Skip to content
2000
Volume 13, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background: Most of the currently available Mg-based biomaterials corrode too fast in the physiological environment, causing many problems including hydrogen bubble release and premature mechanical failure. It is commonly recognized that high biodegradation rate is the major factor limiting their clinical applications. Objective: The present research aims to develop a new magnesium (Mg)-based biomaterial with a controlled biodegradation rate. Methods: A magnesium-hydroxyapatite (Mg-1.61Zn-0.18Mn-0.5Ca/1HA) nanocomposite was developed by a novel technique which combines high shear solidification and hot extrusion, followed by heat treatment. The microstructure and biodegradation rate of the nanocomposite in HBSS Hanks’ Balanced Salt Solution were assessed. Biodegradation behaviour was studied using electrochemical corrosion and immersion test. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to characterize the surface microstructure, biodegradation morphology and to analyse the biodegradation products. Few patents were also cited in the article. Results: Under the optimized procedure of high shear solidification, extrusion and heat treatment at 400°C, the Mg-1.61Zn-0.18Mn-0.5Ca/1HA exhibited a satisfactory biodegradation rate of 0.12±0.04 mm/year. Conclusion: This technology shows a potential of breakthrough innovation in the manufacturing of Mg-based biomaterials with a decreased biodegradation rate.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/1872210513666181231122808
2019-04-01
2025-08-20
Loading full text...

Full text loading...

/content/journals/nanotec/10.2174/1872210513666181231122808
Loading

  • Article Type:
    Research Article
Keyword(s): biodegradable; biomaterials; bone; implant; Magnesium; nanobiocomposite
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test