Skip to content
2000
Volume 19, Issue 2
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

The food business makes extensive use of lipophilic bioactive substances derived from plants, such as phytosterols, antimicrobials, antioxidants, ω3 fatty acids, tastes, and countless other constituennts. The preponderance of these bioactive substances, nevertheless, is just about unsolvable in hydric solution and unbalanced at a particular eco-friendly provocation, such as sunlight, temperature, and oxygen, in construction, transference, storage, and employment, for example, icy, chilling, desiccation, warm air dealing out, or machine-driven agitation. According to this standpoint, there are high-tech hitches that must be resolved to inform functionality for the social figure due to the lipophilic bioactive dearth of solubilization, bioavailability, and permanency. This leads to failure in commercialization and quality enhancement. Nanotechnology can generally be used to manufacture nano-kinds of stuff like nano-emulsion, nanoparticles, nanostructured materials, and nanocomposites. The creation of functional foods has attracted a huge interest as our consideration of their affiliation with nourishment and human health has grown. There are still a number of problems that need to be fixed, such as finding useful substances, figuring out ideal intake amounts, and fashioning apt food conveyance systems in addition to product compositions. In several of these areas, new methods and materials developed through nanotechnology have the potential to offer fresh explanations. The present article provides a thorough examination of nanotechnologies employed in the development of functional foods. It outlines the current patterns and forthcoming outlooks of sophisticated nanomaterials in the food industry, with particular emphasis on their applications in processing, packaging, safety, and preservation. The utilization of nanotechnologies in the food industry can improve the “bioavailability, taste, texture, and consistency of food products”. This is accomplished by manipulating the particle size, potential cluster formation, and surface charge of food nanomaterials. Furthermore, this paper examines the utilization of nano-delivery systems for administering nutraceuticals, the cooperative effects of nanomaterials in safeguarding food, and the implementation of nano-sensors in intelligent food packaging to monitor the quality of stored food. Additionally, the customary techniques employed for evaluating the influence of nanomaterials on biological systems are also addressed. By examining patents, we aim to gain insights into the trends and innovations driving this field forward and assess its implications on the food industry and society.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/1872210517666230825100347
2023-10-02
2025-09-23
Loading full text...

Full text loading...

References

  1. QureshiM.A. KarthikeyanS. KarthikeyanP. KhanP.A. UpritS. MishraU.K. Application of nanotechnology in food and dairy processing: An overview.Pak. J. Food Sci.20122212331
    [Google Scholar]
  2. RoselliM. FinamoreA. GaragusoI. BrittiM.S. MengheriE. Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli.J. Nutr.2003133124077408210.1093/jn/133.12.407714652351
    [Google Scholar]
  3. SawaiJ. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay.J. Microbiol. Methods200354217718210.1016/S0167‑7012(03)00037‑X12782373
    [Google Scholar]
  4. DasguptaN. RanjanS. MundekkadD. RamalingamC. ShankerR. KumarA. Nanotechnology in agro-food: From field to plate.Food Res. Int.20156938140010.1016/j.foodres.2015.01.005
    [Google Scholar]
  5. TopolskaK. FlorkiewiczA. Filipiak-FlorkiewiczA. Functional food—Consumer motivations and expectations.Int. J. Environ. Res. Public Health20211810532710.3390/ijerph1810532734067768
    [Google Scholar]
  6. AlongiM. AneseM. Re-thinking functional food development through a holistic approach.J. Funct. Foods20218110446610.1016/j.jff.2021.104466
    [Google Scholar]
  7. DiasM.C. PintoD.C.G.A. SilvaA.M.S. Plant flavonoids: Chemical characteristics and biological activity.Molecules20212617537710.3390/molecules2617537734500810
    [Google Scholar]
  8. KarakP. Biological activities of flavonoids: An overview.Int. J. Pharm. Sci. Res.201910415671574
    [Google Scholar]
  9. SahooM. VishwakarmaS. PanigrahiC. KumarJ. Nanotechnology: Current applications and future scope in food.Food Front.20212132210.1002/fft2.58
    [Google Scholar]
  10. HeX. DengH. HwangH.M. The current application of nanotechnology in food and agriculture.Yao Wu Shi Pin Fen Xi201927112130648562
    [Google Scholar]
  11. McClementsD. ÖztürkB. Utilization of nanotechnology to improve the handling, storage and biocompatibility of bioactive lipids in food applications.Foods202110236510.3390/foods1002036533567622
    [Google Scholar]
  12. SampathkumarK. TanK.X. LooS.C.J. Developing nano-delivery systems for agriculture and food applications with nature-derived polymers.iScience202023510105510.1016/j.isci.2020.10105532339991
    [Google Scholar]
  13. FrewerL. ScholdererJ. LambertN. Consumer acceptance of functional foods: Issues for the future.Br. Food J.20031051071473110.1108/00070700310506263
    [Google Scholar]
  14. ContorL. Functional Food Science in Europe. Nutrition, metabolism, and cardiovascular diseases.Nutr. Metab. Cardiovasc. Dis.200111S4202311894747
    [Google Scholar]
  15. SinghH. Nanotechnology applications in functional foods; opportunities and challenges.Prev. Nutr. Food Sci.20162111810.3746/pnf.2016.21.1.127069899
    [Google Scholar]
  16. ChaturvediS DavePN Application of nanotechnology in foods and beverages.In: Nanoengineering in the beverage industryAcademic Press202013716210.1016/B978‑0‑12‑816677‑2.00005‑3
    [Google Scholar]
  17. BigliardiB. GalatiF. Innovation trends in the food industry: The case of functional foods.Trends Food Sci. Technol.201331211812910.1016/j.tifs.2013.03.006
    [Google Scholar]
  18. PaulSD DewanganD Nanotechnology and neutraceuticals.Int J Nanomater Nanotechnol Nanomed20162100901210.17352/2455.2016;3492(09)
    [Google Scholar]
  19. MacAulayJ. PetersenB. ShankF. Functional foods: Opportunities and challenges. Institute of Food Technologists (IFT) Expert Report.Institute of Food Technologists2005
    [Google Scholar]
  20. BetoretE. BetoretN. VidalD. FitoP. Functional foods development: Trends and technologies.Trends Food Sci. Technol.201122949850810.1016/j.tifs.2011.05.004
    [Google Scholar]
  21. LuoY. WangQ. ZhangY. Biopolymer-based nanotechnology approaches to deliver bioactive compounds for food applications: A perspective on the past, present, and future.J. Agric. Food Chem.20206846129931300010.1021/acs.jafc.0c0027732134655
    [Google Scholar]
  22. McClementsD.J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals.Biotechnol. Adv.20203810728710.1016/j.biotechadv.2018.08.00430086329
    [Google Scholar]
  23. TiwariR TakhistovP Nanotechnology‐enabled delivery systems for food functionalization and fortification.In: Nanotechnology research methods for foods and bioproductsWiley20125510110.1002/9781118229347.ch5
    [Google Scholar]
  24. DudefoiW. TerrisseH. Richard-PlouetM. GautronE. PopaF. HumbertB. RopersM.H. Criteria to define a more relevant reference sample of titanium dioxide in the context of food: A multiscale approach.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201734511310.1080/19440049.2017.128434628105903
    [Google Scholar]
  25. WeirA. WesterhoffP. FabriciusL. HristovskiK. von GoetzN. Titanium dioxide nanoparticles in food and personal care products.Environ. Sci. Technol.20124642242225010.1021/es204168d22260395
    [Google Scholar]
  26. DorierM. BéalD. Marie-DesvergneC. DubossonM. BarreauF. HoudeauE. Herlin-BoimeN. CarriereM. Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress.Nanotoxicology201711675176128671030
    [Google Scholar]
  27. U.S. FDAColor additive status list. United States Food & Drug Administration.2015
    [Google Scholar]
  28. The European CommissionCommission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food Text with EEA relevance.Official J Eur Union2011121e89
    [Google Scholar]
  29. Inventory of Effective Food Contact Substance (FCS) Notifications.In: Food and Drug Administration2018
    [Google Scholar]
  30. Euroapen Commision. Regulation (EC) No. 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives.In: The European Parliament and The Council of The European Union2008
    [Google Scholar]
  31. Code of Federal Regulations (CFR)Electronic code of federal regulations. Title 21: food and drugs. PART 73dLISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION. The United States office of the federal register (OFR) and the United States.Government Publishing Office2018Available from: https:// www.ecfr.gov/cgi-bin/text-idx?SID1/479a76b1d7e7a98 ae9459d88005ab7058&mc1/4true&node1/4pt21.1.73&rgn1/4div5
    [Google Scholar]
  32. Code of Federal Regulations (CFR)Title 21–food and drugs. Chapter i–food and drug administration. Department of health and human services. Subchapter B–food for human consumption (continued). Part 172 – food additives permitted for direct addition to food for human consumption. Subpart E–anticakingagents. Sec. 172.480 silicon dioxide.United State Food and Drug AdministrationAvailable from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/ cfCFR/CFRSearch.cfm?fr1/4172.480 2017
    [Google Scholar]
  33. U.S. FDAFood additive status list. US FDA/CFSAN Office of Food Additive Safety.2018Available from: https://www.fda. gov/Food/IngredientsPackagingLabeling/ FoodAdditivesIngredients/ucm091048.htm
  34. SahooD. MandalA. MitraT. ChakrabortyK. BardhanM. DasguptaA.K. Nanosensing of pesticides by zinc oxide quantum dot: An optical and electrochemical approach for the detection of pesticides in water.J. Agric. Food Chem.201866241442310.1021/acs.jafc.7b0418829239610
    [Google Scholar]
  35. SunY. FangL. WanY. GuZ. Pathogenic detection and phenotype using magnetic nanoparticle-urease nanosensor.Sens. Actuators B Chem.201825942843210.1016/j.snb.2017.12.095
    [Google Scholar]
  36. SunA. ChaiJ. XiaoT. ShiX. LiX. ZhaoQ. LiD. ChenJ. Development of a selective fluorescence nanosensor based on molecularly imprinted-quantum dot optosensing materials for saxitoxin detection in shellfish samples.Sens. Actuators B Chem.201825840841410.1016/j.snb.2017.11.143
    [Google Scholar]
  37. ShiS. WangW. LiuL. WuS. WeiY. LiW. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature.J. Food Eng.2013118112513110.1016/j.jfoodeng.2013.03.029
    [Google Scholar]
  38. Electronic code of Federal Regulations. Title 21: Food and drugs. Part 184 - Direct food substances affirmed as generally recognized as safe.1977
    [Google Scholar]
  39. YangY. DoudrickK. BiX. HristovskiK. HerckesP. WesterhoffP. KaegiR. Characterization of food-grade titanium dioxide: The presence of nanosized particles.Environ. Sci. Technol.201448116391640010.1021/es500436x24754874
    [Google Scholar]
  40. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Safety and efficacy of dicopper oxide as feed additive for all animal species.ESFA J201614e04509
    [Google Scholar]
  41. PeredaM MarcovichNE AnsorenaMR Nanotechnology in food packaging applications: Barrier materials, antimicrobial agents, sensors, and safety assessment.In: Handbook of Ecomaterials201920352056
    [Google Scholar]
  42. JoseT. GeorgeS.C. GM.M. MariaH.J. WilsonR. ThomasS. Effect of bentonite clay on the mechanical, thermal, and pervaporation performance of the poly (vinyl alcohol) nanocomposite membranes.Ind. Eng. Chem. Res.20145343168201683110.1021/ie502632p
    [Google Scholar]
  43. GabrM.H. OkumuraW. UedaH. KuriyamaW. UzawaK. KimparaI. Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay.Compos., Part B Eng.2015699410010.1016/j.compositesb.2014.09.033
    [Google Scholar]
  44. Ganjaee SariM. RamezanzadehB. ShahbaziM. PakdelA.S. Influence of nanoclay particles modification by polyester-amide hyperbranched polymer on the corrosion protective performance of the epoxy nanocomposite.Corros. Sci.20159216217210.1016/j.corsci.2014.11.047
    [Google Scholar]
  45. Flores-LópezM.L. CerqueiraM.A. de RodríguezD.J. VicenteA.A. Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables.Food Eng. Rev.20168329230510.1007/s12393‑015‑9135‑x
    [Google Scholar]
  46. KearnsH. GoodacreR. JamiesonL.E. GrahamD. FauldsK. SERS detection of multiple antimicrobial-resistant pathogens using nanosensors.Anal. Chem.20178923126661267310.1021/acs.analchem.7b0265328985467
    [Google Scholar]
  47. BanerjeeT. SulthanaS. ShelbyT. HeckertB. JewellJ. WoodyK. KarimniaV. McAfeeJ. SantraS. Multiparametric magneto-fluorescent nanosensors for the ultrasensitive detection of Escherichia coli O157: H7.ACS Infect. Dis.201621066767310.1021/acsinfecdis.6b0010827737552
    [Google Scholar]
  48. ZhangC.H. LiuL.W. LiangP. TangL.J. YuR.Q. JiangJ.H. Plasmon coupling enhanced raman scattering nanobeacon for single-step, ultrasensitive detection of cholera toxin.Anal. Chem.201688157447745210.1021/acs.analchem.6b0094427348262
    [Google Scholar]
  49. ZhangW. HanY. ChenX. LuoX. WangJ. YueT. LiZ. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice.Food Chem.201723214515410.1016/j.foodchem.2017.03.15628490057
    [Google Scholar]
  50. NasrN.F. Applications of nanotechnology in food microbiology.Int. J. Curr. Microbiol. Appl. Sci.201544846853
    [Google Scholar]
  51. HuchchannanavarS. RameshB.K. RavishanakarG. GovindappaM.R. Application of nanotechnology in food and feed.A. IJCS.20197411801185
    [Google Scholar]
  52. ChopraM. KaurP. BernelaM. ThakurR. Surfactant assisted nisin loaded chitosan-carageenan nanocapsule synthesis for controlling food pathogens.Food Control20143715816410.1016/j.foodcont.2013.09.024
    [Google Scholar]
  53. ChaudhryQ. CastleL. Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries.Trends Food Sci. Technol.2011221159560310.1016/j.tifs.2011.01.001
    [Google Scholar]
  54. OnwulataC.I. Encapsulation of new active ingredients.Annu. Rev. Food Sci. Technol.20123118320210.1146/annurev‑food‑022811‑10114022149076
    [Google Scholar]
  55. McClementsD.J. DeckerE.A. ParkY. WeissJ. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods.Crit. Rev. Food Sci. Nutr.200949657760610.1080/1040839090284152919484636
    [Google Scholar]
  56. WangS. SuR. NieS. SunM. ZhangJ. WuD. Moustaid-MoussaN. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals.J. Nutr. Biochem.201425436337610.1016/j.jnutbio.2013.10.00224406273
    [Google Scholar]
  57. TadrosT. IzquierdoP. EsquenaJ. SolansC. Formation and stability of nano-emulsions.Adv. Colloid Interface Sci.2004108-10930331810.1016/j.cis.2003.10.02315072948
    [Google Scholar]
  58. GutiérrezJ.M. GonzálezC. MaestroA. SolèI. PeyC.M. NollaJ. Nano-emulsions: New applications and optimization of their preparation.Curr. Opin. Colloid Interface Sci.200813424525110.1016/j.cocis.2008.01.005
    [Google Scholar]
  59. WoosterT.J. GoldingM. SanguansriP. Impact of oil type on nanoemulsion formation and Ostwald ripening stability.Langmuir.20082422127581276510.1021/la801685v18850732
    [Google Scholar]
  60. SolansC EsquenaJO ForgiariniAM UsonN MoralesD IzquierdoP AzemarN Garcia-CelmaMJ Nano-emulsions: Formation, properties, and applications.In: Surfactant science series.2003525554
    [Google Scholar]
  61. RaoJ. McClementsD.J. Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate & lemon oil.Food Hydrocoll.20112561413142310.1016/j.foodhyd.2011.02.004
    [Google Scholar]
  62. Jiménez-ColmeneroF. Potential applications of multiple emulsions in the development of healthy and functional foods.Food Res. Int.2013521647410.1016/j.foodres.2013.02.040
    [Google Scholar]
  63. RoohinejadS. OeyI. EverettD.W. NivenB.E. Evaluating the effectiveness of β-carotene extraction from pulsed electric field-treated carrot pomace using oil-in-water microemulsion.Food Bioprocess Technol.20147113336334810.1007/s11947‑014‑1334‑6
    [Google Scholar]
  64. HouZ. ZhangM. LiuB. YanQ. YuanF. XuD. GaoY. Effect of chitosan molecular weight on the stability and rheological properties of β-carotene emulsions stabilized by soybean soluble polysaccharides.Food Hydrocoll.201226120521110.1016/j.foodhyd.2011.05.013
    [Google Scholar]
  65. QianC. DeckerE.A. XiaoH. McClementsD.J. Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility.Food Chem.201213531440144710.1016/j.foodchem.2012.06.04722953878
    [Google Scholar]
  66. HuiyongY. LiY. LiqiangW. JunshengL. YongD. Preparation of aptamer-nanomicrocapsule using nanoprecipitation method.Int. J. Adv. Comput. Technol.20135858559110.4156/ijact.vol5.issue8.66
    [Google Scholar]
  67. JafariS.M. Nanoencapsulation technologies for the food and nutraceutical industries.Academic Press2017
    [Google Scholar]
  68. SanguansriP. AugustinM.A. Nanoscale materials development – a food industry perspective.Trends Food Sci. Technol.2006171054755610.1016/j.tifs.2006.04.010
    [Google Scholar]
  69. Quintanilla-CarvajalM.X. Camacho-DíazB.H. Meraz-TorresL.S. Chanona-PérezJ.J. Alamilla-BeltránL. Jimenéz-AparicioA. Gutiérrez-LópezG.F. Nanoencapsulation: A new trend in food engineering processing.Food Eng. Rev.201021395010.1007/s12393‑009‑9012‑6
    [Google Scholar]
  70. HernandezF.J. HernandezL.I. KavrukM. ArıcaY.M. BayramoğluG. BorsaB.A. ÖktemH.A. SchäferT. ÖzalpV.C. NanoKeepers: Stimuli responsive nanocapsules for programmed specific targeting and drug delivery.Chem. Commun.201450679489949210.1039/C4CC04248D25008577
    [Google Scholar]
  71. LiQ. HouM. RenJ. LuS. XuZ. LiC.M. KangY. XueP. Co-delivery of chlorin e6 and doxorubicin using PEGylated hollow nanocapsules for ‘all-in-one’ tumor theranostics.Nanomedicine201914172273229210.2217/nnm‑2019‑009931414615
    [Google Scholar]
  72. XiaoD. LiangW. XieZ. ChengJ. DuY. ZhaoJ. A temperature-responsive release cellulose-based microcapsule loaded with chlorpyrifos for sustainable pest control.J. Hazard. Mater.202140312365410.1016/j.jhazmat.2020.12365432814240
    [Google Scholar]
  73. Can KaracaA. LowN.H. NickersonM.T. Potential use of plant proteins in the microencapsulation of lipophilic materials in foods.Trends Food Sci. Technol.201542151210.1016/j.tifs.2014.11.002
    [Google Scholar]
  74. SilvaE.K. ZabotG.L. BargasM.A. MeirelesM.A.A. Microencapsulation of lipophilic bioactive compounds using prebiotic carbohydrates: Effect of the degree of inulin polymerization.Carbohydr. Polym.201615277578310.1016/j.carbpol.2016.07.06627516329
    [Google Scholar]
  75. CheemaM. MohanM.S. CampagnaS.R. Jurat-FuentesJ.L. HarteF.M. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk.J. Dairy Sci.20159885155516310.3168/jds.2015‑946126074238
    [Google Scholar]
  76. DuZ. LiQ. LiJ. SuE. LiuX. WanZ. YangX. Self-assembled egg yolk peptide micellar nanoparticles as a versatile emulsifier for food-grade oil-in-water Pickering nanoemulsions.J. Agric. Food Chem.20196742117281174010.1021/acs.jafc.9b0459531525998
    [Google Scholar]
  77. MohanM.S. Jurat-FuentesJ.L. HarteF. Binding of vitamin A by casein micelles in commercial skim milk.J. Dairy Sci.201396279079810.3168/jds.2012‑577723261375
    [Google Scholar]
  78. Aguilar-PérezK.M. Avilés-CastrilloJ.I. MedinaD.I. Parra-SaldivarR. IqbalH.M.N. Insight into nanoliposomes as smart nanocarriers for greening the twenty-first century biomedical settings.Front. Bioeng. Biotechnol.2020857953610.3389/fbioe.2020.57953633384988
    [Google Scholar]
  79. RavanfarR. TamaddonA.M. NiakousariM. MoeinM.R. Preservation of anthocyanins in solid lipid nanoparticles: Optimization of a microemulsion dilution method using the Placket–Burman and Box–Behnken designs.Food Chem.201619957358010.1016/j.foodchem.2015.12.06126776010
    [Google Scholar]
  80. TamjidiF. ShahediM. VarshosazJ. NasirpourA. Stability of astaxanthin‐loaded nanostructured lipid carriers in beverage systems.J. Sci. Food Agric.201898251151810.1002/jsfa.848828620907
    [Google Scholar]
  81. GençL. KutluH.M. GüneyG. Vitamin B 12 -loaded solid lipid nanoparticles as a drug carrier in cancer therapy.Pharm. Dev. Technol.201520333734410.3109/10837450.2013.86744724344935
    [Google Scholar]
  82. HanC. YangC. LiX. LiuE. MengX. LiuB. DHA loaded nanoliposomes stabilized by β-sitosterol: Preparation, characterization and release in vitro and vivo.Food Chem.202236813085910.1016/j.foodchem.2021.13085934425339
    [Google Scholar]
  83. YangJ. CiftciO.N. Development of free-flowing peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles via atomization with carbon dioxide.Food Res. Int.201687839110.1016/j.foodres.2016.06.02229606252
    [Google Scholar]
  84. BaldimI. RosaD.M. SouzaC.R.F. Da AnaR. DurazzoA. LucariniM. SantiniA. SoutoE.B. OliveiraW.P. Factors affecting the retention efficiency and physicochemical properties of spray dried lipid nanoparticles loaded with Lippia sidoides essential oil.Biomolecules202010569310.3390/biom1005069332365717
    [Google Scholar]
  85. FanL. ChenQ. MairiyanguY. WangY. LiuX. Stable vesicle self-assembled from phospholipid and mannosylerythritol lipid and its application in encapsulating anthocyanins.Food Chem.202134412864910.1016/j.foodchem.2020.12864933234436
    [Google Scholar]
  86. TamjidiF. ShahediM. VarshosazJ. NasirpourA. Stability of astaxanthin-loaded nanostructured lipid carriers as affected by pH, ionic strength, heat treatment, simulated gastric juice and freeze–thawing.J. Food Sci. Technol.201754103132314110.1007/s13197‑017‑2749‑728974798
    [Google Scholar]
  87. MoghaddamM.M. KhodaverdiH. ZeiniM.S. VazifedustS. AkbariqomiM. TebyaniyanH. Lipid-based nanoparticles for the targeted delivery of anticancer drugs: A review.Curr. Drug Deliv.202219101012103310.2174/156720181966622011710265835078396
    [Google Scholar]
  88. FanM. XuS. XiaS. ZhangX. Preparation of salidroside nano-liposomes by ethanol injection method and in vitro release study.Eur. Food Res. Technol.2008227116717410.1007/s00217‑007‑0706‑9
    [Google Scholar]
  89. Jalali-JivanM. AbbasiS. ScanlonM.G. Microemulsion as nanoreactor for lutein extraction: Optimization for ultrasound pretreatment.J. Food Biochem.2019438e1292910.1111/jfbc.1292931368559
    [Google Scholar]
  90. RoohinejadS. EverettD.W. OeyI. Effect of pulsed electric field processing on carotenoid extractability of carrot purée.Int. J. Food Sci. Technol.20144992120212710.1111/ijfs.12510
    [Google Scholar]
  91. HouZ. GaoY. YuanF. LiuY. LiC. XuD. Investigation into the physicochemical stability and rheological properties of β-carotene emulsion stabilized by soybean soluble polysaccharides and chitosan.J. Agric. Food Chem.201058158604861110.1021/jf101568620681649
    [Google Scholar]
  92. RaoJ. DeckerE.A. XiaoH. McClementsD.J. Nutraceutical nanoemulsions: Influence of carrier oil composition (digestible versus indigestible oil) on β -carotene bioavailability.J. Sci. Food Agric.201393133175318310.1002/jsfa.621523649644
    [Google Scholar]
  93. SpernathA. YaghmurA. AserinA. HoffmanR.E. GartiN. Food-grade microemulsions based on nonionic emulsifiers: Media to enhance lycopene solubilization.J. Agric. Food Chem.200250236917692210.1021/jf025762n12405797
    [Google Scholar]
  94. YangY. DeckerE.A. XiaoH. McClementsD.J. Enhancing vitamin E bioaccessibility: Factors impacting solubilization and hydrolysis of α-tocopherol acetate encapsulated in emulsion-based delivery systems.Food Funct.201561839610.1039/C4FO00725E25312787
    [Google Scholar]
  95. MaoL. RoosY.H. O’CallaghanD.J. MiaoS. Volatile release from whey protein isolate-pectin multilayer stabilized emulsions: Effect of pH, salt, and artificial salivas.J. Agric. Food Chem.201361266231623910.1021/jf401161523718126
    [Google Scholar]
  96. JoungH.J. ChoiM.J. KimJ.T. ParkS.H. ParkH.J. ShinG.H. Development of food‐grade curcumin nanoemulsion and its potential application to food beverage system: antioxidant property and in vitro digestion.J. Food Sci.2016813N745N75310.1111/1750‑3841.1322426807662
    [Google Scholar]
  97. DasguptaN. RanjanS. MundraS. RamalingamC. KumarA. Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application.Int. J. Food Prop.201619370070810.1080/10942912.2015.1042587
    [Google Scholar]
  98. UchiyamaH. ChaeJ. KadotaK. TozukaY. Formation of food grade microemulsion with rice glycosphingolipids to enhance the oral absorption of coenzyme Q10.Foods201981050210.3390/foods810050231618946
    [Google Scholar]
  99. PrasadR.M.N. PadmaI.S. AnandharamakrishnanC. Nanoencapsulation of roasted coffee bean oil in whey protein wall system through nanospray drying.J. Food Process. Preserv.2019433e1389310.1111/jfpp.13893
    [Google Scholar]
  100. LiuZ. ChenX. GuoH. Preparation and properties of a novel sodium alginate microcapsule.Phys.: Conf. Ser. 11893012005
    [Google Scholar]
  101. DaiC. WangB. ZhaoH. LiB. Factors affecting protein release from microcapsule prepared by liposome in alginate.Colloids Surf. B Biointerfaces2005423-425325810.1016/j.colsurfb.2004.12.02015893226
    [Google Scholar]
  102. ZhangZ. ZhangS. SuR. XiongD. FengW. ChenJ. Controlled release mechanism and antibacterial effect of layer‐by‐layer self‐assembly thyme oil microcapsule.J. Food Sci.20198461427143810.1111/1750‑3841.1461031070787
    [Google Scholar]
  103. HategekimanaJ. MasambaK.G. MaJ. ZhongF. Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability.Carbohydr. Polym.201512417217910.1016/j.carbpol.2015.01.06025839808
    [Google Scholar]
  104. Food Safety Authority of IrelandNanotechnology and Food2010
    [Google Scholar]
  105. European Food Safety Authority (EFSA)Guidance on the risk assessment of the application of nano science and nanotechnologies in the food and feed chain.EFSA J.2011952140
    [Google Scholar]
  106. HassoonW.H. DzikiD. MiśA. BiernackaB. Wheat grinding process with low moisture content: A new approach for wholemeal flour production.Processes.2020913210.3390/pr9010032
    [Google Scholar]
  107. QadirA. FaiyazuddinM.D. Talib HussainM.D. AlshammariT.M. ShakeelF. Critical steps and energetics involved in a successful development of a stable nanoemulsion.J. Mol. Liq.201621471810.1016/j.molliq.2015.11.050
    [Google Scholar]
  108. Modarres-GheisariS.M.M. Gavagsaz-GhoachaniR. MalakiM. SafarpourP. ZandiM. Ultrasonic nano-emulsification – A review.Ultrason. Sonochem.2019528810510.1016/j.ultsonch.2018.11.00530482437
    [Google Scholar]
  109. ZabihiF. XinN. LiS. JiaJ. ChengT. ZhaoY. Polymeric coating of fluidizing nano-curcumin via anti-solvent supercritical method for sustained release.J. Supercrit. Fluids2014899910510.1016/j.supflu.2014.02.021
    [Google Scholar]
  110. ArkoumanisP.G. NortonI.T. SpyropoulosF. Pickering particle and emulsifier co-stabilised emulsions produced via rotating membrane emulsification.Colloids Surf. A Physicochem. Eng. Asp.201956848149210.1016/j.colsurfa.2019.02.036
    [Google Scholar]
  111. ZouL. ZhengB. ZhangR. ZhangZ. LiuW. LiuC. XiaoH. McClementsD.J. Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles.Food Res. Int.201681748210.1016/j.foodres.2015.12.035
    [Google Scholar]
  112. ChenJ. ZhengJ. DeckerE.A. McClementsD.J. XiaoH. Improving nutraceutical bioavailability using mixed colloidal delivery systems: lipid nanoparticles increase tangeretin bioaccessibility and absorption from tangeretin-loaded zein nanoparticles.RSC Adv.2015590738927390010.1039/C5RA13503F
    [Google Scholar]
  113. TeowY. AsharaniP.V. HandeM.P. ValiyaveettilS. Health impact and safety of engineered nanomaterials.Chem. Commun.201147257025703810.1039/c0cc05271j21479319
    [Google Scholar]
  114. TiedeK. BoxallA.B.A. TearS.P. LewisJ. DavidH. HassellövM. Detection and characterization of engineered nanoparticles in food and the environment.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.200825779582110.1080/0265203080200755318569000
    [Google Scholar]
  115. SchrandA.M. RahmanM.F. HussainS.M. SchlagerJ.J. SmithD.A. SyedA.F. Metal‐based nanoparticles and their toxicity assessment.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20102554456810.1002/wnan.10320681021
    [Google Scholar]
  116. HajipourM.J. FrommK.M. Akbar AshkarranA. Jimenez de AberasturiD. LarramendiI.R. RojoT. SerpooshanV. ParakW.J. MahmoudiM. Antibacterial properties of nanoparticles.Trends Biotechnol.2012301049951110.1016/j.tibtech.2012.06.00422884769
    [Google Scholar]
  117. MaoB.H. TsaiJ.C. ChenC.W. YanS.J. WangY.J. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy.Nanotoxicology20161081021104010.1080/17435390.2016.118961427240148
    [Google Scholar]
  118. ValdiglesiasV. CostaC. SharmaV. KiliçG. PásaroE. TeixeiraJ.P. DhawanA. LaffonB. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells.Food Chem. Toxicol.20135735236110.1016/j.fct.2013.04.01023597443
    [Google Scholar]
  119. BotelhoM.C. CostaC. SilvaS. CostaS. DhawanA. OliveiraP.A. TeixeiraJ.P. Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro.Biomed. Pharmacother.2014681596410.1016/j.biopha.2013.08.00624051123
    [Google Scholar]
  120. MagdolenovaZ. CollinsA. KumarA. DhawanA. StoneV. DusinskaM. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles.Nanotoxicology20148323327810.3109/17435390.2013.77346423379603
    [Google Scholar]
  121. KumarA. DhawanA. Genotoxic and carcinogenic potential of engineered nanoparticles: An update.Arch. Toxicol.201387111883190010.1007/s00204‑013‑1128‑z24068037
    [Google Scholar]
  122. ShuklaA.K. PragyaP. ChowdhuriD.K. A modified alkaline Comet assay for in vivo detection of oxidative DNA damage in Drosophila melanogaster.Mutat. Res. Genet. Toxicol. Environ. Mutagen.2011726222222610.1016/j.mrgentox.2011.09.01722005018
    [Google Scholar]
  123. GuoX. ChenT. Progress in genotoxicity evaluation of engineered nanomaterials.In: Nanomaterials - Toxicity and Risk AssessmentIntechOpen201510.5772/61013
    [Google Scholar]
  124. KnaapenA.M. AlbrechtC. BeckerA. HöhrD. WinzerA. HaenenG.R. BormP.J. SchinsR.P. DNA damage in lung epithelial cells isolated from rats exposed to quartz: role of surface reactivity and neutrophilic inflammation.Carcinogenesis20022371111112010.1093/carcin/23.7.111112117767
    [Google Scholar]
  125. EsfandiariN. Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide.J. Supercrit. Fluids201510012914110.1016/j.supflu.2014.12.028
    [Google Scholar]
  126. BowmanD.M. HodgeG.A. Nanotechnology: Mapping the wild regulatory frontier.Futures20063891060107310.1016/j.futures.2006.02.017
    [Google Scholar]
  127. CubaddaF. AureliF. RaggiA. CristinaM. ToscanB. MantovaniA. Nanotechnologies and nanomaterials in the food sector and their safety assessment.Rapp. ISTISAN20161348
    [Google Scholar]
  128. TinkleS. McNeilS.E. MühlebachS. BawaR. BorchardG. BarenholzY.C. TamarkinL. DesaiN. Nanomedicines: addressing the scientific and regulatory gap.Ann. N. Y. Acad. Sci.201413131355610.1111/nyas.1240324673240
    [Google Scholar]
  129. O’BrienN. CumminsE. Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.2010458992100710.1080/1093452100377241020486008
    [Google Scholar]
  130. BuzeaC. PachecoI.I. RobbieK. Nanomaterials and nanoparticles: Sources and toxicity.Biointerphases200724MR17MR7110.1116/1.281569020419892
    [Google Scholar]
  131. González-NiloF. Pérez-AcleT. Guínez-MolinosS. GeraldoD.A. SandovalC. YévenesA. SantosL.S. LaurieV.F. MendozaH. CachauR.E. Nanoinformatics: An emerging area of information technology at the intersection of bioinformatics, computational chemistry and nanobiotechnology.Biol. Res.2011441435110.4067/S0716‑9760201100010000621720680
    [Google Scholar]
  132. Pérez-EsteveE. BernardosA. Martínez-MáñezR. M BaratJ. Nanotechnology in the development of novel functional foods or their package. An overview based in patent analysis.Recent patents on Food, Nutrition Agriculture2013513543
    [Google Scholar]
/content/journals/nanotec/10.2174/1872210517666230825100347
Loading
/content/journals/nanotec/10.2174/1872210517666230825100347
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test