar]
  15. DaneshyanS. SodeifianG. Synthesis of cyclic polystyrene in supercritical carbon dioxide green solvent.J. Supercrit. Fluids202218810567910.1016/j.supflu.2022.105679
    [Google Scholar]
  16. AullR.E. DuarteO.P. CAB International.Tropical Fruits2nd edWallingford: London2011291326
    [Google Scholar]
  17. HusinF. Ya’akobH. RashidS.N.A. ShaharS. SoibH.H. Cytotoxicity study and antioxidant activity of crude extracts and SPE fractions from Carica papaya leaves.Biocatal. Agric. Biotechnol.20191910113010.1016/j.bcab.2019.101130
    [Google Scholar]
  18. SharmaA. SharmaR. SharmaM. KumarM. BarbhaiM.D. LorenzoJ.M. SharmaS. SamotaM.K. AtanassovaM. CarusoG. Naushad, M.; Radha, ; Chandran, D.; Prakash, P.; Hasan, M.; Rais, N.; Dey, A.; Mahato, D.K.; Dhumal, S.; Singh, S.; Senapathy, M.; Rajalingam, S.; Visvanathan, M.; Saleena, L.A.K.; Mekhemar, M. Carica papaya L. leaves: Deciphering its antioxidant bioactives, biological activities, innovative products, and safety aspects.Oxid. Med. Cell. Longev.2022202212010.1155/2022/2451733 35720184
    [Google Scholar]
  19. AdebiyiA. Ganesan AdaikanP. PrasadR.N.V. Tocolytic and toxic activity of papaya seed extract on isolated rat uterus.Life Sci.200374558159210.1016/j.lfs.2003.06.035 14623029
    [Google Scholar]
  20. PuangsriT. AbdulkarimS.M. GhazaliH.M. Properties of Carica papaya L. (papaya) seed oil following extractions using solvent and aqueous enzymatic methods.J. Food Lipids2005121627610.1111/j.1745‑4522.2005.00006.x
    [Google Scholar]
  21. BlekasG. TsimidouM. BoskouD. Contribution of α-tocopherol to olive oil stability.Food Chem.199552328929410.1016/0308‑8146(95)92826‑6
    [Google Scholar]
  22. MalacridaC.R. KimuraM. JorgeN. Characterization of a high oleic oil extracted from papaya (Carica papaya L.) seeds.Food Sci. Technol.201131492993410.1590/S0101‑20612011000400016
    [Google Scholar]
  23. MassonP.L. CamiloC. TorijaM.E. Characterization of chilean coquito palm oil (Jubaea chilensis).Grasas Aceites2008591333810.3989/gya.2008.v59.i1.487
    [Google Scholar]
  24. LohiyaN.K. ManivannanB. BhandeS.S. PanneerdossS. GargS. Perspectives of contraceptive choices for men.Indian J. Exp. Biol.2005431110421047 16313067
    [Google Scholar]
  25. ChinoyR.J. PadmanP. Antifertility investigation and benzene extract of Carica papaya seeds in male albino rats.Curr. Res. Med. Aromat. Plants199618489494
    [Google Scholar]
  26. LohiyaN.K. ManivannanB. GargS. Toxicological investigations on the methanol sub-fraction of the seeds of Carica papaya as a male contraceptive in albino rats.Reprod. Toxicol.200622346146810.1016/j.reprotox.2006.01.002 16515854
    [Google Scholar]
  27. KermanshaiR. McCarryB.E. RosenfeldJ. SummersP.S. WeretilnykE.A. SorgerG.J. Benzyl isothiocyanate is the chief or sole anthelmintic in papaya seed extracts.Phytochem.200157342743510.1016/S0031‑9422(01)00077‑2 11393524
    [Google Scholar]
  28. EkanemA.P. ObiekezieA. KloasW. KnopfK. Effects of crude extracts of Mucuna pruriens (Fabaceae) and Carica papaya (Caricaceae) against the protozoan fish parasite Ichthyophthirius multifiliis.Parasitol. Res.200492536136610.1007/s00436‑003‑1038‑8 14735356
    [Google Scholar]
  29. PaoliniV. FrayssinesA. DorchiesP. HosteH. HosteH. Effects of condensed tannins on established populations and on incoming larvae of Trichostrongylus colubriformis and Teladorsagia circumcincta in goats.Vet. Res.200334333133910.1051/vetres:2003008 12791242
    [Google Scholar]
  30. WillcoxM.L. BodekerG. Plant-based malaria control: Research initiative on traditional antimalarial methods.Parasitol. Today200016622022110.1016/S0169‑4758(00)01678‑1 10827423
    [Google Scholar]
  31. BehnkeJ.M. ButtleD.J. StepekG. LoweA. DuceI.R. Developing novel anthelmintics from plant cysteine proteinases.Parasit. Vectors2008112910.1186/1756‑3305‑1‑29 18761736
    [Google Scholar]
  32. Jimenez-CoelloM. Acosta-VianaK.Y. Ortega-PachecoA. Perez-GutierrezS. Guzman-MarinE. In vivo antiprotozoal activity of the chloroform extract from Carica papaya seeds against amastigote stage of Trypanosoma cruzi during indeterminate and chronic phase of infection.Evid. Based Complement. Alternat. Med.2014201411710.1155/2014/458263 25276216
    [Google Scholar]
  33. Wabo PonéJ. Ngankam NtemahJ.D. Bilong BilongC.F. MbidaM. A comparative study of the ovicidal and larvicidal activities of aqueous and ethanolic extracts of pawpaw seeds Carica papaya (Caricaceae) on Heligmosomoides bakeri.Asian Pac. J. Trop. Med.20114644745010.1016/S1995‑7645(11)60123‑5 21771696
    [Google Scholar]
  34. Abou ShadyO.M. BasyoniM.M.A. MahdyO.A. BocktorN.Z. The effect of praziquantel and Carica papaya seeds on Hymenolepis nana infection in mice using scanning electron microscope.Parasitol. Res.201411382827283610.1007/s00436‑014‑3943‑4 24849866
    [Google Scholar]
  35. OkeniyiJ.A.O. OgunlesiT.A. OyelamiO.A. AdeyemiL.A. Effectiveness of dried Carica papaya seeds against human intestinal parasitosis: A pilot study.J. Med. Food200710119419610.1089/jmf.2005.065 17472487
    [Google Scholar]
  36. AmeenS. AdedejiO. OjedapoL. SalihuT. FabusuyiC. Anthelmintic potency of pawpaw (Carica papaya) seeds in West African Dwarf (WAD) sheep.Glob. Vet.2010513034
    [Google Scholar]
  37. JaiswalP. KumarP. SinghV.K. SinghD.K. Carica papaya Linn: A potential source for various health problems.J. Pharm. Res.2010359981003
    [Google Scholar]
  38. JiraungkoorskulW. SahaphongS. TansatitT. KangwanrangsanN. PipatshukiatS. Eurytrema pancreaticum: The in vitro effect of praziquantel and triclabendazole on the adult fluke.Exp. Parasitol.2005111317217710.1016/j.exppara.2005.07.004 16125702
    [Google Scholar]
  39. SatjapalaT. ToonsakoolK. PednogK. Contamination and reducing of parasite in fresh vegetables by washing.Bull Dep Med Sci.2014564205212
    [Google Scholar]
  40. DongaS. PandeJ. ChandaS. Pharmacognostic investigations on the seeds of Carica papaya L.J. Pharmacogn. Phytochem.20198521852193
    [Google Scholar]
  41. SantanaL.F. InadaA.C. Espirito SantoB.L.S. FiliúW.F.O. PottA. AlvesF.M. GuimarãesR.C.A. FreitasK.C. HianeP.A. Nutraceutical potential of Carica papaya in metabolic syndrome.Nutrients2019117160810.3390/nu11071608 31315213
    [Google Scholar]
  42. SugihartoS. Papaya (Carica papaya L.) seed as a potent functional feedstuff for poultry – A review.Vet. World20201381613161910.14202/vetworld.2020.1613‑1619 33061235
    [Google Scholar]
  43. KadiriO. AkanbiC.T. OlawoyeB.T. GbadamosiS.O. Characterization and antioxidant evaluation of phenolic compounds extracted from the protein concentrate and protein isolate produced from pawpaw (Carica papaya Linn.) seeds.Int. J. Food Prop.201720112423243610.1080/10942912.2016.1230874
    [Google Scholar]
  44. AgadaR. UsmanW.A. ShehuS. ThagarikiD. In vitro and in vivo inhibitory effects of Carica papaya seed on α-amylase and α-glucosidase enzymes.Heliyon202063e0361810.1016/j.heliyon.2020.e03618 32258473
    [Google Scholar]
  45. MoraesD. LevenhagenM.A. Costa-CruzJ.M. Costa NettoA.P. RodriguesR.M. In vitro efficacy of latex and purified papain from Carica papaya against Strongyloides venezuelensis eggs and larvae.Rev. Inst. Med. Trop. São Paulo2017590e710.1590/s1678‑9946201759007 28380118
    [Google Scholar]
  46. ButtleD.J. BehnkeJ.M. BartleyY. ElsheikhaH.M. BartleyD.J. GarnettM.C. DonnanA.A. JacksonF. LoweA. DuceI.R. Oral dosing with papaya latex is an effective anthelmintic treatment for sheep infected with Haemonchus contortus.Parasit. Vectors2011413610.1186/1756‑3305‑4‑36 21406090
    [Google Scholar]
  47. CabralE.R.M. MoraesD. LevenhagenM.A. MatosR.A.F. Costa-CruzJ.M. RodriguesR.M. In vitro ovicidal and larvicidal activity of Carica papaya seed hexane extract against Strongyloides venezuelensis.Rev. Inst. Med. Trop. São Paulo201961e5910.1590/s1678‑9946201961059 31778389
    [Google Scholar]
  48. SapaatA. SatrijaF. MahsolH.H. AhmadA.H. Anthelmintic activity of papaya seeds on Hymenolepis diminuta infections in rats.Trop. Biomed.2012294508512 23202594
    [Google Scholar]
  49. GokuP.E. OrmanE. QuarteyA.N.K. AnsongG.T. Asare-GyanE.B. Comparative evaluation of the in vitro anthelminthic effects of the leaves, stem, and seeds of Carica papaya (Linn) using the Pheretima posthuma model.Evid. Based Complement. Alternat. Med.202020201810.1155/2020/9717304 32508958
    [Google Scholar]
  50. NakamuraT. MurataY. NakamuraY. Characterization of benzyl isothiocyanate extracted from mashed green papaya by distillation.Food Chem.201929912511810.1016/j.foodchem.2019.125118 31288160
    [Google Scholar]
  51. BiS. GoyalP.K. Anthelmintic effect of natural plant (Carica papaya) extract against the gastrointestinal nematode, Ancylostoma caninum in mice.Int. Res. J. Biol. Sci.20121126
    [Google Scholar]
  52. SireeshaR. RajuK.L. RaoC.L. BabuK.K. PushpalathaB. SandeepD. AliS. In vitro anthelmintic activity of different solvent extracts of Sesamum indicum seeds.IJPCS20132312081212
    [Google Scholar]
  53. DeograciousO. PeterW. The In-vitro ascaricidal activity of selected indigenous medicinal plants used in ethno veterinary practices in Uganda.Afr. J. Tradit. Complement. Altern. Med.2006329410310.4314/ajtcam.v3i2.31150
    [Google Scholar]
  54. LinY. OngY.C. KellerS. KargesJ. BoucheneR. ManouryE. BlacqueO. MüllerJ. AnghelN. HemphillA. HäberliC. TakiA.C. GasserR.B. CariouK. KeiserJ. GasserG. Synthesis, characterization and antiparasitic activity of organometallic derivatives of the anthelmintic drug albendazole.Dalton Trans.202049206616662610.1039/D0DT01107J 32347259
    [Google Scholar]
  55. TiyoTakuete, TakueteT. WandjiF.Y. RogerS.M. Formulation of an anthelmintic syrup based on the seeds of Carica papaya (Caricaceae).GSC Biol Pharm Sci.202324315416610.30574/gscbps.2023.24.3.0368
    [Google Scholar]
  56. NageshM. ChandravadanaM.V. SreejaV.G. BabuC.B. Benzyl isothiocyanate from Carica papaia seed. A potential nematicide against Meloidogyne incognita.Nematol. Mediterr.200230155157
    [Google Scholar]
  57. GargA. VishvakarmaP. MandalS. Exploring Carica papaya seed extract as a herbal jelly for helminthiasis treatment: A comprehensive analysis.World J. Pharm. Pharm. Sci.202312576377510.20959/wjpps20235‑24744
    [Google Scholar]
  58. AyazE. TürelI. GülA. YilmazO. Evaluation of the anthelmentic activity of garlic (Allium sativum) in mice naturally infected with Aspiculuris tetraptera.Recent Patents Anti-Infect. Drug Disc.20083214915210.2174/157489108784746605 18673129
    [Google Scholar]
  59. TesfayeA. Revealing the therapeutic uses of garlic (Allium sativum) and its potential for drug discovery.ScientificWorldJournal2021202111710.1155/2021/8817288 35002548
    [Google Scholar]
  60. RamdaniD. BudinuryantoD.C. JulaehaJ. The effect of turmeric extract (Curcuma longa l.) as a potential anthelmintic on reducing endoparasites in naturally-infected sheep.Jurnal Agripet2021211121810.17969/agripet.v21i1.17791
    [Google Scholar]
  61. GrzybekM. Kukula-KochW. StracheckaA. JaworskaA. PhiriA. PaleologJ. TomczukK. Evaluation of anthelmintic activity and composition of pumpkin (Cucurbita pepo L.) seed extracts—in vitro and in vivo studies.Int. J. Mol. Sci.2016179145610.3390/ijms17091456 27598135
    [Google Scholar]
  62. Abdel AzizA.R. AbouLailaM.R. AzizM. OmarM.A. SultanK. In vitro and in vivo anthelmintic activity of pumpkin seeds and pomegranate peels extracts against Ascaridia galli.Beni. Suef Univ. J. Basic Appl. Sci.20187223123410.1016/j.bjbas.2018.02.003
    [Google Scholar]
  63. MoldesA.B. Rodríguez-LópezL. Rincón-FontánM. López-PrietoA. VecinoX. CruzJ.M. Synthetic and bio-derived surfactants versus microbial biosurfactants in the cosmetic industry: An overview.Int. J. Mol. Sci.2021225237110.3390/ijms22052371 33673442
    [Google Scholar]
  64. DelavaultA. GrüningerJ. KappD. HollenbachR. RudatJ. OchsenreitherK. SyldatkC. Enzymatic synthesis of alkyl glucosides by β ‐glucosidases in a 2‐in‐1 deep eutectic solvent system.Chemieingenieurtechnik202294341742610.1002/cite.202100150
    [Google Scholar]
  65. RastogiR. Fate of alkyl polyglucosides in the environment.J. Cosmet. Sci.20217219198 35349428
    [Google Scholar]
  66. AtanuF.O. IdihF.M. NwonumaC.O. HettaH.F. AlameryS. El-Saber BatihaG. Evaluation of antimalarial potential of extracts from Alstonia boonei and Carica papaya in Plasmodium berghei-infected mice.Evid. Based Complement. Alternat. Med.2021202111110.1155/2021/2599191 34659429
    [Google Scholar]
  67. OraebosiM.I. GoodG.M. Carica papaya augments anti-malarial efficacy of artesunate in Plasmodium berghei parasitized mice.Ann. Parasitol.202167229530310.17420/ap6702.342 34598401
    [Google Scholar]
  68. LuA. OoE. CcaA. PcU. MiS. PjcN. Effects of the methanolic seeds extract of Carica Papaya on Plasmodium berghei infected mice.Asian Pac. J. Trop. Med.20092316
    [Google Scholar]
  69. SiddiquiM.A. HaseebA. AlamM.M. Evaluation of nematicidal properties in some latex-bearing plants.Indian J. Nematol19871799102
    [Google Scholar]
  70. The tropical plant databaseAvailable from: http://www.rain-tree.com/papaya.htm
  71. TonaL. KambuK. NgimbiN. CimangaK. VlietinckA.J. Antiamoebic and phytochemical screening of some Congolese medicinal plants.J. Ethnopharmacol.1998611576510.1016/S0378‑8741(98)00015‑4 9687082
    [Google Scholar]
  72. SommerA. Vitamin a deficiency and its consequences: A field guide to detection and control.3rd edGenevaWorld Health Organization1995
    [Google Scholar]
  73. GruneT. LietzG. PalouA. RossA.C. StahlW. TangG. ThurnhamD. YinS. BiesalskiH.K. Beta-carotene is an important vitamin A source for humans.J. Nutr.2010140122268S2285S10.3945/jn.109.119024 20980645
    [Google Scholar]
  74. KumarD. MishraS.K. TripathiH.C. Mechanism of anthelmintic action of benzylisothiocyanate.Fitoterapia199162403410
    [Google Scholar]
  75. Mojica-HenshawM.P. FranciscoA.D. De GuzmanF. TignoX.T. Possible immunomodulatory actions of Carica papaya seed extract.Clin. Hemorheol. Microcirc.2003293-4219229 14724345
    [Google Scholar]
/content/journals/npj/10.2174/0122103155322731240822075823
Loading
/content/journals/npj/10.2174/0122103155322731240822075823
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test