Skip to content
2000
Volume 15, Issue 6
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

The use of aromatic and medicinal plants and their bioactive compounds in the development of new antimicrobial agents for the treatment of infectious diseases has become a very urgent issue due to the emergence of microbial strains resistant to anti-infectious treatments. (L.) Miller, also known as prickly pear, is a wild plant native to arid and semi-arid regions. It can be considered a source of food or used for various production purposes, and it is widely known for its beneficial properties. The different parts of this plant, such as cladodes, fruits, peels, and seeds, could have remarkable therapeutic potentials due to their content of phenolic compounds, polyunsaturated fatty acids, pigments, sterols, and other active compounds, and are safe for human use. This includes antioxidant, anti-inflammatory, gastroprotective, antiulcer, antiviral, and anticancer effects, among others. The antimicrobial action of extracts and phytochemical compounds from different parts of cactus has been shown in different scientific experiments against bacteria, fungi, and viruses, and their therapeutic potentials have been reported, thus contributing to a decrease in drug resistance. This article presents a comprehensive review of the scientific literature on the antimicrobial activity of and the role of its phytocompounds in the fight against antimicrobial resistance.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155320334240626075057
2024-07-03
2025-11-04
Loading full text...

Full text loading...

References

  1. FaniM.M. KohantebJ. DayaghiM. Inhibitory activity of garlic (Allium sativum) extract on multidrug-resistant Streptococcus mutans.J. Indian Soc. Pedod. Prev. Dent.200725416416810.4103/0970‑4388.37011 18007101
    [Google Scholar]
  2. GuptaA. MahajanS. SharmaR. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus.Biotechnol. Rep.20156515510.1016/j.btre.2015.02.001 28626697
    [Google Scholar]
  3. ManilalA. MerdekiosB. IdhayadhullaA. MuthukumarC. MelkieM. An in vitro antagonistic efficacy validation of Rhizophora mucronata.Asian Pac. J. Trop. Dis.201551283210.1016/S2222‑1808(14)60622‑8
    [Google Scholar]
  4. CoatesA.R.M. HallsG. HuY. Novel classes of antibiotics or more of the same?Br. J. Pharmacol.2011163118419410.1111/j.1476‑5381.2011.01250.x 21323894
    [Google Scholar]
  5. HosseinzadehS. JafarikukhdanA. HosseiniA. ArmandR. The application of medicinal plants in traditional and modern medicine: A review of Thymus vulgaris.Int. J. Clin. Med.20156963564210.4236/ijcm.2015.69084
    [Google Scholar]
  6. BashirS. ErumA. KausarR. SaleemU. Tulain AlamgeerU.R. Antimicrobial activity of some ethno-medicinal plants used in Pakistan.Res. Pharm.2012214245
    [Google Scholar]
  7. KubmarawaD. AjokuG. EnweremN. OkorieD. Preliminary phytochemical and antimicrobial screening of 50 medicinal plants from Nigeria.Afr. J. Biotechnol.200761416901696
    [Google Scholar]
  8. AmeyaG. ManilalA. MerdekiosB. In vitro antibacterial activity and phytochemical analysis of Nicotiana tabacum L. extracted in different organic solvents.Open Microbiol. J.201711135235910.2174/1874285801711010352 29399216
    [Google Scholar]
  9. AragonaM. LaurianoE.R. PergolizziS. FaggioC. Opuntia ficus-indica (L.) Miller as a source of bioactivity compounds for health and nutrition.Nat. Prod. Res.201832172037204910.1080/14786419.2017.1365073 28805459
    [Google Scholar]
  10. Belhadj SlimenI. NajarT. AbderrabbaM. Chemical and antioxidant properties of betalains.J. Agric. Food Chem.201765467568910.1021/acs.jafc.6b04208 28098998
    [Google Scholar]
  11. ShettyA.A. RanaM.K. PreethamS.P. Cactus: A medicinal food.J. Food Sci. Technol.201249553053610.1007/s13197‑011‑0462‑5 24082263
    [Google Scholar]
  12. El-MostafaK. El KharrassiY. BadreddineA. AndreolettiP. VamecqJ. El KebbajM.H. LatruffeN. LizardG. NasserB. Cherkaoui-MalkiM. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease.Molecules2014199148791490110.3390/molecules190914879 25232708
    [Google Scholar]
  13. HaileM. BelayT. ZimmermanH.G. Current and potential use of cactus in Tigray, Northern Ethiopia.Acta Hortic.2002581758610.17660/ActaHortic.2002.581.4
    [Google Scholar]
  14. FeugangJ.M. KonarskiP. ZouD. StintzingF.C. ZouC. Nutritional and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits.Front. Biosci.20061112574258910.2741/1992 16720335
    [Google Scholar]
  15. Moussa-AyoubT.E. Abd El-HadyE.S.A. OmranH.T. El-SamahyS.K. KrohL.W. RohnS. Influence of cultivar and origin on the flavonol profile of fruits and cladodes from cactus Opuntia ficus-indica.Food Res. Int.20146486487210.1016/j.foodres.2014.08.021 30011726
    [Google Scholar]
  16. FAOCrop ecology, cultivation and uses of cactus pear.2017Available From: https://openknowledge.fao.org/server/api/core/bitstreams/c7920e28-b849-40ae-b091-4d40d295a8e9/content
    [Google Scholar]
  17. BoyleT.H. AndersonE.F. Biodiversity and Conservation.Cacti, Biology and Uses. NobelP.S. Los AngelesUniversity of California Press2002125141
    [Google Scholar]
  18. Fernández-LópezJ.A. AlmelaL. Application of high-performance liquid chromatography to the characterization of the betalain pigments in prickly pear fruits.J. Chromatogr. A20019131-241542010.1016/S0021‑9673(00)01224‑3 11355839
    [Google Scholar]
  19. AlimiH. HfaiedhN. BouoniZ. HfaiedhM. SaklyM. ZourguiL. RhoumaK.B. Antioxidant and antiulcerogenic activities of Opuntia ficus indica f. inermis root extract in rats.Phytomedicine201017141120112610.1016/j.phymed.2010.05.001 20638261
    [Google Scholar]
  20. RamadanM.F. MörselJ.T. Oil cactus pear (Opuntia ficus-indica L.).Food Chem.200382333934510.1016/S0308‑8146(02)00550‑2
    [Google Scholar]
  21. Astello-GarcíaM.G. CervantesI. NairV. Santos-DíazM.S. Reyes-AgüeroA. GuéraudF. Negre-SalvayreA. RossignolM. Cisneros-ZevallosL. Barba de la RosaA.P. Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient.J. Food Compos. Anal.20154311913010.1016/j.jfca.2015.04.016
    [Google Scholar]
  22. SchafferS. Schmitt-SchilligS. MüllerW.E. EckertG.P. Antioxidant properties of Mediterranean food plant extracts: Geographical differences.J. Physiol. Pharmacol.200556Suppl. 1115124 15800389
    [Google Scholar]
  23. Osorio-EsquivelO. Alicia-Ortiz-Moreno; Álvarez, V.B.; Dorantes-Álvarez, L.; Giusti, M.M. Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits.Food Res. Int.20114472160216810.1016/j.foodres.2011.02.011
    [Google Scholar]
  24. De LeoM. AbreuM.B.D. PawlowskaA.M. CioniP.L. BracaA. Profiling the chemical content of Opuntia ficus-indica flowers by HPLC–PDA-ESI-MS and GC/EIMS analyses.Phytochem. Lett.201031485210.1016/j.phytol.2009.11.004
    [Google Scholar]
  25. El MannoubiI. BarrekS. SkanjiT. CasabiancaH. ZarroukH. Characterization of Opuntia ficus indica seed oil from Tunisia.Chem. Nat. Compd.200945561662010.1007/s10600‑009‑9448‑1
    [Google Scholar]
  26. GhaziZ. RamdaniM. FauconnierM-L. El MahiB. CheikhR. Fatty acids sterols and vitamin E composition of seed oil of Opuntia ficus indica and Opuntia dillenii from Morocco.J. Mater. Environ. Sci.201346967972
    [Google Scholar]
  27. PaizR.C. Juárez-FloresB.I. AguirreR. CárdenasO. ReyesA. GarcíaC.E. ÁlvarezF. Glucose-lowering effect of xoconostle (Opuntia joconostle A. Web., Cactaceae) in diabetic rats.J. Med. Plants Res.20104222326233310.5897/JMPR10.294
    [Google Scholar]
  28. ZouD. BrewerM. GarciaF. FeugangJ.M. WangJ. ZangR. LiuH. ZouC. Cactus pear: A natural product in cancer chemoprevention.Nutr. J.2005412510.1186/1475‑2891‑4‑25 16150152
    [Google Scholar]
  29. GalatiE.M. TripodoM.M. TrovatoA. MiceliN. MonforteM.T. Biological effect of Opuntia ficus indica (L.) Mill. (Cactaceae) waste matter.J. Ethnopharmacol.2002791172110.1016/S0378‑8741(01)00337‑3 11744290
    [Google Scholar]
  30. KutiJ.O. Antioxidant compounds from four Opuntia cactus pear fruit varieties.Food Chem.200485452753310.1016/S0308‑8146(03)00184‑5
    [Google Scholar]
  31. Dok-GoH. LeeK.H. KimH.J. LeeE.H. LeeJ. SongY.S. LeeY.H. JinC. LeeY.S. ChoJ. Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten.Brain Res.20039651-213013610.1016/S0006‑8993(02)04150‑1 12591129
    [Google Scholar]
  32. KaurM. KaurA. SharmaR. Pharmacological actions of Opuntia ficus indica: A Review.J. Appl. Pharm. Sci.201227151810.7324/JAPS.2012.2703
    [Google Scholar]
  33. GalatiE.M. MondelloM.R. GiuffridaD. DugoG. MiceliN. PergolizziS. TavianoM.F. Chemical characterization and biological effects of Sicilian Opuntia ficus indica (L.) mill. Fruit juice: Antioxidant and antiulcerogenic activity.J. Agric. Food Chem.200351174903490810.1021/jf030123d 12903943
    [Google Scholar]
  34. YasmeenR. HashmiA.S. AnjumA.A. SaeedS. MuhammadK. Antibacterial activity of indigenous herbal extracts against urease producing bacteria.J. Anim. Plant Sci.2012222416419
    [Google Scholar]
  35. EnnouriM. AmmarI. KhemakhemB. AttiaH. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.J. Med. Food201417890891410.1089/jmf.2013.0089 24650181
    [Google Scholar]
  36. AruwaC.E. AmooS.O. KudangaT. Opuntia (Cactaceae) plant compounds, biological activities and prospects – A comprehensive review.Food Res. Int.201811232834410.1016/j.foodres.2018.06.047 30131144
    [Google Scholar]
  37. SilvaM.A. AlbuquerqueT.G. PereiraP. RamalhoR. VicenteF. OliveiraM.B.P.P. CostaH.S. Opuntia ficus-indica (L.) Mill.: A multi-benefit potential to be exploited.Molecules202126495110.3390/molecules26040951 33670110
    [Google Scholar]
  38. SilverL.L. BostianK.A. Discovery and development of new antibiotics: The problem of antibiotic resistance.Antimicrob. Agents Chemother.199337337738310.1128/AAC.37.3.377 8460908
    [Google Scholar]
  39. SrinivasanD. NathanS. SureshT. Lakshmana PerumalsamyP. Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine.J. Ethnopharmacol.200174321722010.1016/S0378‑8741(00)00345‑7 11274820
    [Google Scholar]
  40. CowanM.M. Plant products as antimicrobial agents.Clin. Microbiol. Rev.199912456458210.1128/CMR.12.4.564 10515903
    [Google Scholar]
  41. TapieroH. TewK.D. Nguyen BaG. MathéG. Polyphenols: Do they play a role in the prevention of human pathologies?Biomed. Pharmacother.200256420020710.1016/S0753‑3322(02)00178‑6 12109813
    [Google Scholar]
  42. DagliaM. Polyphenols as antimicrobial agents.Curr. Opin. Biotechnol.201223217418110.1016/j.copbio.2011.08.007 21925860
    [Google Scholar]
  43. Bouarab ChibaneL. DegraeveP. FerhoutH. BouajilaJ. OulahalN. Plant antimicrobial polyphenols as potential natural food preservatives.J. Sci. Food Agric.20199941457147410.1002/jsfa.9357 30206947
    [Google Scholar]
  44. PartoviN. EbadzadehM.R. FatemiS.J. KhaksariM. Effect of fruit extract on renal stone formation and kidney injury in rats.Nat. Prod. Res.201832101180118310.1080/14786419.2017.1320790 28480748
    [Google Scholar]
  45. El-BeltagiH.S. MohamedH.I. ElmelegyA.A. EldesokyS.E. SafwatG. Phytochemical screening, antimicrobial, antiaxidant, anticancer activities and nutritional values of cactus (Opuntia ficus indicia) pulp and peel.Fresenius Environ. Bull.2019282A15341551
    [Google Scholar]
  46. Feedipedia. Lopez-Garcia et al., 2001. In: Cactus (Opuntia spp.) as Forage, Mondragon-Jacobo and Perez-Gonzalez Ed., FAO Plant production and protection papers N°169: 161p, FAO, Rome.2001Available From: https://www.feedipedia.org/node/1803
  47. WelegerimaG. ZemeneA. Antibacterial activity of Opuntia ficus-indica skin fruit extracts.Biotechnol. Int.2017107483
    [Google Scholar]
  48. PalmeriR. ParafatiL. ArenaE. GrassenioE. RestucciaC. FallicoB. Antioxidant and antimicrobial properties of semi-processed frozen prickly pear juice as affected by cultivar and harvest time.Foods20209223510.3390/foods9020235 32098296
    [Google Scholar]
  49. ParafatiL. PalmeriR. TrippaD. RestucciaC. FallicoB. Quality maintenance of beef burger patties by direct addiction or encapsulation of a prickly pear fruit extract.Front. Microbiol.201910176010.3389/fmicb.2019.01760 31447807
    [Google Scholar]
  50. ScavoA. PandinoG. RestucciaC. ParafatiL. CirvilleriG. MauromicaleG. Antimicrobial activity of cultivated cardoon (Cynara cardunculus L. var. altilis DC.) leaf extracts against bacterial species of agricultural and food interest.Ind. Crops Prod.201912920621110.1016/j.indcrop.2018.12.005
    [Google Scholar]
  51. AruwaC.E. AmooS. KudangaT. Phenolic compound profile and biological activities of Southern African Opuntia ficus-indica fruit pulp and peels.Lebensm. Wiss. Technol.201911133734410.1016/j.lwt.2019.05.028
    [Google Scholar]
  52. BensadónS. Hervert-HernándezD. Sáyago-AyerdiS.G. GoñiI. By-products of Opuntia ficus-indica as a source of antioxidant dietary fiber.Plant Foods Hum. Nutr.201065321021610.1007/s11130‑010‑0176‑2 20623195
    [Google Scholar]
  53. Saura-CalixtoF. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function.J. Agric. Food Chem.2011591434910.1021/jf1036596 21142013
    [Google Scholar]
  54. FiadM. El-MasryR. GomaaA. AwadA. Evaluation of antioxidant and antimicrobial properties of Opuntia ficus-indica, seeds and peels extracts.Zagazig J Agri Res202047258759610.21608/zjar.2020.94497
    [Google Scholar]
  55. MaddoxC.E. LaurL.M. TianL. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa.Curr. Microbiol.2010601535810.1007/s00284‑009‑9501‑0 19813054
    [Google Scholar]
  56. Guevara-FigueroaT. Jiménez-IslasH. Reyes-EscogidoM.L. MortensenA.G. LaursenB.B. LinL.W. De León-RodríguezA. FomsgaardI.S. Barba de la RosaA.P. Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.).J. Food Compos. Anal.201023652553210.1016/j.jfca.2009.12.003
    [Google Scholar]
  57. BaydarN.G. ÖzkanG. SağdiçO. Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts.Food Control200415533533910.1016/S0956‑7135(03)00083‑5
    [Google Scholar]
  58. Duda-ChodakA. TarkoT. SatoraP. SrokaP. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review.Eur. J. Nutr.201554332534110.1007/s00394‑015‑0852‑y 25672526
    [Google Scholar]
  59. KaradağA.E. DemirciB. PolatD.Ç. OkurM.E. Characterization of Opuntia ficus-indica (L.) Mill. fruit volatiles and antibacterial evaluation.Nat. Volatiles Essent. Oils2018543538
    [Google Scholar]
  60. HajjiM. MasmoudiO. SouissiN. TrikiY. KammounS. NasriM. Chemical composition, angiotensin I-converting enzyme (ACE) inhibitory, antioxidant and antimicrobial activities of the essential oil from Periploca laevigata root barks.Food Chem.2010121372473110.1016/j.foodchem.2010.01.021
    [Google Scholar]
  61. ÁcsK. BalázsV.L. KocsisB. BencsikT. BöszörményiA. HorváthG. Antibacterial activity evaluation of selected essential oils in liquid and vapor phase on respiratory tract pathogens.BMC Complement. Altern. Med.201818122710.1186/s12906‑018‑2291‑9 30053847
    [Google Scholar]
  62. ElkadyW.M. BishrM.M. Abdel-AzizM.M. SalamaO.M. Identification and isolation of anti-pneumonia bioactive compounds from Opuntia ficus-indica fruit waste peels.Food Funct.20201165275528310.1039/D0FO00817F 32458916
    [Google Scholar]
  63. MaemaL.P. PotgieterM. MasevheN.A. SamieA. Antimicrobial activity of selected plants against fungal species isolated from South African AIDS patients and their antigonococcal activity.J. Complement. Integr. Med.20201732019008710.1515/jcim‑2019‑0087 32301751
    [Google Scholar]
  64. MaemaL.P. PotgieterM. MahloS.M. Invasive alien plant species used for the treatment of various diseases in Limpopo Province, South Africa.Afr. J. Tradit. Complement. Altern. Med.201613422323110.21010/ajtcam.v13i4.29 28852740
    [Google Scholar]
  65. CastilloS.L. HerediaN. ContrerasJ.F. GarcíaS. Extracts of edible and medicinal plants in inhibition of growth, adherence, and cytotoxin production of Campylobacter jejuni and Campylobacter coli.J. Food Sci.2011766M421M42610.1111/j.1750‑3841.2011.02229.x 22417513
    [Google Scholar]
  66. HegazyE. HafizN. RozikN. KhalilW. Comparative study between powder and nanoparticles of dried cactus (Opuntia ficus-indica L.) fruit peels in streptozotocin-induced diabetic rats: Anti-microbial and anti-genotoxic capacity.Annu. Res. Rev. Biol.201826611410.9734/ARRB/2018/41988
    [Google Scholar]
  67. AdebayoE.A. IbikunleJ.B. OkeA.M. LateefA. AzeezM.A. OluwatoyinA.O. AyanfeOluwa, A.V.; Blessing, O.T.; Comfort, O.O.; Adekunle, O.O.; Badmus, J.A.; Asafa, T.B.; Beukes, L.S.; Gueguim-Kana, E.B.; Hakeem, A.S. Antimicrobial and antioxidant activity of silver, gold and silver-gold alloy nanoparticles phytosynthesized using extract of Opuntia ficus-indica.Rev. Adv. Mater. Sci.201958131332610.1515/rams‑2019‑0039
    [Google Scholar]
  68. AdebayoA.E. OkeA.M. LateefA. OyatokunA.A. AbisoyeO.D. AdijiI.P. FagbenroD.O. AmusanT.V. BadmusJ.A. AsafaT.B. BeukesL.S. Gueguim-KanaE.B. AbbasS.H. Biosynthesis of silver, gold and silver–gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their biomedical properties.Nanotechnol Environ Eng2019411310.1007/s41204‑019‑0060‑8
    [Google Scholar]
  69. ElegbedeJ.A. LateefA. AzeezM.A. AsafaT.B. YekeenT.A. OladipoI.C. AdebayoE.A. BeukesL.S. Gueguim-KanaE.B. Fungal xylanases‐mediated synthesis of silver nanoparticles for catalytic and biomedical applications.IET Nanobiotechnol.201812685786310.1049/iet‑nbt.2017.0299 30104463
    [Google Scholar]
  70. GopalJ. ChunS. AnthonydhasonV. JungS. Mwang’ombeB.N. MuthuM. SivanesanI. Assays evaluating antimicrobial activity of nanoparticles: A myth buster.J. Cluster Sci.201829220721310.1007/s10876‑018‑1334‑1
    [Google Scholar]
  71. Ramírez AguirreD.P. Flores LoyolaE. De la Fuente SalcidoN.M. Rodríguez SifuentesL. Ramírez MorenoA. MarszalekJ.E. Comparative antibacterial potential of silver nanoparticles prepared via chemical and biological synthesis.Arab. J. Chem.202013128662867010.1016/j.arabjc.2020.09.057
    [Google Scholar]
  72. GudikandulaK. Charya MaringantiS. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties.J. Exp. Nanosci.201611971472110.1080/17458080.2016.1139196
    [Google Scholar]
  73. TliliN. BargouguiA. ElfallehW. TrikiS. NasriN. Phenolic compounds, protein, lipid content and fatty acids compositions of cactus seeds.J. Med. Plants Res.20115184519452410.5897/JMPR.9000972
    [Google Scholar]
  74. Ortega-OrtegaM.A. Cruz-CansinoN.S. Alanís-GarcíaE. Delgado-OlivaresL. Ariza-OrtegaJ.A. Ramírez-MorenoE. Manríquez-TorresJ.J. Optimization of ultrasound extraction of cactus pear (Opuntia ficus indica) seed oil based on antioxidant activity and evaluation of its antimicrobial activity.J. Food Qual.201720171910.1155/2017/9315360
    [Google Scholar]
  75. Viuda-MartosM. MohamadyM.A. Fernández-LópezJ. Abd ElRazikK.A. OmerE.A. Pérez-AlvarezJ.A. SendraE. In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants.Food Control201122111715172210.1016/j.foodcont.2011.04.003
    [Google Scholar]
  76. AruwaC.E. AmooS.O. KudangaT. Extractable and macromolecular antioxidants of Opuntia ficus-indica cladodes: Phytochemical profiling, antioxidant and antibacterial activities.S. Afr. J. Bot.201912540241010.1016/j.sajb.2019.08.007
    [Google Scholar]
  77. LivermoreD.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare?Clin. Infect. Dis.200234563464010.1086/338782 11823954
    [Google Scholar]
  78. El-HawaryS. El-TantawyM. RabehM. BadrW. Chemical Composition and Antimicrobial Activity of Volatile Constituents of Cladodes, Fruits peel and Fruits pulp from Opuntia ficus indica (L.) Mill.(Prickly Pear) growing in Egypt.Egypt. J. Chem.202164143744410.21608/ejchem.2020.21137.2260
    [Google Scholar]
  79. BrahmiF. HaddadS. BouamaraK. Yalaoui-GuellalD. Prost-CamusE. de BarrosJ.P.P. ProstM. AtanasovA.G. MadaniK. Boulekbache-MakhloufL. LizardG. Comparison of chemical composition and biological activities of Algerian seed oils of Pistacia lentiscus L., Opuntia ficus indica (L.) mill. and Argania spinosa L.Skeels. Ind. Crops Prod.202015111245610.1016/j.indcrop.2020.112456
    [Google Scholar]
  80. SaadN.Y. MullerC.D. LobsteinA. Major bioactivities and mechanism of action of essential oils and their components.Flavour Fragrance J.201328526927910.1002/ffj.3165
    [Google Scholar]
  81. NazzaroF. FratianniF. d’AciernoA. CaputoL. FeoV.D. CoppolaR. Antibiofilm properties exhibited by the prickly pear (Opuntia ficus-indica) seed oil.Proceedings20216612910.3390/proceedings2020066029
    [Google Scholar]
  82. BurtS. Essential oils: Their antibacterial properties and potential applications in foods—a review.Int. J. Food Microbiol.200494322325310.1016/j.ijfoodmicro.2004.03.022 15246235
    [Google Scholar]
  83. KabaraJ.J. SwieczkowskiD.M. ConleyA.J. TruantJ.P. Fatty acids and derivatives as antimicrobial agents.Antimicrob. Agents Chemother.197221232810.1128/AAC.2.1.23 4670656
    [Google Scholar]
  84. DilikaF. BremnerP.D. MeyerJ.J.M. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites.Fitoterapia200071445045210.1016/S0367‑326X(00)00150‑7 10925024
    [Google Scholar]
  85. ParkB.K. KimY.R. KimY.H. YangC. SeoC.S. JungI.C. JangI.S. KimS.H. LeeM.Y. Antidepressant-like effects of Gyejibokryeong-hwan in a mouse model of reserpine-induced depression.BioMed Res. Int.2018201811210.1155/2018/5845491 30046601
    [Google Scholar]
  86. OgbeR.J. OchalefuD.O. MafululS.G. OlaniruO.B. A review on dietary phytosterols: Their occurrence, metabolism and health benefits.Asian J. Plant Sci. Res.201551021
    [Google Scholar]
  87. DoğanA. OtluS. Çelebi̇Ö. Aksu KiliçleP. Gülmez SağlamA. DoğanA.N.C. MutluN. An investigation of antibacterial effects of steroids.Turk. J. Vet. Anim. Sci.201741230230510.3906/vet‑1510‑24
    [Google Scholar]
  88. SánchezE. Rivas MoralesC. CastilloS. Leos-RivasC. García-BecerraL. Ortiz MartínezD.M. Antibacterial and antibiofilm activity of methanolic plant extracts against nosocomial microorganisms.Evid. Based Complement. Alternat. Med.201620161810.1155/2016/1572697 27429633
    [Google Scholar]
  89. BlandoF. RussoR. NegroC. De BellisL. FrassinettiS. Antimicrobial and antibiofilm activity against Staphylococcus aureus of Opuntia ficus-indica (L.) Mill. cladode polyphenolic extracts.Antioxidants20198511710.3390/antiox8050117 31052535
    [Google Scholar]
  90. BhattacharyaD. BhattacharyaS. PatraM.M. ChakravortyS. SarkarS. ChakrabortyW. KoleyH. GachhuiR. Antibacterial activity of polyphenolic fraction of kombucha against enteric bacterial pathogens.Curr. Microbiol.201673688589610.1007/s00284‑016‑1136‑3 27638313
    [Google Scholar]
  91. SlobodníkováL. FialováS. RendekováK. KováčJ. MučajiP. Antibiofilm activity of plant polyphenols.Molecules20162112171710.3390/molecules21121717 27983597
    [Google Scholar]
  92. Al-ShabibN.A. HusainF.M. AhmadI. KhanM.S. KhanR.A. KhanJ.M. Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus.Food Control20177932533210.1016/j.foodcont.2017.03.004
    [Google Scholar]
  93. VikramA. JayaprakashaG.K. JesudhasanP.R. PillaiS.D. PatilB.S. Suppression of bacterial cell–cell signalling, biofilm formation and type III secretion system by citrus flavonoids.J. Appl. Microbiol.2010109251552710.1111/j.1365‑2672.2010.04677.x 20163489
    [Google Scholar]
  94. AliS.K. MahmoudS.M. El-MasryS.S. AlkhalifahD.H.M. HozzeinW.N. Aboel-AininM.A. Phytochemical screening and characterization of the antioxidant, anti-proliferative and antibacterial effects of different extracts of Opuntia ficus-indica peel.J. King Saud Univ. Sci.202234710221610.1016/j.jksus.2022.102216
    [Google Scholar]
  95. AlqurashiA.S. Al MasoudiL.M. HamdiH. Abu ZaidA. Chemical Composition and Antioxidant, Antiviral, Antifungal, Antibacterial and Anticancer Potentials of Opuntia ficus-indica Seed Oil.Molecules20222717545310.3390/molecules27175453 36080220
    [Google Scholar]
  96. BenramdaneE. ChouguiN. RamosP.A.B. MakhloufiN. TamendjariA. SilvestreA.J.D. SantosS.A.O. Lipophilic compounds and antibacterial activity of Opuntia ficus-indica root extracts from Algeria.Int. J. Mol. Sci.202223191116110.3390/ijms231911161 36232458
    [Google Scholar]
  97. HashemA.H. SelimT.A. AlruhailiM.H. SelimS. AlkhalifahD.H.M. Al JaouniS.K. SalemS.S. Unveiling antimicrobial and insecticidal activities of biosynthesized selenium nanoparticles using prickly pear peel waste.J. Funct. Biomater.202213311210.3390/jfb13030112 35997450
    [Google Scholar]
  98. El MannoubiI. Effect of extraction solvent on phenolic composition, antioxidant and antibacterial activities of skin and pulp of Tunisian red and yellow–orange Opuntia Ficus Indica fruits.J. Food Meas. Charact.202115164365110.1007/s11694‑020‑00673‑0
    [Google Scholar]
  99. Abdel-RazekA. ShehataM. BadrA. GromadzkaK. StępieńL. The effect of chemical composition of wild Opuntia ficus indica byproducts on its nutritional quality, antioxidant and antifungal efficacy.Egypt. J. Chem.201900010.21608/ejchem.2019.15895.1967
    [Google Scholar]
  100. BargouguiA. Maatoug TagH. BouazizM. TrikiS. Antimicrobial, antioxidant, total phenols and flavonoids content of four cactus (Opuntia ficus-indica) cultivars.Biomed. Pharmacol. J.20191231353136810.13005/bpj/1764
    [Google Scholar]
  101. KhémiriI. Essghaier HédiB. Sadfi ZouaouiN. Ben GdaraN. BitriL. The antimicrobial and wound healing potential of Opuntia ficus indica L. inermis extracted oil from Tunisia.Evid. Based Complement. Alternat. Med.2019201911010.1155/2019/9148782 31097975
    [Google Scholar]
  102. PalmeriR. ParafatiL. RestucciaC. FallicoB. Application of prickly pear fruit extract to improve domestic shelf life, quality and microbial safety of sliced beef.Food Chem. Toxicol.201811835536010.1016/j.fct.2018.05.044 29787849
    [Google Scholar]
  103. WelegerimaG. ZemeneA. TilahunY. Phytochemical composition and antibacterial activity of Opuntia ficus-indica cladodes extracts.J. Med. Plants Stud.201862243246
    [Google Scholar]
  104. Ramírez-MorenoE. Cariño-CortésR. Cruz-CansinoN.S. Delgado-OlivaresL. Ariza-OrtegaJ.A. Montañez-IzquierdoV.Y. Hernández-HerreroM.M. Filardo-KerstuppT. Antioxidant and antimicrobial properties of cactus pear (Opuntia) seed oils.J. Food Qual.201720171810.1155/2017/3075907
    [Google Scholar]
  105. R’biaO. ChkiouaC. HellalR. HerchiW. SmitiS.A. Antioxidant and antibacterial activities of Opuntia ficus indica seed oil fractions and their bioactive compounds identification.Turk Biyokim. Derg.201742448149110.1515/tjb‑2016‑0200
    [Google Scholar]
  106. GnanakalaiK. GopalR. In vitro antibacterial activities of Opuntia ficus-indica stem and fruit extracts using disc diffusion method.Int. J. Curr. Pharm. Res.2016826869
    [Google Scholar]
  107. AmmarI. BardaaS. MzidM. SahnounZ. RebaiiT. AttiaH. EnnouriM. Antioxidant, antibacterial and in vivo dermal wound healing effects of Opuntia flower extracts.Int. J. Biol. Macromol.20158148349010.1016/j.ijbiomac.2015.08.039 26306411
    [Google Scholar]
  108. SánchezE. Dávila-AviñaJ. CastilloS.L. HerediaN. Vázquez-AlvaradoR. GarcíaS. Antibacterial and antioxidant activities in extracts of fully grown cladodes of 8 cultivars of cactus pear.J. Food Sci.2014794M659M66410.1111/1750‑3841.12416 24621296
    [Google Scholar]
  109. DhaouadiK. RaboudiF. Funez-GomezL. PamiesD. EstevanC. HamdaouiM. FattouchS. Polyphenolic extract of Barbary-Fig (Opuntia ficus-indica) syrup: RP–HPLC–ESI–MS analysis and determination of antioxidant, antimicrobial and cancer-cells cytotoxic potentials.Food Anal. Methods201361455310.1007/s12161‑012‑9410‑x
    [Google Scholar]
  110. AmelR. HanenF. FeridL. RiadhK. ChedlyA. AlyR. Upshot of the ripening time on biological activities, phenol content and fatty acid composition of Tunisian Opuntia ficus-indica fruit.Afr. J. Biotechnol.201312405875588510.5897/AJB12.612
    [Google Scholar]
  111. AmmarI. EnnouriM. KhemakhemB. YanguiT. AttiaH. Variation in chemical composition and biological activities of two species of Opuntia flowers at four stages of flowering.Ind. Crops Prod.2012371344010.1016/j.indcrop.2011.11.027
    [Google Scholar]
  112. NawasT. IbrahimR. NawasT. Antibacterial activity of Curcuma longa, Opuntia ficus-indica and Linum usitatissimum.MOJ Toxicol.20184321422010.15406/mojt.2018.04.00102
    [Google Scholar]
  113. MendezM. RodríguezR. RuizJ. Morales-AdameD. CastilloF. Hernández-CastilloF.D. AguilarC.N. Antibacterial activity of plant extracts obtained with alternative organics solvents against food-borne pathogen bacteria.Ind. Crops Prod.201237144545010.1016/j.indcrop.2011.07.017
    [Google Scholar]
  114. SánchezE. GarcíaS. HerediaN. Extracts of edible and medicinal plants damage membranes of Vibrio cholerae.Appl. Environ. Microbiol.201076206888689410.1128/AEM.03052‑09 20802077
    [Google Scholar]
  115. ShehataM.G. BadrA.N. El SohaimyS.A. Novel antifungal bacteriocin from Lactobacillus paracasei KC39 with anti-mycotoxigenic properties.Biosci. Res.201815441714183
    [Google Scholar]
  116. BadrA.N. GromadzkaK. ShehataM.G. Stuper-SzablewskaK. DrzewieckaK. Abdel-RazekA.G. Prospective antimycotoxigenic action of wild Opuntia ficus-indica by-products.Czech J. Food Sci.202138530831410.17221/11/2020‑CJFS
    [Google Scholar]
  117. HajarN. NawelA. AmjadD. A study to determine total phenolic content of Opuntia ficus-indica extracts and their activity against some pathogenic fungi.World J. Pharm. Pharm. Sci.2019819810910.20959/wjpps20191‑12671
    [Google Scholar]
  118. AhmadA. DaviesJ. RandallS. SkinnerG. Antiviral properties of extract of opuntia streptacantha.Antiviral Res.1996302-3758510.1016/0166‑3542(95)00839‑X 8783800
    [Google Scholar]
  119. RasoulpourR. AfsharifarA. IzadpanahK. AminlariM. Purification and characterization of an antiviral protein from prickly pear (Opuntia ficus-indica (L.) Miller) cladode.Crop Prot.201793334210.1016/j.cropro.2016.11.005
    [Google Scholar]
  120. VicidominiC. RovielloV. RovielloG.N. In silico investigation on the interaction of chiral phytochemicals from Opuntia ficus-indica with SARS-CoV-2 Mpro.Symmetry (Basel)2021136104110.3390/sym13061041
    [Google Scholar]
/content/journals/npj/10.2174/0122103155320334240626075057
Loading
/content/journals/npj/10.2174/0122103155320334240626075057
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test