Skip to content
2000
Volume 11, Issue 2
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background: Vanadium redox flow batteries (VRFBs) have received considerable attention as large-scale electrochemical energy storage systems. In particular, VRFBs offer a higher power and energy density than other RFBs and mitigate undesirable performance fading, such as inevitable ion crossover, because of the unique advantage that only the vanadium ion is employed as the active species in the two electrolytes. Description: The key constituent of VRFBs is a separator to conduct protons and prevent cross-mixing of the positive and negative electrolytes. For this purpose, ion exchange membranes like sulfonated polymer membranes can be used. Although this type of membrane does not have ion exchange groups, it can achieve an ion exchange capacity by the formation of pores. Conclusion: This review highlights the patents on the preparation of non-fluorinated membranes (sulfonated aromatic polymer membranes and porous membranes) as alternatives to high-cost perfluorinated polymers and their VRFB performance.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/187221051102170711153255
2017-08-01
2025-09-07
Loading full text...

Full text loading...

/content/journals/nanotec/10.2174/187221051102170711153255
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test