Skip to content
2000
Volume 3, Issue 2
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Activated alloys synthesized by arc-melting were examined as catalysts for improving the hydrogen sorption characteristics of nanostructured magnesium hydride, proposed as a reversible hydrogen storage material. The MgH2- catalyst absorbing materials were prepared by ball milling of pure MgH2 with hydrided Zr47Ni53, Zr9Ni11, and other alloys investigated. The nanostructured MgH2-intermetallic systems were tested at 250°C and catalyst addition of eutectoid Zr47Ni53 resulted in the fastest desorption time and highest initial desorption rate. The catalyzed Mg-hydride with activated Zr9Ni11 and Zr7Ni10 phases showed fast desorption kinetics. Moreover, the results demonstrated that the composition of dispersed ZrxNiy catalysts has a strong influence on the amount of accumulated hydrogen and desorption rate of Mg-nanocomposite. Part two covers advanced micro-channels hydrogen storage module design based on the results of semi-empirical computer simulations of heat and mass transfers in the container. The micro-channels reservoir concept offers many advantages over the conventional metal hydride hydrogen storage system. It is a micro-structured system that can pack a lot of power into a small space and dissipate effectively the heat of the sorption reactions. This review summarize recent patents related to CNTS.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/187221009788490059
2009-06-01
2025-09-25
Loading full text...

Full text loading...

/content/journals/nanotec/10.2174/187221009788490059
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test