Skip to content
2000
Volume 15, Issue 8
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

Myocardial Ischemia-Reperfusion Injury (MIRI) is associated with adverse cardiovascular outcomes that lead to the death of ischemic cardiomyocytes and, finally, dysfunction of cardiac tissue.

Objectives

This systematic review aims to comprehensively investigate and systematically review the existing literature on the effects of soy isoflavones and their underlying mechanisms in mitigating MIRI injuries.

Methods

A systematic search was conducted in high-coverage scientific databases, including Web of Science, MEDLINE/PubMed, Scopus, Embase, and Cochrane Library. On 6th December, 2023, an extensive literature search was done using predefined search terms (According to MeSH terms) and inclusion criteria. Any studies that investigated the effects of soy isoflavones on MIRI injuries were included. Search strategy, screening of the publications, and data extraction were performed following PRISMA guidelines 2020.

Results

Diverse mechanisms underlying the cardioprotective effects of soy isoflavones against MIRI include antioxidant properties, anti-inflammatory effects, enhanced mitochondrial function, regulation of apoptosis pathways, improving angiogenesis effects, attenuating heart histological changes, modulating factors that affect hemodynamic changes, and reducing Ca+2 overload. Although most studies reported promising effects in reducing the complications of MIRI, a small number of studies also showed no significant effect in this regard. Also, they did not report any specific side effects from consuming isoflavones alone.

Conclusion

The findings suggest that soy isoflavones as a complementary therapeutic strategy potentially benefit MIRI outcomes and support their role in cardiovascular health. However, further well-designed clinical trials are warranted to validate these findings and establish their clinical significance in cardiovascular disease management.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155327054240822064326
2024-09-18
2025-09-09
Loading full text...

Full text loading...

References

  1. HeJ. LiuD. ZhaoL. ZhouD. RongJ. ZhangL. XiaZ. Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management. (Review)Exp. Ther. Med.202223643010.3892/etm.2022.11357 35607376
    [Google Scholar]
  2. FrankA. BonneyM. BonneyS. WeitzelL. KoeppenM. EckleT. Myocardial ischemia reperfusion injury: from basic science to clinical bedside.Semin. Cardiothorac. Vasc. Anesth.201216312313210.1177/1089253211436350 22368166
    [Google Scholar]
  3. WangY. GuoL. ZhangZ. FuS. HuangP. WangA. LiuM. MaX. A bibliometric analysis of myocardial ischemia/reperfusion injury from 2000 to 2023.Front. Cardiovasc. Med.202310118079210.3389/fcvm.2023.1180792 37383699
    [Google Scholar]
  4. HeuschG. Myocardial ischaemia–reperfusion injury and cardioprotection in perspective.Nat. Rev. Cardiol.2020171277378910.1038/s41569‑020‑0403‑y 32620851
    [Google Scholar]
  5. LiuY. ZhangJ. ZhangD. YuP. ZhangJ. YuS. Research progress on the role of pyroptosis in myocardial ischemia-reperfusion injury.Cells20221120327110.3390/cells11203271 36291138
    [Google Scholar]
  6. Caricati-NetoA. ErranteP.R. Menezes-RodriguesF.S. Recent advances in pharmacological and non-pharmacological strategies of cardioprotection.Int. J. Mol. Sci.20192016400210.3390/ijms20164002 31426434
    [Google Scholar]
  7. NeriM. RiezzoI. PascaleN. PomaraC. TurillazziE. Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists.Mediators Inflamm.2017201711410.1155/2017/7018393 28286377
    [Google Scholar]
  8. FerdinandyP. AndreadouI. BaxterG.F. BøtkerH.E. DavidsonS.M. DobrevD. GershB.J. HeuschG. LecourS. Ruiz-MeanaM. ZuurbierC.J. HausenloyD.J. SchulzR. Interaction of cardiovascular nonmodifiable risk factors, comorbidities and comedications with ischemia/reperfusion injury and cardioprotection by pharmacological treatments and ischemic conditioning.Pharmacol. Rev.202375115921610.1124/pharmrev.121.000348 36753049
    [Google Scholar]
  9. RodríguezL. TrostchanskyA. VogelH. WoodI. PalomoI. WehingerS. FuentesE. A comprehensive literature review on cardioprotective effects of bioactive compounds present in fruits of aristotelia chilensis stuntz (Maqui).Molecules20222719614710.3390/molecules27196147 36234679
    [Google Scholar]
  10. NyamweyaB. RukshalaD. Fernando, N Cardioprotective Effects of Vitex negundo: A Review of Bioactive Extracts and Compounds.J. Evid. Based Integr. Med.202328251569010.1177/2515690X231176622
    [Google Scholar]
  11. KimI.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans.Antioxidants2021107106410.3390/antiox10071064 34209224
    [Google Scholar]
  12. TangY. LiS. ZhangP. ZhuJ. MengG. XieL. YuY. JiY. HanY. Soy isoflavone protects myocardial ischemia/reperfusion injury through increasing endothelial nitric oxide synthase and decreasing oxidative stress in ovariectomized rats.Oxid. Med. Cell. Longev.2016201611410.1155/2016/5057405 27057277
    [Google Scholar]
  13. SbarouniE. IliodromitisE.K. ZogaA. VlachouG. AndreadouI. KremastinosD.T. The effect of the phytoestrogen genistein on myocardial protection, preconditioning and oxidative stress.Cardiovasc. Drugs Ther.200620425325810.1007/s10557‑006‑8971‑6 16912838
    [Google Scholar]
  14. GrangerD.N. KvietysP.R. Reperfusion injury and reactive oxygen species: The evolution of a concept.Redox Biol.2015652455110.1016/j.redox.2015.08.020 26484802
    [Google Scholar]
  15. RayS.D. KrmicM. HussainA. Toxicity of natural products.Encyclopedia of Toxicology. WexlerP. OxfordAcademic Press202425728210.1016/B978‑0‑12‑824315‑2.01189‑1]
    [Google Scholar]
  16. LeeS.H. LeeJ.H. AsaharaT. KimY.S. JeongH.C. AhnY. JungJ.S. KwonS.M. Genistein promotes endothelial colony-forming cell (ECFC) bioactivities and cardiac regeneration in myocardial infarction.PLoS One2014959615510.1371/journal.pone.0096155 24830850
    [Google Scholar]
  17. NievesJ.W. Alternative Therapy through Nutrients and Nutraceuticals.Osteoporosis, 4th ed; MarcusR. FeldmanD. Dempster,D.W Luckey,M. Cauley,J.A. Academic Press: San Diego20131739174910.1016/B978‑0‑12‑415853‑5.00074‑1]
    [Google Scholar]
  18. YangC.F. Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury.Tzu-Chi Med. J.201830420921510.4103/tcmj.tcmj_33_18 30305783
    [Google Scholar]
  19. NapoliC. CicalaC. WallaceJ.L. de NigrisF. SantagadaV. CaliendoG. FranconiF. IgnarroL.J. CirinoG. Protease-activated receptor-2 modulates myocardial ischemia-reperfusion injury in the rat heart.Proc. Natl. Acad. Sci. USA20009773678368310.1073/pnas.97.7.3678 10737808
    [Google Scholar]
  20. ColaredaG.A. ConsoliniA.E. Low-flow ischaemia and reperfusion in rat hearts: energetic of stunning and cardioprotection of genistein.J. Pharm. Pharmacol.20187091174118710.1111/jphp.12945 29931707
    [Google Scholar]
  21. VadivelanR. SundaramV. MohanasundaramT. TIwari r, subramani m. cardioprotective effect of daidzein against isoproterenol-induced myocardial infarction injury in rats.Res Sq2022
    [Google Scholar]
  22. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.BMJ2021372717110.1136/bmj.n71 33782057
    [Google Scholar]
  23. XieL. MengG. JiY. Abstract 71: soy isoflavone protects myocardial ischemia/reperfusion injury through increasing endothelial nitric oxide synthase and decreasing oxidative stress in ovariectomized rats.Circ. Res.2015117717110.1161/res.117.suppl_1.71
    [Google Scholar]
  24. Effects of soy isoflavones preconditioning on myocardial ischem ia/reperfusion injury in isolated hearts of rats. Chinese J. Clin. Pharmaco.Therap.201116101090
    [Google Scholar]
  25. ImagawaJ. BaxterG.F. YellonD.M. Genistein, a tyrosine kinase inhibitor, blocks the “second window of protection” 48 h after ischemic preconditioning in the rabbit.J. Mol. Cell. Cardiol.19972971885189310.1006/jmcc.1997.0428 9236142
    [Google Scholar]
  26. DeodatoB. AltavillaD. SquadritoG. CampoG.M. ArlottaM. MinutoliL. SaittaA. CucinottaD. CalapaiG. CaputiA.P. MianoM. SquadritoF. Cardioprotection by the phytoestrogen genistein in experimental myocardial ischaemia‐reperfusion injury.Br. J. Pharmacol.199912881683169010.1038/sj.bjp.0702973 10588923
    [Google Scholar]
  27. ZhaiP. EurellT.E. CotthausR.P. JefferyE.H. BahrJ.M. GrossD.R. Effects of dietary phytoestrogen on global myocardial ischemia-reperfusion injury in isolated female rat hearts.Am. J. Physiol. Heart Circ. Physiol.200128131223123210.1152/ajpheart.2001.281.3.H1223 11514291
    [Google Scholar]
  28. JiE.S. YueH. WuY.M. HeR.R. Effects of phytoestrogen genistein on myocardial ischemia/reperfusion injury and apoptosis in rabbits.Acta Pharmacol. Sin.2004253306312[PMID: 15000883].
    [Google Scholar]
  29. SupartoI.H. WilliamsJ.K. FoxJ.L. YusufJ.T.L. SajuthiD. Effects of hormone therapy and dietary soy on myocardial ischemia/reperfusion injury in ovariectomized atherosclerotic monkeys.Menopause200815225626310.1097/gme.0b013e31812e6b4a 17917613
    [Google Scholar]
  30. KimJ.W. JinY.C. KimY.M. RhieS. KimH.J. SeoH.G. LeeJ.H. HaY.L. ChangK.C. Daidzein administration in vivo reduces myocardial injury in a rat ischemia/reperfusion model by inhibiting NF-kB activation.Life Sci.2009847-822723410.1016/j.lfs.2008.12.005 19109981
    [Google Scholar]
  31. HanY. YunS. KoH. LeeS. Therapeutic effect of genistein-stimulated human mesenchymal stem cells in myocardial infarction.J. Transplant. Stem. Cel. Biol.2014117
    [Google Scholar]
  32. GuM. ZhengA. JinJ. CuiY. ZhangN. CheZ. WangY. ZhanJ. TuW. Cardioprotective effects of genistin in rat myocardial ischemia-reperfusion injury studies by regulation of P2X7/NF- κ B Pathway.Evid. Based Complement. Alternat. Med.201620161910.1155/2016/5381290 27087823
    [Google Scholar]
  33. LiY. ZhangH. Soybean isoflavones ameliorate ischemic cardiomyopathy by activating Nrf2-mediated antioxidant responses.Food Funct.2017882935294410.1039/C7FO00342K 28745354
    [Google Scholar]
  34. BozdoganO. EksiogluD. ErimF. KayaS.T. OzaslanO.T. YasarS. The effect of acute or long-term genistein administration on the ischemia/reperfusion-induced arrhythmia in rats.MOJ Anatomy Physiology20185636236610.15406/mojap.2018.05.00226
    [Google Scholar]
  35. ShiY.N. ZhangX.Q. HuZ.Y. ZhangC.J. LiaoD.F. HuangH.L. QinL. Genistein protects h9c2 cardiomyocytes against chemical hypoxia-induced injury via inhibition of apoptosis.Pharmacology20191035-628229010.1159/000497061 30808828
    [Google Scholar]
  36. ColaredaG.A. RagoneM.I. BonazzolaP. ConsoliniA.E. The mKATP Channels and protein-kinase C Are Involved in the Cardioprotective Effects of Genistein on Estrogen-Deficient Rat Hearts Exposed to Ischemia/Reperfusion: Energetic Study.J. Cardiovasc. Pharmacol.202075546047410.1097/FJC.0000000000000816 32195757
    [Google Scholar]
  37. ZengX. YuJ. ZengT. LiuY. LiB. 3′-daidzein sulfonate protects myocardial cells from hypoxic-ischemic injury via the NRF2/HO-1 signaling pathway.J. Thorac. Dis.202113126897691010.21037/jtd‑21‑1909 35070374
    [Google Scholar]
  38. RamachandranV. VaikunthV. MohanasundaramT. TıwarıR. MageshH. Daidzein alleviates isoproterenol-induced cardiac injury in rats via NF-kB pathway inhibition.Hacettepe Uni. J. Facult. Pharmacy202444212413010.52794/hujpharm.1338923
    [Google Scholar]
  39. PeoplesJ.N. SarafA. GhazalN. PhamT.T. KwongJ.Q. Mitochondrial dysfunction and oxidative stress in heart disease.Exp. Mol. Med.2019511211310.1038/s12276‑019‑0355‑7 31857574
    [Google Scholar]
  40. EltzschigH.K. EckleT. Ischemia and reperfusion—from mechanism to translation.Nat. Med.201117111391140110.1038/nm.2507 22064429
    [Google Scholar]
  41. McDougalA.D. DeweyC.F.Jr Modeling oxygen requirements in ischemic cardiomyocytes.J. Biol. Chem.201729228117601177610.1074/jbc.M116.751826 28487363
    [Google Scholar]
  42. BuggerH. PfeilK. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling.Biochim. Biophys. Acta Mol. Basis Dis.20201866716576810.1016/j.bbadis.2020.165768 32173461
    [Google Scholar]
  43. ZhuangY. YuM. LuS. Purinergic signaling in myocardial ischemia–reperfusion injury.Purinergic Signal.202319122924310.1007/s11302‑022‑09856‑4 35254594
    [Google Scholar]
  44. LiH. XiaZ. ChenY. QiD. ZhengH. Mechanism and therapies of oxidative stress-mediated cell death in ischemia reperfusion injury.Oxid. Med. Cell. Longev.201820181210.1155/2018/2910643 30034574
    [Google Scholar]
  45. BujaL.M. Pathobiology of myocardial ischemia and reperfusion injury: models, modes, molecular mechanisms, modulation, and clinical applications.Cardiol. Rev.202331525226410.1097/CRD.0000000000000440 35175958
    [Google Scholar]
  46. TeerlinkJ.R. FelkerG.M. McMurrayJ.J.V. SolomonS.D. AdamsK.F.Jr ClelandJ.G.F. EzekowitzJ.A. GoudevA. MacdonaldP. MetraM. MitrovicV. PonikowskiP. SerpytisP. SpinarJ. TomcsányiJ. VandekerckhoveH.J. VoorsA.A. MonsalvoM.L. JohnstonJ. MalikF.I. HonarpourN. Chronic oral study of myosin activation to increase contractility in Heart Failure (COSMIC-HF): a phase 2, pharmacokinetic, randomised, placebo-controlled trial.Lancet2016388100622895290310.1016/S0140‑6736(16)32049‑9 27914656
    [Google Scholar]
  47. ZhouB. TianR. Mitochondrial dysfunction in pathophysiology of heart failure.J. Clin. Invest.201812893716372610.1172/JCI120849 30124471
    [Google Scholar]
  48. SeidlmayerL.K. JuettnerV.V. KettlewellS. PavlovE.V. BlatterL.A. DedkovaE.N. Distinct mPTP activation mechanisms in ischaemia–reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate.Cardiovasc. Res.2015106223724810.1093/cvr/cvv097 25742913
    [Google Scholar]
  49. StamerraC.A. Di GiosiaP. GiorginiP. FerriC. SukhorukovV.N. SahebkarA. Mitochondrial dysfunction and cardiovascular disease: pathophysiology and emerging therapies.Oxid. Med. Cell. Longev.2022202211610.1155/2022/9530007 35958017
    [Google Scholar]
  50. WestmanP.C. LipinskiM.J. LugerD. WaksmanR. BonowR.O. WuE. EpsteinS.E. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction.J. Am. Coll. Cardiol.201667172050206010.1016/j.jacc.2016.01.073 27126533
    [Google Scholar]
  51. LuoW. BianX. LiuX. ZhangW. XieQ. FengL. A new method for the treatment of myocardial ischemia-reperfusion injury based on γδT cell-mediated immune response.Front. Cardiovasc. Med.202310121931610.3389/fcvm.2023.1219316 37600023
    [Google Scholar]
  52. MaY. Role of neutrophils in cardiac injury and repair following myocardial infarction.Cells2021107167610.3390/cells10071676 34359844
    [Google Scholar]
  53. FranciscoJ. Del ReD.P. Inflammation in myocardial ischemia/reperfusion injury: underlying mechanisms and therapeutic potential.Antioxidants20231211194410.3390/antiox12111944 38001797
    [Google Scholar]
  54. LiuY. LiL. WangZ. ZhangJ. ZhouZ. Myocardial ischemia-reperfusion injury; Molecular mechanisms and prevention.Microvasc. Res.202314910456510.1016/j.mvr.2023.104565 37307911
    [Google Scholar]
  55. SchironeL. ForteM. D’AmbrosioL. ValentiV. VecchioD. SchiavonS. SpinosaG. SartoG. PetrozzaV. FratiG. SciarrettaS. An overview of the molecular mechanisms associated with myocardial ischemic injury: state of the art and translational perspectives.Cells2022117116510.3390/cells11071165 35406729
    [Google Scholar]
  56. CaoD.J. SchiattarellaG.G. VillalobosE. JiangN. MayH.I. LiT. ChenZ.J. GilletteT.G. HillJ.A. Cytosolic dna sensing promotes macrophage transformation and governs myocardial ischemic injury.Circulation2018137242613263410.1161/CIRCULATIONAHA.117.031046 29437120
    [Google Scholar]
  57. SilvisM.J.M. Kaffka genaamd Dengler, S.E.; Odille, C.A.; Mishra, M.; van der Kaaij, N.P.; Doevendans, P.A.; Sluijter, J.P.G.; de Kleijn, D.P.V.; de Jager, S.C.A.; Bosch, L.; van Hout, G.P.J. Damage-associated molecular patterns in myocardial infarction and heart transplantation: the road to translational success.Front. Immunol.20201159951110.3389/fimmu.2020.599511 33363540
    [Google Scholar]
  58. WuQ. XuR. ZhangK. SunR. YangM. LiK. LiuH. XueY. XuH. GuoY. Characterization of early myocardial inflammation in ischemia-reperfusion injury.Front. Immunol.202313108171910.3389/fimmu.2022.1081719 36814859
    [Google Scholar]
  59. KhalidN. AzimpouranM. Treasure Island.StatPearls Publishing2023
    [Google Scholar]
  60. KariS. SubramanianK. AltomonteI.A. MurugesanA. Yli-HarjaO. KandhaveluM. Programmed cell death detection methods: a systematic review and a categorical comparison.Apoptosis2022277-848250810.1007/s10495‑022‑01735‑y 35713779
    [Google Scholar]
  61. KosuruR. CaiY. KandulaV. YanD. WangC. ZhengH. LiY. IrwinM.G. SinghS. XiaZ. AMPK Contributes to cardioprotective effects of pterostilbene against myocardial ischemia- reperfusion injury in diabetic rats by suppressing cardiac oxidative stress and apoptosis.Cell. Physiol. Biochem.20184641381139710.1159/000489154 29689567
    [Google Scholar]
  62. WangX. ChenJ. HuangX. Rosuvastatin attenuates myocardial ischemia-reperfusion injury via upregulating miR-17-3p -Mediated Autophagy.Cell. Reprogram.201921632333010.1089/cell.2018.0053 31730378
    [Google Scholar]
  63. Del ReD.P. AmgalanD. LinkermannA. LiuQ. KitsisR.N. Fundamental mechanisms of regulated cell death and implications for heart disease.Physiol. Rev.20199941765181710.1152/physrev.00022.2018 31364924
    [Google Scholar]
  64. SleeE.A. AdrainC. MartinS.J. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis.J. Biol. Chem.2001276107320732610.1074/jbc.M008363200 11058599
    [Google Scholar]
  65. Hernández-ReséndizS. Muñoz-VegaM. ContrerasW.E. Crespo-AvilanG.E. Rodriguez-MontesinosJ. Arias-CarriónO. Pérez-MéndezO. BoisvertW.A. PreissnerK.T. Cabrera-FuentesH.A. Responses of endothelial cells towards ischemic conditioning following acute myocardial infarction.Cond. Med.201815247258[PMID: 30338315].
    [Google Scholar]
  66. VersariD. DaghiniE. VirdisA. GhiadoniL. TaddeiS. Endothelial dysfunction as a target for prevention of cardiovascular disease.Diabetes Care200932231432110.2337/dc09‑S330
    [Google Scholar]
  67. KlokaJ.A. FriedrichsonB. WülfrothP. HenningR. ZacharowskiK. Microvascular leakage as therapeutic target for ischemia and reperfusion injury.Cells20231210134510.3390/cells12101345 37408180
    [Google Scholar]
  68. ChangX. LochnerA. WangH.H. WangS. ZhuH. RenJ. ZhouH. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control.Theranostics202111146766678510.7150/thno.60143 34093852
    [Google Scholar]
  69. SchanzeN. HamadM.A. NührenbergT.G. BodeC. DuerschmiedD. Platelets in myocardial ischemia/reperfusion injury.Hamostaseologie202343211012110.1055/a‑1739‑9351 35913081
    [Google Scholar]
  70. ZieglerM. WangX. PeterK. Platelets in cardiac ischaemia/reperfusion injury: a promising therapeutic target.Cardiovasc. Res.201911571178118810.1093/cvr/cvz070 30906948
    [Google Scholar]
  71. PanQ. LiuY. MaW. KanR. ZhuH. LiD. Cardioprotective effects and possible mechanisms of luteolin for myocardial ischemia-reperfusion injury: a systematic review and meta-analysis of preclinical evidence.Front. Cardiovasc. Med.2022968599810.3389/fcvm.2022.685998 35548432
    [Google Scholar]
  72. RodrigoR. RetamalC. SchupperD. Vergara-HernándezD. SahaS. ProfumoE. ButtariB. SasoL. Antioxidant cardioprotection against reperfusion injury: potential therapeutic roles of resveratrol and quercetin.Molecules2022278256410.3390/molecules27082564 35458766
    [Google Scholar]
  73. YoonG.A. ParkS. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats.Nutr. Res. Pract.20148661862410.4162/nrp.2014.8.6.618 25489400
    [Google Scholar]
  74. KimT.Y. LeemE. LeeJ.M. KimS.R. Control of reactive oxygen species for the prevention of parkinson’s disease: the possible application of flavonoids.Antioxidants20209758310.3390/antiox9070583 32635299
    [Google Scholar]
  75. YangS.E. LienJ.C. TsaiC.W. WuC.R. Therapeutic potential and mechanisms of novel simple o-substituted isoflavones against cerebral ischemia reperfusion.Int. J. Mol. Sci.202223181039410.3390/ijms231810394 36142301
    [Google Scholar]
  76. LiY. ZhangJ.J. ChenR.J. ChenL. ChenS. YangX.F. MinJ.W. Genistein mitigates oxidative stress and inflammation by regulating Nrf2/HO-1 and NF-κB signaling pathways in hypoxic-ischemic brain damage in neonatal mice.Ann. Transl. Med.20221023210.21037/atm‑21‑4958 35282070
    [Google Scholar]
  77. Sharifi-RadJ. QuispeC. ImranM. RaufA. NadeemM. GondalT.A. AhmadB. AtifM. MubarakM.S. SytarO. ZhilinaO.M. GarsiyaE.R. SmeriglioA. TrombettaD. PonsD.G. MartorellM. CardosoS.M. RazisA.F.A. SunusiU. KamalR.M. RotariuL.S. ButnariuM. DoceaA.O. CalinaD. Genistein: an integrative overview of its mode of action, pharmacological properties, and health benefits.Oxid. Med. Cell. Longev.2021202113610.1155/2021/3268136 34336089
    [Google Scholar]
  78. ZhangY. YinL. DongJ. XiaX. Soy isoflavones protect neuronal pc12 cells against hypoxic damage through nrf2 activation and suppression of p38 mapk and akt–mtor pathways.Antioxidants20221110203710.3390/antiox11102037 36290760
    [Google Scholar]
  79. ChenS. ChenH. DuQ. ShenJ. Targeting myeloperoxidase (mpo) mediated oxidative stress and inflammation for reducing brain ischemia injury: potential application of natural compounds.Front. Physiol.20201143310.3389/fphys.2020.00433 32508671
    [Google Scholar]
  80. KaoT.H. WuW.M. HungC.F. WuW.B. ChenB.H. Anti-inflammatory effects of isoflavone powder produced from soybean cake.J. Agric. Food Chem.20075526110681107910.1021/jf071851u 18052238
    [Google Scholar]
  81. HanH. DongP. LiuK. The role of nf-κb in myocardial ischemia/reperfusion injury.Curr. Protein Pept. Sci.202223853554710.2174/1389203723666220817085941 35980051
    [Google Scholar]
  82. ZhouJ. TianG. QuanY. LiJ. WangX. WuW. LiM. LiuX. Inhibition of p2x7 purinergic receptor ameliorates cardiac fibrosis by suppressing nlrp3/il-1 β pathway.Oxid. Med. Cell. Longev.2020202011310.1155/2020/7956274 32566102
    [Google Scholar]
  83. LiZ. HuangZ. BaiL. The P2X7 receptor in osteoarthritis.Front. Cell Dev. Biol.2021962833010.3389/fcell.2021.628330 33644066
    [Google Scholar]
  84. ZhongR. MiaoL. ZhangH. TanL. ZhaoY. TuY. Angel PrietoM. Simal-GandaraJ. ChenL. HeC. CaoH. Anti-inflammatory activity of flavonols via inhibiting MAPK and NF-κB signaling pathways in RAW264.7 macrophages. Current. Research in Food Science.202251176118410.1016/j.crfs.2022.07.007 35941847
    [Google Scholar]
  85. PeiW.N. HuH.J. LiuF. XiaoB. ZuoY.B. CuiW. C-reactive protein aggravates myocardial ischemia/reperfusion injury through activation of extracellular-signal-regulated kinase 1/2.J. Geriatr. Cardiol.2018157492503[PMID: 30364730].
    [Google Scholar]
  86. KrólM. KepinskaM. Human nitric oxide synthase—its functions, polymorphisms, and inhibitors in the context of inflammation, diabetes and cardiovascular diseases.Int. J. Mol. Sci.20202215610.3390/ijms22010056 33374571
    [Google Scholar]
  87. ZhangL. ChenJ. LiaoH. LiC. ChenM. Anti-inflammatory effect of lipophilic grape seed proanthocyanidin in RAW 264.7 cells and a zebrafish model.J. Funct. Foods20207510421710.1016/j.jff.2020.104217
    [Google Scholar]
  88. SahinI. BilirB. AliS. SahinK. KucukO. Soy isoflavones in integrative oncology: increased efficacy and decreased toxicity of cancer therapy.Integr. Cancer Ther.20191810.1177/1534735419835310 30897972
    [Google Scholar]
  89. PangD. YangC. LuoQ. LiC. LiuW. LiL. ZouY. FengB. ChenZ. HuangC. Soy isoflavones improve the oxidative stress induced hypothalamic inflammation and apoptosis in high fat diet-induced obese male mice through PGC1-alpha pathway.Aging (Albany NY)20201298710872710.18632/aging.103197 32434959
    [Google Scholar]
  90. Syed Abd HalimS.A. Abd RashidN. WoonC.K. Abdul JalilN.A. Natural products targeting pi3k/akt in myocardial ischemic reperfusion injury: a scoping review.Pharmaceuticals (Basel)202316573910.3390/ph16050739 37242521
    [Google Scholar]
  91. ZhaoQ. LiuF. ZhaoQ. ZhangJ. LuoJ. LiX. YangY. Constitutive activation of ERK1/2 signaling protects against myocardial ischemia via inhibition of mitochondrial fragmentation in the aging heart.Ann. Transl. Med.20219647910.21037/atm‑21‑503 33850876
    [Google Scholar]
  92. KuznetsovA.V. JavadovS. MargreiterR. GrimmM. HagenbuchnerJ. AusserlechnerM.J. The role of mitochondria in the mechanisms of cardiac ischemia-reperfusion injury.Antioxidants201981045410.3390/antiox8100454 31590423
    [Google Scholar]
  93. SuX. ZhouM. LiY. AnN. YangF. ZhangG. XuL. ChenH. WuH. XingY. Mitochondrial damage in myocardial ischemia/reperfusion injury and application of natural plant products.Oxid. Med. Cell. Longev.2022202211910.1155/2022/8726564 35615579
    [Google Scholar]
  94. UpadhyayS. ManthaA.K. DhimanM. Glycyrrhiza glabra (Licorice) root extract attenuates doxorubicin-induced cardiotoxicity via alleviating oxidative stress and stabilising the cardiac health in H9c2 cardiomyocytes.J. Ethnopharmacol.202025811269010.1016/j.jep.2020.112690 32105749
    [Google Scholar]
  95. ZhaoY. GuoR. LiL. LiS. FanG. ZhaoX. WangY. Tongmai formula improves cardiac function via regulating mitochondrial quality control in the myocardium with ischemia/reperfusion injury.Biomed. Pharmacother.202013211089710.1016/j.biopha.2020.110897 33113431
    [Google Scholar]
  96. HettlingH. van BeekJ.H.G.M. Analyzing the functional properties of the creatine kinase system with multiscale ‘sloppy’ modeling.PLOS Comput. Biol.201178100213010.1371/journal.pcbi.1002130 21912519
    [Google Scholar]
  97. JohalG. JonnalaV. PourafkariL. SedghiS. JafarsisS. FernandezS. IyerV. NaderN.D. Energy loss index as a predictor of all‐cause mortality after transcatheter aortic valve replacement: A long‐term follow‐up.Echocardiography202340432733410.1111/echo.15545 36859692
    [Google Scholar]
  98. AdamsR.H. AlitaloK. Molecular regulation of angiogenesis and lymphangiogenesis.Nat. Rev. Mol. Cell Biol.20078646447810.1038/nrm2183 17522591
    [Google Scholar]
  99. EelenG. TrepsL. LiX. CarmelietP. Basic and therapeutic aspects of angiogenesis updated.Circ. Res.2020127231032910.1161/CIRCRESAHA.120.316851 32833569
    [Google Scholar]
  100. li, J.; Arany, Z.P.; Eghbali, M. Abstract 223: The role of angiogenesis in the myocardial ischemia/reperfusion injury in pregnancy.Circ. Res.201411522322310.1161/res.115.suppl_1.223
    [Google Scholar]
  101. YuJ. BiX. YuB. ChenD. Isoflavones: anti-inflammatory benefit and possible caveats.Nutrients20168636110.3390/nu8060361 27294954
    [Google Scholar]
  102. ManB. CuiC. ZhangX. SugiyamaD. Barinas-MitchellE. SekikawaA. The effect of soy isoflavones on arterial stiffness: a systematic review and meta-analysis of randomized controlled trials.Eur. J. Nutr.202160260361410.1007/s00394‑020‑02300‑6 32529287
    [Google Scholar]
  103. SandooA. Veldhuijzen van ZantenJ.J.C.S. MetsiosG.S. CarrollD. KitasG.D. The endothelium and its role in regulating vascular tone.Open Cardiovasc. Med. J.20104130231210.2174/1874192401004010302 21339899
    [Google Scholar]
  104. SilvaH. The vascular effects of isolated isoflavones—a focus on the determinants of blood pressure regulation.Biology (Basel)20211014910.3390/biology10010049 33445531
    [Google Scholar]
  105. KimI.S. YangW.S. KimC.H. Beneficial effects of soybean-derived bioactive peptides.Int. J. Mol. Sci.20212216857010.3390/ijms22168570 34445273
    [Google Scholar]
  106. LiuM. WangG. XuR. ShenC. NiH. LaiR. Soy isoflavones inhibit both gpib-ix signaling and αiibβ3 outside-in signaling via 14-3-3ζ in platelet.Molecules20212616491110.3390/molecules26164911
    [Google Scholar]
  107. WangR. WangM. HeS. SunG. SunX. Targeting calcium homeostasis in myocardial ischemia/reperfusion injury: an overview of regulatory mechanisms and therapeutic reagents.Front. Pharmacol.20201187210.3389/fphar.2020.00872 32581817
    [Google Scholar]
  108. EisnerD.A. CaldwellJ.L. TraffordA.W. HutchingsD.C. The control of diastolic calcium in the heart.Circ. Res.2020126339541210.1161/CIRCRESAHA.119.315891 31999537
    [Google Scholar]
  109. WenzelU. FuchsD. DanielH. Protective effects of soy-isoflavones in cardiovascular disease. Identification of molecular targets.Hamostaseologie2008281-28588[PMID: 18278168].
    [Google Scholar]
  110. MoutsatsouP. The spectrum of phytoestrogens in nature: our knowledge is expanding.Hormones (Athens)200763173193[PMID: 17724002].
    [Google Scholar]
  111. OtunJ. SahebkarA. ÖstlundhL. AtkinS.L. SathyapalanT. Systematic review and meta-analysis on the effect of soy on thyroid function.Sci. Rep.201991396410.1038/s41598‑019‑40647‑x 30850697
    [Google Scholar]
  112. ChandraA.K. MukhopadhyayS. LahariD. TripathyS. Goitrogenic content of Indian cyanogenic plant foods & their in vitro anti-thyroidal activity.Indian J. Med. Res.20041195180185[PMID: 15218979].
    [Google Scholar]
  113. JakesR.W. AlexanderL. DuffyS.W. LeongJ. ChenL.H. LeeW.H. Dietary intake of soybean protein and menstrual cycle length in pre-menopausal Singapore Chinese women.Public Health Nutr.20014219119610.1079/PHN200063 11299091
    [Google Scholar]
  114. OseniT. PatelR. PyleJ. JordanV. Selective estrogen receptor modulators and phytoestrogens.Planta Med.200874131656166510.1055/s‑0028‑1088304 18843590
    [Google Scholar]
  115. MurrayM.J. MeyerW.R. LesseyB.A. OiR.H. DeWireR.E. FritzM.A. Soy protein isolate with isoflavones does not prevent estradiol-induced endometrial hyperplasia in postmenopausal women: a pilot trial.Menopause200310545646410.1097/01.GME.0000063567.84134.D1 14501608
    [Google Scholar]
/content/journals/npj/10.2174/0122103155327054240822064326
Loading
/content/journals/npj/10.2174/0122103155327054240822064326
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test