Skip to content
2000
Volume 14, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background: Wastewater involving a lot of contaminants like organic dyes from the textile finishing industry causes a greater adverse impact on human beings. There are many patents on nanofibers involved metallic oxides, this paper studies photocatalytic degradation of free-pollution Zinc Oxide (ZnO) nanomaterials on dye decontamination. Objective: Polyacrylonitrile (PAN) nanofibrous membranes loaded with Zinc Oxide (ZnO) nanowires were fabricated and evaluated for photocatalytic degradation. Methods: In this work, Polyacrylonitrile (PAN) nanofibrous membranes loaded with ZnO seeds were prepared by electrospinning PAN/Zn (Ac)2 solution followed by a thermal decomposition process. ZnO nanowires were hydrothermally grown on the surface of PAN nanofibers. The effects of the ratio of PAN and zinc acetate in a solution, decomposition temperature and ammonia (NH4OH) on the morphologies of ZnO nanowires were observed. ZnO nanowires showed the optimum morphologies when the ratio of PAN/Zn (Ac)2 was 10:1.5. The decomposition temperature was 150oC, and NH4OH was added in the hydrothermal reaction. The photocatalytic degradation of Rhodamine B solution under UV irradiation was used as a model reaction. The photodegradation ability of the ZnO @PAN membrane doped with cerium (Sm) was also investigated. Results: Slight Sm doping increased the photocatalytic degradation rate from 57% to 89% under ultraviolet light irradiation for 2h. After 5 times of cycling under the same conditions, it still maintained the dye decolorization rate that was above 65%. Conclusion: Sm doped ZnO nanowires @PAN nanofibrous membranes were easily produced and could provide a novel process for the degradation of dye decontamination.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/1872210513666191119110316
2020-03-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/nanotec/10.2174/1872210513666191119110316
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test