Skip to content
2000
Volume 15, Issue 7
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Introduction

Recently, Boswellia gum resin extract has been shown to exhibit therapeutic properties against multiple inflammatory illnesses, comprising arthritis, asthma, diabetes, inflammatory bowel disease, and different malignancies. There are growing shreds of evidence that Boswellia extracts and their phytoconstituents could be used in adjuvant and combinatorial chemotherapeutic approaches for the management and prevention of cancer.

Aim

The principal objective of this comprehensive investigation is to offer up-to-date and in-depth insights into the anticancer potential of boswellic acids along with their semisynthetic analog that are novel and preventive/therapeutic substitutes for the management of cancer and inflammatory diseases due to their strong potential.

Materials and Methods

In the course of this review, a comprehensive compilation and clinical evidence on the antineoplastic potential of boswellic acids was assembled through systematic computerized searches utilizing platforms such as Google Scholar, PubMed, Sci-Hub, and Research Gate.

Results

Boswellic acids, the key compounds found in the resin of nearly all the species of the plant, have been reported to exhibit therapeutic effects by modulating various targets in different disease conditions. Moreover, semisynthetic derivatives of boswellic acids show strong cytotoxic effects, particularly those with cyanoenone moieties, endoperoxides, and hybrids, which exhibit enhanced potency.

Conclusion

In this review, we have sincerely highlighted the effectiveness of novel boswellic acids as alternative preventive and therapeutic agents for the treatment of cancer and inflammatory conditions. Their strong anticancer potential could provide a basis for promising future direction to develop potent anticancer drugs for human malignancies.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155317542240821113731
2024-09-02
2025-09-01
Loading full text...

Full text loading...

References

  1. PadhiM. MahapatraS. Boswellia serrata: A review of its traditional uses, phytochemistry and pharmacology.Int Rev Biophys Chem201347483
    [Google Scholar]
  2. YousefJ.M. Identifying frankincense impact by biochemical analysis and histological examination on rats.Saudi J. Biol. Sci.201118218919410.1016/j.sjbs.2010.10.005 23961123
    [Google Scholar]
  3. GuptaI. PariharA. MalhotraP. GuptaS. LüdtkeR. SafayhiH. AmmonH.P.T. Effects of gum resin of Boswellia serrata in patients with chronic colitis.Planta Med.200167539139510.1055/s‑2001‑15802 11488449
    [Google Scholar]
  4. TilahunM. MuysB. MathijsE. KleinnC. OlschewskiR. GebrehiwotK. Frankincense yield assessment and modeling in closed and grazed Boswellia papyrifera woodlands of Tigray, Northern Ethiopia.J. Arid Environ.201175869570210.1016/j.jaridenv.2011.03.005
    [Google Scholar]
  5. ChhetriB. AliN. SetzerW. A survey of chemical compositions and biological activities of Yemeni aromatic medicinal plants.Medicines (Basel)201522679210.3390/medicines2020067 28930202
    [Google Scholar]
  6. ShanmugamM.K. NguyenA.H. KumarA.P. TanB.K.H. SethiG. Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: Potential role in prevention and therapy of cancer.Cancer Lett.2012320215817010.1016/j.canlet.2012.02.037 22406826
    [Google Scholar]
  7. WoolleyC.L. SuhailM.M. SmithB.L. BorenK.E. TaylorL.C. SchreuderM.F. ChaiJ.K. CasabiancaH. HaqS. LinH.K. Al-ShahriA.A. Al-HatmiS. YoungD.G. Chemical differentiation of Boswellia sacra and Boswellia carterii essential oils by gas chromatography and chiral gas chromatography–mass spectrometry.J. Chromatogr. A2012126115816310.1016/j.chroma.2012.06.073 22835693
    [Google Scholar]
  8. BlainE.J. AliA.Y. DuanceV.C. Boswellia frereana (frankincense) suppresses cytokine‐induced matrix metalloproteinase expression and production of pro‐inflammatory molecules in articular cartilage.Phytother. Res.201024690591210.1002/ptr.3055 19943332
    [Google Scholar]
  9. DeviP.R.S. AdilaxmammaK. RaoG.S. SrilathaCh. RajM.A. Safety evaluation of alcoholic extract of Boswellia ovalifoliolata stem-bark in rats.Toxicol. Int.201219211512010.4103/0971‑6580.97198 22778507
    [Google Scholar]
  10. MoussaieffA. MechoulamR. Boswellia resin: From religious ceremonies to medical uses; A review of in-vitro, in-vivo and clinical trials.J. Pharm. Pharmacol.200961101281129310.1211/jpp/61.10.0003 19814859
    [Google Scholar]
  11. ShahB.A. QaziG.N. TanejaS.C. Boswellic acids: A group of medicinally important compounds.Nat. Prod. Rep.2009261728910.1039/B809437N 19374123
    [Google Scholar]
  12. HussainH Al-HarrasiA CsukR ShamraizU GreenI R AhmedI KhanI A AliZ Khan IA, Ali Z. Therapeutic potential of boswellic acids: A patent review (1990–2015).Expert Opin Ther Pat2017271819010.1080/13543776.2017.123515627646163
    [Google Scholar]
  13. MohagheghzadehA. FaridiP. Shams-ArdakaniM. GhasemiY. Medicinal smokes.J. Ethnopharmacol.2006108216118410.1016/j.jep.2006.09.005 17030480
    [Google Scholar]
  14. SharmaA. MannA. GajbhiyeV. KharyaM. PHCOG REV.: Plant review phytochemical profile of Boswellia serrata: An overview.Pharmacogn. Rev.200711131142
    [Google Scholar]
  15. YuanH.Q. KongF. WangX.L. YoungC.Y.F. HuX.Y. LouH.X. Inhibitory effect of acetyl-11-keto-β-boswellic acid on androgen receptor by interference of Sp1 binding activity in prostate cancer cells.Biochem. Pharmacol.200875112112212110.1016/j.bcp.2008.03.005 18430409
    [Google Scholar]
  16. TakahashiM. SungB. ShenY. HurK. LinkA. BolandC.R. AggarwalB.B. GoelA. Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family.Carcinogenesis201233122441244910.1093/carcin/bgs286 22983985
    [Google Scholar]
  17. LiW. LiuJ. FuW. ZhengX. RenL. LiuS. WangJ. JiT. DuG. 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase.J. Exp. Clin. Cancer Res.201837113210.1186/s13046‑018‑0805‑4 29970196
    [Google Scholar]
  18. WangS. WangH. SunB. LiD. WuJ. LiJ. TianX. QinC. ChangH. LiuY. Acetyl‐11‐keto‐β‐boswellic acid triggers premature senescence via induction of DNA damage accompanied by impairment of DNA repair genes in hepatocellular carcinoma cells in vitro and in vivo.Fundam. Clin. Pharmacol.2020341657610.1111/fcp.12488 31141202
    [Google Scholar]
  19. LimaE. GuerraR. LaraV. GuzmánA. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi.Chem. Cent. J.2013711110.1186/1752‑153X‑7‑11 23331621
    [Google Scholar]
  20. SiddiquiM.Z. Boswellia serrata, A potential antiinflammatory agent: An overview.Indian J. Pharm. Sci.2011733255261 22457547
    [Google Scholar]
  21. ChatterjeeG.K. PalS.D. Antiinflammatory agents from Indian medicinal plants.Indian Drugs.198421431
    [Google Scholar]
  22. AmmonH. Boswellic acids in chronic inflammatory diseases.Planta Med.200672121100111610.1055/s‑2006‑947227 17024588
    [Google Scholar]
  23. AdelakunE.A. FinbarE.A.V. AginaS.E. MakindeA.A. Antimicrobial activity of Boswellia dalziellii stem bark.Fitoterapia200172782282410.1016/S0367‑326X(01)00313‑6 11677023
    [Google Scholar]
  24. KirtikarK.R. BasuB.D. Indian Medicinal plants.International Book Distributors Book Sellers and PublishersDeheradun1999312361239
    [Google Scholar]
  25. WahabS. AboutablE. El-ZalabaniS. FouadH. De PooterH. El-FallahaB. The essential oil of olibanum.Planta Med.198753438238410.1055/s‑2006‑962745 17269049
    [Google Scholar]
  26. BenskyD. GambleA. KaptchukT. Chinese Herbal Medicine Materia Medica.SeattleEastland Press19937071
    [Google Scholar]
  27. ZhuY.P. Chinese materia medica: Chemistry, pharmacology and applications.CRC Press1998
    [Google Scholar]
  28. FanA.Y. LaoL. ZhangR.X. ZhouA.N. WangL.B. MoudgilK.D. LeeD.Y.W. MaZ.Z. ZhangW.Y. BermanB.M. Effects of an acetone extract of Boswellia carterii Birdw. (Burseraceae) gum resin on adjuvant-induced arthritis in lewis rats.J. Ethnopharmacol.20051011-310410910.1016/j.jep.2005.03.033 15970410
    [Google Scholar]
  29. ZhaoW. EntschladenF. LiuH. NiggemannB. FangQ. ZaenkerK.S. HanR. Boswellic acid acetate induces differentiation and apoptosis in highly metastatic melanoma and fibrosarcoma cells.Cancer Detect. Prev.2003271677510.1016/S0361‑090X(02)00170‑8 12600419
    [Google Scholar]
  30. FarshchiA. GhiasiG. FarshchiS. MalekK.P. Effects of Boswellia papyrifera gum extract on learning and memory in mice and rats.Iran. J. Basic Med. Sci.20101345
    [Google Scholar]
  31. PilkhwalN. DhaneshwarS. An update on pharmacological profile of Boswellia serrata.Asian J. Pharm. Clin. Res.20191254956
    [Google Scholar]
  32. Al-HarrasiA. AliL. RehmanN.U. HussainH. HussainJ. Al-RawahiA. LangleyG.J. WellsN.J. AbbasG. Nine triterpenes from Boswellia sacra Flückiger and their chemotaxonomic importance.Biochem. Syst. Ecol.2013515111311610.1016/j.bse.2013.08.026
    [Google Scholar]
  33. KumarA. SaxenaVK. TLC and GLC studies of the essential oil from Boswellia serrata leaves.Indian drugs.1979
    [Google Scholar]
  34. NiranjanK. SinghD.C.P. AnujM. PradeepK. Antiinflammatory activity of defatted extract of oleo gum resin of Boswellia serrata.Asian J. Chem.200921541214123
    [Google Scholar]
  35. GerbethK. MeinsJ. KirsteS. MommF. Schubert-ZsilaveczM. Abdel-TawabM. Determination of major boswellic acids in plasma by high-pressure liquid chromatography/mass spectrometry.J. Pharm. Biomed. Anal.2011565998100510.1016/j.jpba.2011.07.026 21855244
    [Google Scholar]
  36. SterkV. BücheleB. SimmetT. Gleichzeitige Nahrungsaufnahme steigert die Bioverfügbarkeit weihrauchhaltiger Phytopharmaka.Z. Phytother.200526417418010.1055/s‑2005‑915655
    [Google Scholar]
  37. MahajanB. TanejaS.C. SethiV.K. DharK.L. Two triterpenoids from Boswellia serrata gum resin.Phytochemistry199539245345510.1016/0031‑9422(95)99386‑3
    [Google Scholar]
  38. SrujanaT.S. KonduriR.B. RaoB.S.S. Phytochemical investigation and biological activity of leaves extract of plant Boswellia serrata. pharma.Innov. (Camb., Mass.)2012122
    [Google Scholar]
  39. BasarS. KochA. KönigW.A. A verticillane‐type diterpene from Boswellia carterii essential oil.Flavour Fragrance J.200116531531810.1002/ffj.992
    [Google Scholar]
  40. AwokeD.S.E. JoshiR.K. Analysis of major components of essential oils of Boswellia species by GC-MS.Am J Essent Oils Nat Prod.2021914854
    [Google Scholar]
  41. NagaiH. KimY.H. Cancer prevention from the perspective of global cancer burden patterns.J. Thorac. Dis.20179344845110.21037/jtd.2017.02.75 28449441
    [Google Scholar]
  42. BrayF. RenJ.S. MasuyerE. FerlayJ. Global estimates of cancer prevalence for 27 sites in the adult population in 2008.Int. J. Cancer201313251133114510.1002/ijc.27711 22752881
    [Google Scholar]
  43. TessnerT.G. MuhaleF. RiehlT.E. AnantS. StensonW.F. Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation.J. Clin. Invest.2004114111676168510.1172/JCI22218 15578100
    [Google Scholar]
  44. RoyN.K. DekaA. BordoloiD. MishraS. KumarA.P. SethiG. KunnumakkaraA.B. The potential role of boswellic acids in cancer prevention and treatment.Cancer Lett.20163771748610.1016/j.canlet.2016.04.017 27091399
    [Google Scholar]
  45. KhanS. ChibR. ShahB.A. WaniZ.A. DharN. MondheD.M. LattooS. JainS.K. TanejaS.C. SinghJ. A cyano analogue of boswellic acid induces crosstalk between p53/PUMA/Bax and telomerase that stages the human papillomavirus type 18 positive HeLa cells to apoptotic death.Eur. J. Pharmacol.20116602-324124810.1016/j.ejphar.2011.03.013 21440536
    [Google Scholar]
  46. QurishiY. HamidA. SharmaP.R. WaniZ.A. MondheD.M. SinghS.K. ZargarM.A. AndotraS.S. ShahB.A. TanejaS.C. SaxenaA.K. PARP cleavage and perturbance in mitochondrial membrane potential by 3-α-propionyloxy-β-boswellic acid results in cancer cell death and tumor regression in murine models.Future Oncol.20128786788110.2217/fon.12.68 22830406
    [Google Scholar]
  47. CsukR. Barthel-NiesenA. BarthelA. SchäferR. Al-HarrasiA. 11-Keto-boswellic acid derived amides and monodesmosidic saponins induce apoptosis in breast and cervical cancers cells.Eur. J. Med. Chem.20151009810510.1016/j.ejmech.2015.06.003 26073487
    [Google Scholar]
  48. JamialahmadiK. SalariS. AlamolhodaeiN.S. AvanA. GholamiL. KarimiG. Auraptene inhibits migration and invasion of cervical and ovarian cancer cells by repression of matrix metalloproteinasas 2 and 9 activity.J. Pharmacopuncture201821317718410.3831/KPI.2018.21.021 30283705
    [Google Scholar]
  49. QinG. LiP. XueZ. Triptolide induces protective autophagy and apoptosis in human cervical cancer cells by downregulating Akt/mTOR activation.Oncol. Lett.20181633929393410.3892/ol.2018.9074 30128010
    [Google Scholar]
  50. LeeC.S. KimY.J. LeeM.S. HanE.S. LeeS.J. 18β-Glycyrrhetinic acid induces apoptotic cell death in SiHa cells and exhibits a synergistic effect against antibiotic anti-cancer drug toxicity.Life Sci.20088313-1448148910.1016/j.lfs.2008.07.014 18721818
    [Google Scholar]
  51. ParkB. PrasadS. YadavV. SungB. AggarwalB.B. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets.PLoS One2011610e2694310.1371/journal.pone.0026943 22066019
    [Google Scholar]
  52. PathaniaA.S. GuruS.K. KumarS. KumarA. AhmadM. BhushanS. SharmaP.R. MahajanP. ShahB.A. SharmaS. NargotraA. VishwakarmaR. KorkayaH. MalikF. Interplay between cell cycle and autophagy induced by boswellic acid analog.Sci. Rep.2016613314610.1038/srep33146 27680387
    [Google Scholar]
  53. DebD.D. ParimalaG. Saravana DeviS. ChakrabortyT. Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60.Chem. Biol. Interact.201119319710610.1016/j.cbi.2011.05.009 21640085
    [Google Scholar]
  54. TorresM.P. PonnusamyM.P. ChakrabortyS. SmithL.M. DasS. ArafatH.A. BatraS.K. Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: implications for the development of novel cancer therapies.Mol. Cancer Ther.2010951419143110.1158/1535‑7163.MCT‑10‑0075 20423995
    [Google Scholar]
  55. SnimaK.S. NairR.S. NairS.V. KamathC.R. LakshmananV.K. Combination of anti-diabetic drug metformin and boswellic acid nanoparticles: a novel strategy for pancreatic cancer therapy.J. Biomed. Nanotechnol.20151119310410.1166/jbn.2015.1877 26301303
    [Google Scholar]
  56. LiuJ.J. NilssonA. OredssonS. BadmaevV. ZhaoW.Z. DuanR.D. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells.Carcinogenesis200223122087209310.1093/carcin/23.12.2087 12507932
    [Google Scholar]
  57. LiuJ.J. HuangB. HooiS.C. Acetyl‐keto‐ β ‐boswellic acid inhibits cellular proliferation through a p21‐dependent pathway in colon cancer cells.Br. J. Pharmacol.200614881099110710.1038/sj.bjp.0706817 16783403
    [Google Scholar]
  58. HunterT. PinesJ. Cyclins and cancer II: Cyclin D and CDK inhibitors come of age.Cell199479457358210.1016/0092‑8674(94)90543‑6 7954824
    [Google Scholar]
  59. LiuJ.J. DuanR.D. LY294002 enhances boswellic acid-induced apoptosis in colon cancer cells.Anticancer Res.200929829872991 19661305
    [Google Scholar]
  60. TodenS. OkugawaY. BuhrmannC. NattamaiD. AnguianoE. BaldwinN. ShakibaeiM. BolandC.R. GoelA. Novel evidence for curcumin and boswellic acid–induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer.Cancer Prev. Res. (Phila.)20158543144310.1158/1940‑6207.CAPR‑14‑0354 25712055
    [Google Scholar]
  61. LiuH.P. GaoZ.H. CuiS.X. WangY. LiB.Y. LouH.X. QuX.J. Chemoprevention of intestinal adenomatous polyposis by acetyl‐11‐keto‐beta‐boswellic acid in APCMin/+ mice.Int. J. Cancer2013132112667268110.1002/ijc.27929 23132636
    [Google Scholar]
  62. WangR. WangY. GaoZ. QuX. The comparative study of acetyl-11-keto-beta-boswellic acid (AKBA) and aspirin in the prevention of intestinal adenomatous polyposis in APCMin/+ mice.Drug Discov. Ther.201481253210.5582/ddt.8.25 24647155
    [Google Scholar]
  63. YadavV.R. PrasadS. SungB. GelovaniJ.G. GuhaS. KrishnanS. AggarwalB.B. Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers.Int. J. Cancer201213092176218410.1002/ijc.26251 21702037
    [Google Scholar]
  64. SolankiN. DurejaH. Impact of surfactants on formulation parameters and in vitro cytotoxicity of boswellic acids loaded nanoparticles on human colon cancer cell lines.Indian Journal of Pharmaceutical Education and Research2018524sS229S23610.5530/ijper.52.4s.102
    [Google Scholar]
  65. JiaS.S. XiG.P. ZhangM. ChenY.B. LeiB. DongX.S. YangY.M. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells.Oncol. Rep.201329134935410.3892/or.2012.2093 23117412
    [Google Scholar]
  66. BardonS. FoussardV. FournelS. LoubatA. Monoterpenes inhibit proliferation of human colon cancer cells by modulating cell cycle-related protein expression.Cancer Lett.2002181218719410.1016/S0304‑3835(02)00047‑2 12175534
    [Google Scholar]
  67. BezerraD.P. FilhoJ.D.B.M. AlvesA.P.N.N. PessoaC. de MoraesM.O. PessoaO.D.L. TorresM.C.M. SilveiraE.R. VianaF.A. Costa-LotufoL.V. Antitumor activity of the essential oil from the leaves of Croton regelianus and its component ascaridole.Chem. Biodivers.2009681224123110.1002/cbdv.200800253 19697341
    [Google Scholar]
  68. FanK. LiX. CaoY. QiH. LiL. ZhangQ. SunH. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells.Anticancer Drugs201526881382310.1097/CAD.0000000000000263 26214321
    [Google Scholar]
  69. FeldmanB.J. FeldmanD. The development of androgen-independent prostate cancer.Nat. Rev. Cancer200111344510.1038/35094009 11900250
    [Google Scholar]
  70. CuligZ. Role of the androgen receptor axis in prostate cancer.Urology2003625212610.1016/S0090‑4295(03)00698‑8 14607214
    [Google Scholar]
  71. WangY. WangX. YangZ. ZhuG. ChenD. MengZ. Menthol inhibits the proliferation and motility of prostate cancer DU145 cells.Pathol. Oncol. Res.201218490391010.1007/s12253‑012‑9520‑1 22437241
    [Google Scholar]
  72. KimS.H. LeeS. PiccoloS.R. Allen-BradyK. ParkE.J. ChunJ.N. KimT.W. ChoN.H. KimI.G. SoI. JeonJ.H. Menthol induces cell-cycle arrest in PC-3 cells by down-regulating G2/M genes, including polo-like kinase 1.Biochem. Biophys. Res. Commun.2012422343644110.1016/j.bbrc.2012.05.010 22580005
    [Google Scholar]
  73. KhanF. KhanI. FarooquiA. AnsariI.A. Carvacrol induces reactive oxygen species (ROS)-mediated apoptosis along with cell cycle arrest at G0/G1 in human prostate cancer cells.Nutr. Cancer20176971075108710.1080/01635581.2017.1359321 28872904
    [Google Scholar]
  74. SyrovetsT. GschwendJ.E. BücheleB. LaumonnierY. ZugmaierW. GenzeF. SimmetT. Inhibition of IkappaB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo.J. Biol. Chem.200528076170618010.1074/jbc.M409477200 15576374
    [Google Scholar]
  75. BücheleB. ZugmaierW. EstradaA. GenzeF. SyrovetsT. PaetzC. SchneiderB. SimmetT. Characterization of 3α-Acetyl-11-keto-α-boswellic Acid, a Pentacyclic Triterpenoid Inducing Apoptosis in vitro and in vivo.Planta Med.200672141285128910.1055/s‑2006‑951680 17022003
    [Google Scholar]
  76. LiuYQ. WangSK. XuQQ. YuanHQ. GuoYX. WangQ. KongF. LinZM. SunDQ. WangRM. LouHX. Acetyl-11-keto-β-boswellic acid suppresses docetaxel-resistant prostate cancer cells in vitro and in vivo by blocking Akt and Stat3 signaling, thus suppressing chemoresistant stem cell-like properties.Acta Pharmacol Sin.201940568969810.1038/s41401‑018‑0157‑9 30171201
    [Google Scholar]
  77. PangX. YiZ. ZhangX. SungB. QuW. LianX. AggarwalB.B. LiuM. Acetyl-11-keto-β-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.Cancer Res.200969145893590010.1158/0008‑5472.CAN‑09‑0755 19567671
    [Google Scholar]
  78. LuM. XiaL. HuaH. JingY. Acetyl-keto-β-boswellic acid induces apoptosis through a death receptor 5-mediated pathway in prostate cancer cells.Cancer Res.20086841180118610.1158/0008‑5472.CAN‑07‑2978 18281494
    [Google Scholar]
  79. PillaiP. PooleriG.K. NairS.V. Role of testosterone levels on the combinatorial effect of Boswellia serrata extract and enzalutamide on androgen dependent LNCaP cells and in patient derived cells.Integr. Cancer Ther.20212010.1177/1534735421996824 33615860
    [Google Scholar]
  80. LiK. LiL. WangS. LiX. MaT. LiuD. JingY. ZhaoL. Design and synthesis of novel 2-substituted 11-keto-boswellic acid heterocyclic derivatives as anti-prostate cancer agents with Pin1 inhibition ability.Eur. J. Med. Chem.201712691091910.1016/j.ejmech.2016.09.089 27997878
    [Google Scholar]
  81. HuangM. LiA. ZhaoF. XieX. LiK. JingY. LiuD. ZhaoL. Design, synthesis and biological evaluation of ring A modified 11-keto-boswellic acid derivatives as Pin1 inhibitors with remarkable anti-prostate cancer activity.Bioorg. Med. Chem. Lett.201828193187319310.1016/j.bmcl.2018.08.021 30153964
    [Google Scholar]
  82. LiC. HeQ. XuY. LouH. FanP. Synthesis of 3-O-acetyl-11-keto-β-boswellic acid (AKBA)-derived amides and their mitochondria-targeted antitumor activities.ACS Omega20227119853986610.1021/acsomega.2c00203 35350335
    [Google Scholar]
  83. SaraswatiS. AgrawalS.S. Antiangiogenic and cytotoxic activity of boswellic acid on breast cancer MCF-7 cells.Biomedicine & Preventive Nutrition201221313710.1016/j.bionut.2011.09.006
    [Google Scholar]
  84. JiangX. LiuY. ZhangG. LinS. YuanN. WuJ. YanX. MaY. MaM. Acetyl-11-keto-β-boswellic acid inhibits precancerous breast lesion MCF-10AT cells via regulation of LINC00707/miR-206 that reduces estrogen receptor-α.Cancer Manag. Res.2020122301231410.2147/CMAR.S238051 32273767
    [Google Scholar]
  85. YangK. ZengL. GeA. BaoT. XuT. XieX. LiuL. Exploring the regulation mechanism of xihuang pill, olibanum and β-boswellic acid on the biomolecular network of triple-negative breast cancer based on transcriptomics and chemical informatics methodology.Front. Pharmacol.20201182510.3389/fphar.2020.00825 32595497
    [Google Scholar]
  86. BonillaI V. GarciaD. AbbottA. SpruillL. SiegelJ. ForcucciJ. HannaG. MukherjeeR. HamannM. HilliardE. LockettM. ColeDJ. Klauber-DeMoreN. The anti-proliferative effects of a frankincense extract in a window of opportunity phase ia clinical trial for patients with breast cancer.Breast Cancer Res Treat.2022204352153010.1007/s10549‑023‑07215‑4 38194131
    [Google Scholar]
  87. BabuT.S. MichaelB.P. JerardC. VijayakumarN. RamachandranR. Study on the anti metastatic and anticancer activity of triterpene compound lupeol in human lung cancer.Apoptosis2019516
    [Google Scholar]
  88. LuoR. FangD. ChuP. WuH. ZhangZ. TangZ. Multiple molecular targets in breast cancer therapy by betulinic acid.Biomed. Pharmacother.2016841321133010.1016/j.biopha.2016.10.018 27810789
    [Google Scholar]
  89. BieF. ZhangG. YanX. MaX. ZhanS. QiuY. CaoJ. MaY. MaM. β-Boswellic Acid Suppresses Breast Precancerous Lesions via GLUT1 Targeting-Mediated Glycolysis Inhibition and AMPK Pathway Activation.Front. Oncol.20221289690410.3389/fonc.2022.896904 35712503
    [Google Scholar]
  90. LiuJ.J. NilssonA. OredssonS. BadmaevV. DuanR.D. Keto- and acetyl-keto-boswellic acids inhibit proliferation and induce apoptosis in Hep G2 cells via a caspase-8 dependent pathway.Int. J. Mol. Med.200210450150510.3892/ijmm.10.4.501 12239601
    [Google Scholar]
  91. ElgendyA.; Abo zaid, ; And elhamid, O.; Mansour, Synergistic curative effect of Boswellic acid and Cisplatin against Diethyl nitrosamine -induced hepatocellular carcinoma.Benha Vet. Med. J.201936225626310.21608/bvmj.2019.14254.1042
    [Google Scholar]
  92. TongX. LinS. FujiiM. HouD.X. Molecular mechanisms of echinocystic acid-induced apoptosis in HepG2 cells.Biochem. Biophys. Res. Commun.2004321353954610.1016/j.bbrc.2004.07.004 15358141
    [Google Scholar]
  93. ZhouX. FuF. LiZ. DongQ. HeJ. WangC. Escin, a natural mixture of triterpene saponins, exhibits antitumor activity against hepatocellular carcinoma.Planta Med.200975151580158510.1055/s‑0029‑1185838 19579181
    [Google Scholar]
  94. ChangU.M. LiC.H. LinL.I. HuangC.P. KanL.S. LinS.B. Ganoderiol F, a ganoderma triterpene, induces senescence in hepatoma HepG2 cells.Life Sci.200679121129113910.1016/j.lfs.2006.03.027 16635496
    [Google Scholar]
  95. YangH. Ganoderic acid produced from submerged culture of Ganoderma lucidum induces cell cycle arrest and cytotoxicity in human hepatoma cell line BEL7402.Biotechnol. Lett.2005271283583810.1007/s10529‑005‑6191‑y 16086244
    [Google Scholar]
  96. LeeK.Y. LeeY.H. KimS.I. ParkJ.H. LeeS.K. Ginsenoside-Rg5 suppresses cyclin E-dependent protein kinase activity via up-regulating p21Cip/WAF1 and down-regulating cyclin E in SK-HEP-1 cells.Anticancer Res.1997172A10671072 9137450
    [Google Scholar]
  97. JiangZ. ChaiJ. ChuangH.H.F. LiS. WangT. ChengY. ChenW. ZhouD. Artesunate induces G0/G1 cell cycle arrest and iron-mediated mitochondrial apoptosis in A431 human epidermoid carcinoma cells.Anticancer Drugs201223660661310.1097/CAD.0b013e328350e8ac 22421370
    [Google Scholar]
  98. HasanS.A. AhmedW.A. GalebF.M. MahaA.E. FaridK. In vitro challenge using thymoquinone on hepatocellular carcinoma (HepG2) cell line.Iran. J. Pharm. Res.200874
    [Google Scholar]
  99. SchneiderH. WellerM. Boswellic acid activity against glioblastoma stem-like cells.Oncol. Lett.20161164187419210.3892/ol.2016.4516 27313764
    [Google Scholar]
  100. LeC.T. LeendersW.P.J. MolenaarR.J. van NoordenC.J.F. Effects of the green tea polyphenol epigallocatechin-3-gallate on glioma: A critical evaluation of the literature.Nutr. Cancer201870331733310.1080/01635581.2018.1446090 29570984
    [Google Scholar]
  101. RodriguezG.A. ShahA.H. GerseyZ.C. ShahS.S. BregyA. KomotarR.J. GrahamR.M. Investigating the therapeutic role and molecular biology of curcumin as a treatment for glioblastoma.Ther. Adv. Med. Oncol.20168424826010.1177/1758834016643518 27482284
    [Google Scholar]
  102. LuoW. SongZ. SunH. LiangJ. ZhaoS. Bergamottin, a natural furanocoumarin abundantly present in grapefruit juice, suppresses the invasiveness of human glioma cells via inactivation of Rac1 signaling.Oncol. Lett.201815332593266 29435067
    [Google Scholar]
  103. LiW. RenL. ZhengX. LiuJ. WangJ. JiT. DuG. 3-O-Acetyl-11-keto- -boswellic acid ameliorated aberrant metabolic landscape and inhibited autophagy in glioblastoma.Acta Pharm. Sin. B202010230131210.1016/j.apsb.2019.12.012 32082975
    [Google Scholar]
  104. KirsteS. TreierM. WehrleS.J. BeckerG. Abdel-TawabM. GerbethK. HugM.J. LubrichB. GrosuA.L. MommF. Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors.Cancer2011117163788379510.1002/cncr.25945 21287538
    [Google Scholar]
  105. StrefferJ.R. BitzerM. SchabetM. DichgansJ. WellerM. Response of radiochemotherapy-associated cerebral edema to a phytotherapeutic agent, H15.Neurology20015691219122110.1212/WNL.56.9.1219 11342692
    [Google Scholar]
  106. ParkY.S. LeeJ.H. HarwalkarJ.A. BondarJ. SafayhiH. GolubicM. Acetyl-11-Keto-ß-Boswellic acid (Akba) is cytotoxic for meningioma cells and inhibits phosphorylation of the extracellular-signal regulated kinase 1 and 2. Eicosanoids Other Bioact Lipids Cancer, Inflammation.Radiat Inj20025387393
    [Google Scholar]
  107. DasA. MillerR. LeeP. HoldenC.A. LindhorstS.M. JaboinJ. VandergriftW.A.III BanikN.L. GiglioP. VarmaA.K. RaizerJ.J. PatelS.J. A novel component from citrus, ginger, and mushroom family exhibits antitumor activity on human meningioma cells through suppressing the Wnt/β-catenin signaling pathway.Tumour Biol.20153697027703410.1007/s13277‑015‑3388‑0 25864108
    [Google Scholar]
  108. GaoR. MiaoX. SunC. SuS. ZhuY. QianD. OuyangZ. DuanJ. Frankincense and myrrh and their bioactive compounds ameliorate the multiple myeloma through regulation of metabolome profiling and JAK/STAT signaling pathway based on U266 cells.BMC Complementary Medicine and Therapies20202019610.1186/s12906‑020‑2874‑0 32293402
    [Google Scholar]
  109. JinL. YingchunW. ZhujunS. YinanW. DongchenW. HuiY. XiY. WanzhouZ. BuluanZ. JinhuaW. 3-acetyl-11-keto-beta-boswellic acid decreases the malignancy of taxol resistant human ovarian cancer by inhibiting multidrug resistance (MDR) proteins function.Biomed. Pharmacother.201911610899210.1016/j.biopha.2019.108992 31129513
    [Google Scholar]
  110. LvM. ZhuangX. ZhangQ. ChengY. WuD. WangX. QiaoT. Acetyl-11-keto-β-boswellic acid enhances the cisplatin sensitivity of non-small cell lung cancer cells through cell cycle arrest, apoptosis induction, and autophagy suppression via p21-dependent signaling pathway.Cell Biol. Toxicol.202137220922810.1007/s10565‑020‑09541‑5 32562082
    [Google Scholar]
  111. Al-BahlaniS. BurneyI.A. Al-DhahliB. Al-KharusiS. Al-KharousiF. Al-KalbaniA. AhmedI. Boswellic acid sensitizes gastric cancer cells to Cisplatin-induced apoptosis via p53-mediated pathway.BMC Pharmacol. Toxicol.20202116410.1186/s40360‑020‑00442‑1 32867831
    [Google Scholar]
  112. XiaL. ChenD. HanR. FangQ. WaxmanS. JingY. Boswellic acid acetate induces apoptosis through caspase-mediated pathways in myeloid leukemia cells.Mol. Cancer Ther.20054338138810.1158/1535‑7163.MCT‑03‑0266 15767547
    [Google Scholar]
  113. KaurR. KhanS. ChibR. KaurT. SharmaP.R. SinghJ. ShahB.A. TanejaS.C. A comparative study of proapoptotic potential of cyano analogues of boswellic acid and 11-keto-boswellic acid.Eur. J. Med. Chem.20114641356136610.1016/j.ejmech.2011.01.061 21334793
    [Google Scholar]
  114. CsukR. Niesen-BarthelA. BarthelA. KlugeR. StröhlD. Synthesis of an antitumor active endoperoxide from 11-keto-β-boswellic acid.Eur. J. Med. Chem.20104593840384310.1016/j.ejmech.2010.05.036 20538386
    [Google Scholar]
  115. SerbianI. WolframR.K. FischerL. Al-HarrasiA. CsukR. Hydroxylated boswellic and glycyrrhetinic acid derivatives: synthesis and cytotoxicity.Mediterr. J. Chem.20187428629310.13171/mjc74181121‑csuk
    [Google Scholar]
  116. LiT. FanP. YeY. LuoQ. LouH. Ring A-modified Derivatives from the Natural Triterpene 3-O-acetyl-11-keto-β-Boswellic Acid and their Cytotoxic Activity.Anticancer. Agents Med. Chem.201717811531167 27928954
    [Google Scholar]
  117. ShamraizU. HussainH. Ur RehmanN. Al-ShidhaniS. SaeedA. KhanH.Y. KhanA. FischerL. CsukR. BadshahA. Al-RawahiA. HussainJ. Al-HarrasiA. Synthesis of new boswellic acid derivatives as potential antiproliferative agents.Nat. Prod. Res.202034131845185210.1080/14786419.2018.1564295 30691289
    [Google Scholar]
/content/journals/npj/10.2174/0122103155317542240821113731
Loading
/content/journals/npj/10.2174/0122103155317542240821113731
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): adjuvant; anticancer; antineoplastic; Boswellia; boswellic acids; phytoconstituents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test