Skip to content
2000
image of A Patent Analysis in Nano Biosensors with Nanomaterials

Abstract

Over the past decades, biosensor technologies have experienced significant advances with the rapid development of novel nanomaterials and nanotechnologies. The analysis was performed using a patent dataset of nanobiosensors, including 2709 patent documents. The number of patents has been growing rapidly since 2000. Currently, China and the USA are the main contributors to the number of patents. Based on patent data, the most commonly used nanomaterials in biosensors are primarily metal-based, polymer-based, and carbon-based nanomaterials. Recently, the HCPs (highly cited patents, cited≥14) of biosensors include more than 10 types of nanomaterials, such as Ag NPs, Au NPs, graphene, CNTs, and polymer nanomaterials, indicating the diversity of nanomaterials and nanotechnologies used in biosensors. The number of HCPs from the USA is as high as 147, which is 3.5 times that of China. The use of nanomaterials in biosensors has been attracting increasing attention from researchers for decades. The sharp increase in patents since 2017 can be attributed to a significant number of new patents from India and China. In terms of the proportion of HCPs in the patent dataset, patented technologies from the US showed higher quality and value compared to those from other countries such as China, South Korea, and India. In the future, research on nanomaterials for biosensors, including metal and carbon-based nanomaterials, may focus on optimising their properties through the development of composite nanomaterials. With the application research of nucleic acid nanomaterials and MOFs, there could potentially be new technological breakthroughs in biosensors.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105397248250919080111
2025-10-08
2026-02-21
Loading full text...

Full text loading...

References

  1. Huang X. Zhu Y. Kianfar E. Nano biosensors: Properties, applications and electrochemical techniques. J. Mater. Res. Technol. 2021 12 1649 1672 10.1016/j.jmrt.2021.03.048
    [Google Scholar]
  2. Christopher F.C. Kumar P.S. Christopher F.J. Joshiba G.J. Madhesh P. Recent advancements in rapid analysis of pesticides using nano biosensors: A present and future perspective. J. Clean. Prod. 2020 269 122356 10.1016/j.jclepro.2020.122356
    [Google Scholar]
  3. Tripathi A. Bonilla-Cruz J. Review on healthcare biosensing nanomaterials. ACS Appl. Nano Mater. 2023 6 7 5042 5074 10.1021/acsanm.3c00941
    [Google Scholar]
  4. Kundu M. Krishnan P. Kotnala R.K. Sumana G. Recent developments in biosensors to combat agricultural challenges and their future prospects. Trends Food Sci. Technol. 2019 88 157 178 10.1016/j.tifs.2019.03.024
    [Google Scholar]
  5. Haleem A. Javaid M. Singh R.P. Suman R. Rab S. Biosensors applications in medical field: A brief review. Sens. Int. 2021 2 100100 10.1016/j.sintl.2021.100100
    [Google Scholar]
  6. Rasmi Y. Li X. Khan J. Ozer T. Choi J.R. Emerging point-of-care biosensors for rapid diagnosis of COVID-19: current progress, challenges, and future prospects. Anal. Bioanal. Chem. 2021 413 16 4137 4159 10.1007/s00216‑021‑03377‑6 34008124
    [Google Scholar]
  7. Gavrilaș S. Ursachi C.Ș. Perța-Crișan S. Munteanu F.D. Recent trends in biosensors for environmental quality monitoring. Sensors 2022 22 4 1513 10.3390/s22041513 35214408
    [Google Scholar]
  8. Zhao J. Liu J. Jiang J. Gao F. Efficient deployment with geometric analysis for mmwave uav communications. IEEE Wirel. Commun. Lett. 2020 9 7 1 10.1109/LWC.2020.2982637
    [Google Scholar]
  9. Abedini M. Zhang C. Performance assessment of concrete and steel material models in ls-dyna for enhanced numerical simulation, a state of the art review. Arch. Comput. Methods Eng. 2021 28 4 2921 2942 10.1007/s11831‑020‑09483‑5
    [Google Scholar]
  10. Zhang C. Gholipour G. Mousavi A.A. State-of-the-art review on responses of RC structures subjected to lateral impact loads. Arch. Comput. Methods Eng. 2021 28 4 2477 2507 10.1007/s11831‑020‑09467‑5
    [Google Scholar]
  11. Zhang C. Wang H. Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical modeling and experimental verification. Struct. Contr. Health Monit. 2020 27 6 e2543 10.1002/stc.2543
    [Google Scholar]
  12. Alam Z. Sun L. Zhang C. Su Z. Samali B. Experimental and numerical investigation on the complex behaviour of the localised seismic response in a multi-storey plan-asymmetric structure. Struct. Infrastruct. Eng. 2021 17 1 86 102 10.1080/15732479.2020.1730914
    [Google Scholar]
  13. Krämer J. Kang R. Grimm L.M. De Cola L. Picchetti P. Biedermann F. Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids. Chem. Rev. 2022 122 3 3459 3636 10.1021/acs.chemrev.1c00746 34995461
    [Google Scholar]
  14. Welch E.C. Powell J.M. Clevinger T.B. Fairman A.E. Shukla A. Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials. Adv. Funct. Mater. 2021 31 44 2104126 10.1002/adfm.202104126
    [Google Scholar]
  15. Kurkina T. Vlandas A. Ahmad A. Kern K. Balasubramanian K. Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew. Chem. Int. Ed. 2011 50 16 3710 3714 10.1002/anie.201006806 21425218
    [Google Scholar]
  16. Sun J. Liu Y. Matrix effect study and immunoassay detection using electrolyte-gated graphene biosensor. Micromachines 2018 9 4 142 10.3390/mi9040142 30424076
    [Google Scholar]
  17. Soto D. Orozco J. Hybrid nanobioengineered nanomaterial-based electrochemical biosensors. Molecules 2022 27 12 3841 10.3390/molecules27123841 35744967
    [Google Scholar]
  18. Holzinger M. Le Goff A. Cosnier S. Nanomaterials for biosensing applications: a review. Front Chem. 2014 2 63 10.3389/fchem.2014.00063 25221775
    [Google Scholar]
  19. Aziz M.A. Oyama M. Nanomaterials in electrochemical biosensor. Adv. Mat. Res. 2014 995 125 143
    [Google Scholar]
  20. Saxena U. Das A.B. Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches. Biosens. Bioelectron. 2016 75 196 205 10.1016/j.bios.2015.08.042 26319162
    [Google Scholar]
  21. Madhu R. Veeramani V. Chen S.M. Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples. Sci. Rep. 2014 4 1 4679 10.1038/srep04679 24755990
    [Google Scholar]
  22. Janáky C. Visy C. Conducting polymer-based hybrid assemblies for electrochemical sensing: a materials science perspective. Anal. Bioanal. Chem. 2013 405 11 3489 3511 10.1007/s00216‑013‑6702‑y 23341002
    [Google Scholar]
  23. Yang Y. Yan Y. Chen X. Zhai W. Xu Y. Liu Y. Investigation of a polyaniline-coated copper hexacyanoferrate modified glassy carbon electrode as a sulfite sensor. Electrocatalysis 2014 5 4 344 353 10.1007/s12678‑014‑0199‑9
    [Google Scholar]
  24. Pundir C.S. Rawal R. Determination of sulfite with emphasis on biosensing methods: a review. Anal. Bioanal. Chem. 2013 405 10 3049 3062 10.1007/s00216‑013‑6753‑0 23392406
    [Google Scholar]
  25. Gao Y.S. Xu J.K. Lu L.M. Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine. Biosens. Bioelectron. 2014 62 261 267 10.1016/j.bios.2014.06.044 25022509
    [Google Scholar]
  26. Sun L. Yang Z. Jin Q. Yan W. Effect of axial compression ratio on seismic behavior of GFRP reinforced concrete columns. Int. J. Struct. Stab. Dyn. 2020 20 6 2040004 10.1142/S0219455420400040
    [Google Scholar]
  27. Abedini M. Zhang C. Dynamic performance of concrete columns retrofitted with FRP using segment pressure technique. Compos. Struct. 2021 260 113473 10.1016/j.compstruct.2020.113473
    [Google Scholar]
  28. Shi M. Wang B. Shen Y. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem. Eng. J. 2020 399 125627 10.1016/j.cej.2020.125627
    [Google Scholar]
  29. Asnaashari M. Esmaeilzadeh Kenari R. Farahmandfar R. Taghdisi S.M. Abnous K. Fluorescence quenching biosensor for acrylamide detection in food products based on double-stranded DNA and gold nanoparticles. Sens. Actuators B Chem. 2018 265 339 345 10.1016/j.snb.2018.03.083
    [Google Scholar]
  30. Xue T. Bongu S.R. Huang H. Ultrasensitive detection of microRNA using a bismuthene-enabled fluorescence quenching biosensor. Chem. Commun. 2020 56 51 7041 7044 10.1039/D0CC01004A 32453808
    [Google Scholar]
  31. Yüce M. Kurt H. How to make nanobiosensors: surface modification and characterisation of nanomaterials for biosensing applications. RSC Advances 2017 7 78 49386 49403 10.1039/C7RA10479K
    [Google Scholar]
  32. Rocchitta G. Spanu A. Babudieri S. Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids. Sensors 2016 16 6 780 10.3390/s16060780 27249001
    [Google Scholar]
  33. Sun L. Li C. Zhang C. Liang T. Zhao Z. The strain transfer mechanism of fiber bragg grating sensor for extra large strain monitoring. Sensors 2019 19 8 1851 10.3390/s19081851 31003449
    [Google Scholar]
  34. Zhang C. Wang H. Swing vibration control of suspended structure using active rotary inertia driver system: parametric analysis and experimental verification. Appl. Sci. 2019 9 15 3144 10.3390/app9153144
    [Google Scholar]
  35. Guo C. Huo H. Han X. Xu C. Li H. Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode for high-performance nonenzymatic glucose sensing. Anal. Chem. 2014 86 1 876 883 10.1021/ac4034467 24304369
    [Google Scholar]
  36. Li Y. Zhao Y. Cheng H. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 2012 134 1 15 18 10.1021/ja206030c 22136359
    [Google Scholar]
  37. Wang T. Zhu H. Zhuo J. Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal. Chem. 2013 85 21 10289 10295 10.1021/ac402114c 24067077
    [Google Scholar]
  38. Bantz K.C. Meyer A.F. Wittenberg N.J. Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. 2011 13 24 11551 11567 10.1039/c0cp01841d 21509385
    [Google Scholar]
  39. Leu H.J. Wu C.C. Lin C.Y. Technology exploration and forecasting of biofuels and biohydrogen energy from patent analysis. Int. J. Hydrogen Energy 2012 37 20 15719 15725 10.1016/j.ijhydene.2012.04.143
    [Google Scholar]
  40. Abbas Z. Yong L. Li Y. Wang R. Patent‐based trend analysis for advanced thermal energy storage technologies and their applications. Int. J. Energy Res. 2020 44 7 5093 5116 10.1002/er.5148
    [Google Scholar]
  41. Sampaio P.G.V. González M.O.A. de Vasconcelos R.M. dos Santos M.A.T. de Toledo J.C. Pereira J.P.P. Photovoltaic technologies: Mapping from patent analysis. Renew. Sustain. Energy Rev. 2018 93 215 224 10.1016/j.rser.2018.05.033
    [Google Scholar]
  42. Mahlia T.M.I. Syazmi Z.A.H.S. Mofijur M. Patent landscape review on biodiesel production: Technology updates. Renew. Sustain. Energy Rev. 2020 118 109526 10.1016/j.rser.2019.109526
    [Google Scholar]
  43. Li D. Luo W. Yin S. A patent analysis on nano drug delivery systems. Recent Pat. Nanotechnol. 2025 19 4 609 628 10.2174/0118722105293359240626070342 38984568
    [Google Scholar]
  44. Luan C. Sun X. Wang Y. Driving forces of solar energy technology innovation and evolution. J. Clean. Prod. 2021 287 125019 10.1016/j.jclepro.2020.125019
    [Google Scholar]
  45. Sharma K. Sharma M. Optical biosensors for environmental monitoring: Recent advances and future perspectives in bacterial detection. Environ. Res. 2023 236 Pt 2 116826 10.1016/j.envres.2023.116826 37543133
    [Google Scholar]
  46. Houghton M.C. Toropov N.A. Yu D. Bagby S. Vollmer F. Single molecule thermodynamic penalties applied to enzymes by whispering gallery mode biosensors. Adv. Sci. 2024 11 35 2403195 10.1002/advs.202403195 38995192
    [Google Scholar]
  47. Octobre G. Delprat N. Doumèche B. Leca-Bouvier B. Herbicide detection: A review of enzyme- and cell-based biosensors. Environ. Res. 2024 249 118330 10.1016/j.envres.2024.118330 38341074
    [Google Scholar]
  48. Ow S.Y. Sutarlie L. Lim S.W.Y. Optical biosensors utilising viral receptors ACE2 and ACE2 mimics. Trends Analyt. Chem. 2024 173 117630 10.1016/j.trac.2024.117630
    [Google Scholar]
  49. Samadi Pakchin P. Fathi F. Samadi H. Adibkia K. Recent advances in receptor-based optical biosensors for the detection of multiplex biomarkers. Talanta 2025 281 126852 10.1016/j.talanta.2024.126852 39321560
    [Google Scholar]
  50. Wang Y. Jia K. Lin J. Optical biosensors for the detection of foodborne pathogens: recent development and future prospects. Trends Analyt. Chem. 2024 177 117785 10.1016/j.trac.2024.117785
    [Google Scholar]
  51. Kong Z-L. Liu Y. Jiang J-H. Topologically integrated photonic biosensor circuits. Laser Photonics Rev. 2025 19 8 2401209 10.1002/lpor.202401209
    [Google Scholar]
  52. Jeon H.J. Kim H.S. Chung E. Lee D.Y. Nanozyme-based colorimetric biosensor with a systemic quantification algorithm for noninvasive glucose monitoring. Theranostics 2022 12 14 6308 6338 10.7150/thno.72152 36168630
    [Google Scholar]
  53. Zheng L. Qi P. Zhang D. A simple, rapid and cost-effective colorimetric assay based on the 4-mercaptophenylboronic acid functionalized silver nanoparticles for bacteria monitoring. Sens. Actuators B Chem. 2018 260 983 989 10.1016/j.snb.2018.01.115
    [Google Scholar]
  54. Yao Y. Lou X. Jin L. Optogenetic strategies for optimizing the performance of phospholipids biosensors. Adv. Sci. 2024 11 36 2403026 10.1002/advs.202403026 39073033
    [Google Scholar]
  55. Valeur B Berberan-Santos MN Molecular fluorescence: principles and applications. 2013
    [Google Scholar]
  56. Kang B. Lee Y. Lim J. FRET-based hACE2 receptor mimic peptide conjugated nanoprobe for simple detection of SARS-CoV-2. Chem. Eng. J. 2022 442 136143 10.1016/j.cej.2022.136143 35382003
    [Google Scholar]
  57. Pinals R.L. Ledesma F. Yang D. Rapid SARS-CoV-2 spike protein detection by carbon nanotube-based near-infrared nanosensors. Nano Lett. 2021 21 5 2272 2280 10.1021/acs.nanolett.1c00118 33635655
    [Google Scholar]
  58. Huang C. Tan Z. Zhao K. The effect of N-glycosylation of SARS-CoV-2 spike protein on the virus interaction with the host cell ACE2 receptor. iScience 2021 24 11 103272 10.1016/j.isci.2021.103272 34661088
    [Google Scholar]
  59. Piliarik M. Vaisocherová H. Homola J. Surface plasmon resonance biosensing. Methods Mol. Biol. 2009 503 65 88 10.1007/978‑1‑60327‑567‑5_5 19151937
    [Google Scholar]
  60. Špringer T. Bocková M. Slabý J. Sohrabi F. Čapková M. Homola J. Surface plasmon resonance biosensors and their medical applications. Biosens. Bioelectron. 2025 278 117308 10.1016/j.bios.2025.117308 40037036
    [Google Scholar]
  61. Homola J. Vaisocherová H. Dostálek J. Piliarik M. Multi-analyte surface plasmon resonance biosensing. Methods 2005 37 1 26 36 10.1016/j.ymeth.2005.05.003 16199172
    [Google Scholar]
  62. Rong G. Zheng Y. Li X. A high-throughput fully automatic biosensing platform for efficient COVID-19 detection. Biosens. Bioelectron. 2023 220 114861 10.1016/j.bios.2022.114861 36347077
    [Google Scholar]
  63. Yang Y. Murray J. Haverstick J. Tripp R.A. Zhao Y. Silver nanotriangle array based LSPR sensor for rapid coronavirus detection. Sens. Actuators B Chem. 2022 359 131604 10.1016/j.snb.2022.131604 35221531
    [Google Scholar]
  64. Hossain M.K. Kitahama Y. Huang G.G. Han X. Ozaki Y. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Anal. Bioanal. Chem. 2009 394 7 1747 1760 10.1007/s00216‑009‑2762‑4 19384546
    [Google Scholar]
  65. Majer-Baranyi K. Székács A. Adányi N. Application of electrochemical biosensors for determination of food spoilage. Biosensors 2023 13 4 456 10.3390/bios13040456 37185531
    [Google Scholar]
  66. Lin J. Hu J. Wang W. Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property. Chem. Eng. J. 2021 407 125783 10.1016/j.cej.2020.125783
    [Google Scholar]
  67. Kianfar E. Hajimirzaee S. mousavian S, Mehr AS. Zeolite-based catalysts for methanol to gasoline process: A review. Microchem. J. 2020 156 104822 10.1016/j.microc.2020.104822
    [Google Scholar]
  68. Kianfar E. Cao V. Polymeric membranes on base of PolyMethyl methacrylate for air separation: a review. J. Mater. Res. Technol. 2021 10 1437 1461 10.1016/j.jmrt.2020.12.061
    [Google Scholar]
  69. mousavian S, Faravar P, Zarei Z, azimikia R, Ghasemi Monjezi M, kianfar E. Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics. J. Environ. Chem. Eng. 2020 8 4 103946 10.1016/j.jece.2020.103946
    [Google Scholar]
  70. Gao C. Liao J. Lu J. Ma J. Kianfar E. The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review. Rev. Inorg. Chem. 2021 41 1 1 20 10.1515/revic‑2020‑0007
    [Google Scholar]
  71. Mahmud A. Chang D. Das J. Monitoring cardiac biomarkers with aptamer‐based molecular pendulum sensors. Angew. Chem. Int. Ed. 2023 62 20 e202213567 10.1002/anie.202213567 36894506
    [Google Scholar]
  72. Alam Z. Zhang C. Samali B. Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure. Struct. Des. Tall Spec. Build. 2020 29 12 e1750 10.1002/tal.1750
    [Google Scholar]
  73. Salimi M. Pirouzfar V. Kianfar E. Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid Polym. Sci. 2017 295 1 215 226 10.1007/s00396‑016‑3998‑0
    [Google Scholar]
  74. Kianfar E. Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether. Russ. J. Appl. Chem. 2018 91 10 1711 1720 10.1134/S1070427218100208
    [Google Scholar]
  75. Kianfar E. Ethylene to propylene conversion over Ni-W/ZSM-5 catalyst. Russ. J. Appl. Chem. 2019 92 8 1094 1101 10.1134/S1070427219080068
    [Google Scholar]
  76. Wu J. Liu H. Chen W. Ma B. Ju H. Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 2023 1 5 346 360 10.1038/s44222‑023‑00032‑w 37168735
    [Google Scholar]
  77. Zhang W. Asiri A.M. Liu D. Du D. Lin Y. Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. Trends Analyt. Chem. 2014 54 1 10 10.1016/j.trac.2013.10.007
    [Google Scholar]
  78. Kaur N. Kaur J. Badru R. Kaushal S. Singh P.P. BGO/AlFu MOF core shell nano-composite based bromide ion-selective electrode. J. Environ. Chem. Eng. 2020 8 5 104375 10.1016/j.jece.2020.104375
    [Google Scholar]
  79. Mou J. Ding J. Qin W. Deep learning‐enhanced potentiometric aptasensing with magneto‐controlled sensors. Angew. Chem. Int. Ed. 2023 62 3 e202210513 10.1002/anie.202210513 36404278
    [Google Scholar]
  80. Zhang Z. Li H. Zhou N. Protein detection based on field-effect transistor biosensors for diagnosing diseases. Anal. Chem. 2025 97 4 1951 1959 10.1021/acs.analchem.4c04178 39848614
    [Google Scholar]
  81. Chen Y. Michael Z.P. Kotchey G.P. Zhao Y. Star A. Electronic detection of bacteria using holey reduced graphene oxide. ACS Appl. Mater. Interfaces 2014 6 6 3805 3810 10.1021/am500364f 24581028
    [Google Scholar]
  82. Farid S. Meshik X. Choi M. Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor. Biosens. Bioelectron. 2015 71 294 299 10.1016/j.bios.2015.04.047 25919809
    [Google Scholar]
  83. Li H. Zhu Y. Islam M.S. Rahman M.A. Walsh K.B. Koley G. Graphene field effect transistors for highly sensitive and selective detection of K+ ions. Sens. Actuators B Chem. 2017 253 759 765 10.1016/j.snb.2017.06.129
    [Google Scholar]
  84. Mak C.H. Liao C. Fu Y. Highly-sensitive epinephrine sensors based on organic electrochemical transistors with carbon nanomaterial modified gate electrodes. J. Mater. Chem. C Mater. Opt. Electron. Devices 2015 3 25 6532 6538 10.1039/C5TC01100K
    [Google Scholar]
  85. Parlak O. Keene S.T. Marais A. Curto V.F. Salleo A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018 4 7 eaar2904 10.1126/sciadv.aar2904 30035216
    [Google Scholar]
  86. Fu Y. Wang N. Yang A. Law H.K. Li L. Yan F. Law HKw, Li L, Yan F. Highly sensitive detection of protein biomarkers with organic electrochemical transistors. Adv. Mater. 2017 29 41 1703787 10.1002/adma.201703787 28922492
    [Google Scholar]
  87. Chen L. Fu Y. Wang N. Organic electrochemical transistors for the detection of cell surface glycans. ACS Appl. Mater. Interfaces 2018 10 22 18470 18477 10.1021/acsami.8b01987 29749223
    [Google Scholar]
  88. Quazi M.Z. Choi J.H. Kim M. Park N. DNA and nanomaterials: A functional combination for DNA sensing. ACS Appl. Bio Mater. 2024 7 2 778 786 10.1021/acsabm.3c01190 38270150
    [Google Scholar]
  89. Britto J.S.J. Guan X. Tran T.K.A. Emerging multifunctional carbon‐nanomaterial‐based biosensors for cancer diagnosis. Small Sci. 2024 4 3 2300221 10.1002/smsc.202300221 40212699
    [Google Scholar]
  90. Goodrum R. Li H. Advances in three dimensional metal enhanced fluorescence based biosensors using metal nanomaterial and nano‐patterned surfaces. Biotechnol. J. 2024 19 1 2300519 10.1002/biot.202300519 37997672
    [Google Scholar]
  91. Nunes D. Pimentel A. Gonçalves A. Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 2019 34 4 043001 10.1088/1361‑6641/ab011e
    [Google Scholar]
  92. Henriksson A. Neubauer P. Birkholz M. Strategies to realize ac electrokinetic enhanced mass‐transfer in silicon based photonic biosensors. Adv. Mater. Technol. 2025 10 2 2302191 10.1002/admt.202302191
    [Google Scholar]
  93. Chu M. Zhang Y. Ji C. Zhang Y. Yuan Q. Tan J. DNA nanomaterial-based electrochemical biosensors for clinical diagnosis. ACS Nano 2024 18 46 31713 31736 10.1021/acsnano.4c11857 39509537
    [Google Scholar]
  94. Momenbeitollahi N. van der Zalm J. Chen A. Li H. Entrapping gold nanoparticles in membranes for simple-to-use enhanced fluorescence detection of proteins. Anal. Chim. Acta 2022 1195 339443 10.1016/j.aca.2022.339443 35090665
    [Google Scholar]
  95. Gao Y. Zhou Y. Chandrawati R. Metal and metal oxide nanoparticles to enhance the performance of enzyme-linked immunosorbent assay (ELISA). ACS Appl. Nano Mater. 2020 3 1 1 21 10.1021/acsanm.9b02003
    [Google Scholar]
  96. Billingsley M.M. Riley R.S. Day E.S. Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods. PLoS One 2017 12 5 e0177592 10.1371/journal.pone.0177592 28494030
    [Google Scholar]
  97. Badshah M.A. Koh N.Y. Zia A.W. Abbas N. Zahra Z. Saleem M.W. Recent developments in plasmonic nanostructures for metal enhanced fluorescence-based biosensing. Nanomaterials 2020 10 9 1749 10.3390/nano10091749 32899375
    [Google Scholar]
  98. Park W. Shin H. Choi B. Rhim W.K. Na K. Han K.D. Advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci. 2020 114 100686 10.1016/j.pmatsci.2020.100686
    [Google Scholar]
  99. Cao G. Nanostructures and nanomaterials: Synthesis, properties and applications. World scientific 2004 448 10.1142/p305
    [Google Scholar]
  100. Zhang X. Guo Q. Cui D. Recent advances in nanotechnology applied to biosensors. Sensors 2009 9 2 1033 1053 10.3390/s90201033 22399954
    [Google Scholar]
  101. Verma J. Lal S. Van Noorden C.J.F. Inorganic nanoparticles for the theranostics of cancer. Eur. J. Nanomed. 2015 7 4 271 287 10.1515/ejnm‑2015‑0024
    [Google Scholar]
  102. Jazayeri M.H. Amani H. Pourfatollah A.A. Pazoki-Toroudi H. Sedighimoghaddam B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Biosensing Res. 2016 9 17 22 10.1016/j.sbsr.2016.04.002
    [Google Scholar]
  103. Zhao P. Li N. Astruc D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 2013 257 3-4 638 665 10.1016/j.ccr.2012.09.002
    [Google Scholar]
  104. Carnerero J.M. Jimenez-Ruiz A. Castillo P.M. Prado-Gotor R. Covalent and non‐covalent DNA-gold‐nanoparticle interactions: new avenues of research. ChemPhysChem 2017 18 1 17 33 10.1002/cphc.201601077 27723942
    [Google Scholar]
  105. Della Ventura B. Gelzo M. Battista E. Biosensor for point-of-care analysis of immunoglobulins in urine by metal enhanced fluorescence from gold nanoparticles. ACS Appl. Mater. Interfaces 2019 11 4 3753 3762 10.1021/acsami.8b20501 30609355
    [Google Scholar]
  106. You M. Yang S. An Y. Zhang F. He P. A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. J. Electroanal. Chem. 2020 862 114017 10.1016/j.jelechem.2020.114017
    [Google Scholar]
  107. Hasanzadeh M. Tagi S. Solhi E. An innovative immunosensor for ultrasensitive detection of breast cancer specific carbohydrate (CA 15-3) in unprocessed human plasma and MCF-7 breast cancer cell lysates using gold nanospear electrochemically assembled onto thiolated graphene quantum dots. Int. J. Biol. Macromol. 2018 114 1008 1017 10.1016/j.ijbiomac.2018.03.183 29621501
    [Google Scholar]
  108. Martinkova P. Kostelnik A. Valek T. Pohanka M. Main streams in the construction of biosensors and their applications. Int. J. Electrochem. Sci. 2017 12 8 7386 7403 10.20964/2017.08.02
    [Google Scholar]
  109. Shi S. Wu H. Zhang L. Gold nanoparticles based electrochemical sensor for sensitive detection of uranyl in natural water. J. Electroanal. Chem. 2021 880 114884 10.1016/j.jelechem.2020.114884
    [Google Scholar]
  110. Sun Y. Li T. Composition-tunable hollow Au/Ag SERS nanoprobes coupled with target-catalyzed hairpin assembly for triple-amplification detection of miRNA. Anal. Chem. 2018 90 19 11614 11621 10.1021/acs.analchem.8b03067 30175580
    [Google Scholar]
  111. Daniel M.C. Grow M.E. Pan H. Gold nanoparticle-cored poly(propyleneimine) dendrimers as a new platform for multifunctional drug delivery systems. New J. Chem. 2011 35 10 2366 2374 10.1039/c1nj20206e
    [Google Scholar]
  112. Zhu Z. Li H. Xiang Y. Koh K. Hu X. Chen H. Pyridinium porphyrins and AuNPs mediated bionetworks as SPR signal amplification tags for the ultrasensitive assay of brain natriuretic peptide. Mikrochim. Acta 2020 187 6 327 10.1007/s00604‑020‑04289‑5 32405667
    [Google Scholar]
  113. Loiseau A. Asila V. Boitel-Aullen G. Lam M. Salmain M. Boujday S. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors 2019 9 2 78 10.3390/bios9020078 31185689
    [Google Scholar]
  114. Cordeiro M. Ferreira Carlos F. Pedrosa P. Lopez A. Baptista P. Gold nanoparticles for diagnostics: advances towards points of care. Diagnostics 2016 6 4 43 10.3390/diagnostics6040043 27879660
    [Google Scholar]
  115. Elahi N. Kamali M. Baghersad M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018 184 537 556 10.1016/j.talanta.2018.02.088 29674080
    [Google Scholar]
  116. Ma Y. Niu H. Zhang X. Cai Y. One-step synthesis of silver/dopamine nanoparticles and visual detection of melamine in raw milk. Analyst 2011 136 20 4192 4196 10.1039/c1an15327g 21858327
    [Google Scholar]
  117. Li H. Li F. Han C. Cui Z. Xie G. Zhang A. Highly sensitive and selective tryptophan colorimetric sensor based on 4,4-bipyridine-functionalized silver nanoparticles. Sens. Actuators B Chem. 2010 145 1 194 199 10.1016/j.snb.2009.11.062
    [Google Scholar]
  118. Xiong D. Li H. Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology 2008 19 46 465502 10.1088/0957‑4484/19/46/465502 21836245
    [Google Scholar]
  119. Rivero P.J. Urrutia A. Goicoechea J. Arregui F.J. Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles. Sens. Actuators B Chem. 2012 173 244 249 10.1016/j.snb.2012.07.010
    [Google Scholar]
  120. Zhang W.S. Pan J. Li F. Reverse transcription recombinase polymerase amplification coupled with CRISPR-Cas12a for facile and highly sensitive colorimetric SARS-CoV-2 detection. Anal. Chem. 2021 93 8 4126 4133 10.1021/acs.analchem.1c00013 33570401
    [Google Scholar]
  121. Wang Q. Ren Z.H. Zhao W.M. Research advances on surface plasmon resonance biosensors. Nanoscale 2022 14 3 564 591 10.1039/D1NR05400G 34940766
    [Google Scholar]
  122. Song C. Zhang J. Jiang X. SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network. Biosens. Bioelectron. 2021 190 113376 10.1016/j.bios.2021.113376 34098358
    [Google Scholar]
  123. Liu C. Song Q. Chen J. Electromagnetic and chemical enhancements of surface‐enhanced raman scattering spectra from Cu2O hexagonal nanoplates. Adv. Mater. Interfaces 2019 6 17 1900534 10.1002/admi.201900534
    [Google Scholar]
  124. Ma Y. Song M. Li L. Attomolar-level detection of respiratory virus long-chain oligonucleotides based on FRET biosensor with upconversion nanoparticles and Au–Au dimer. Biosens. Bioelectron. 2024 243 115778 10.1016/j.bios.2023.115778 39492185
    [Google Scholar]
  125. Naresh V. Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021 21 4 1109 10.3390/s21041109 33562639
    [Google Scholar]
  126. Beitollahi H. Tajik S. Garkani Nejad F. Safaei M. Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors. J. Mater. Chem. B Mater. Biol. Med. 2020 8 27 5826 5844 10.1039/D0TB00569J 32542277
    [Google Scholar]
  127. Chen Y. Liu B. Chen Z. Zuo X. Innovative electrochemical sensor using TiO2 nanomaterials to detect phosphopeptides. Anal. Chem. 2021 93 30 10635 10643 10.1021/acs.analchem.1c01973 34286956
    [Google Scholar]
  128. Jayasimha H.N. Chandrappa K.G. Sanaulla P.F. Dileepkumar V.G. Green synthesis of CuO nanoparticles: A promising material for photocatalysis and electrochemical sensor. Sens. Int. 2024 5 100254 10.1016/j.sintl.2023.100254
    [Google Scholar]
  129. Zhang M. Guo W. Simultaneous electrochemical detection of multiple heavy metal ions in milk based on silica-modified magnetic nanoparticles. Food Chem. 2023 406 135034 10.1016/j.foodchem.2022.135034 36459793
    [Google Scholar]
  130. Mollarasouli F. Zor E. Ozcelikay G. Ozkan S.A. Magnetic nanoparticles in developing electrochemical sensors for pharmaceutical and biomedical applications. Talanta 2021 226 122108 10.1016/j.talanta.2021.122108 33676664
    [Google Scholar]
  131. Sanaeifar N. Rabiee M. Abdolrahim M. Tahriri M. Vashaee D. Tayebi L. A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal. Biochem. 2017 519 19 26 10.1016/j.ab.2016.12.006 27956150
    [Google Scholar]
  132. Huang W. Ding S. Chen Y. 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. Sci. Rep. 2017 7 1 5220 10.1038/s41598‑017‑05528‑1 28701794
    [Google Scholar]
  133. Yang H. Xu Y. Hou Q. Xu Q. Ding C. Magnetic antifouling material based ratiometric electrochemical biosensor for the accurate detection of CEA in clinical serum. Biosens. Bioelectron. 2022 208 114216 10.1016/j.bios.2022.114216 35349895
    [Google Scholar]
  134. Wang Y. Guan M. Mi F. Geng P. Chen G. Combining multisite functionalized magnetic nanomaterials with interference-free SERS nanotags for multi-target sepsis biomarker detection. Anal. Chim. Acta 2023 1272 341523 10.1016/j.aca.2023.341523 37355316
    [Google Scholar]
  135. Huang L. Zhu Y. Xu C. Noninvasive diagnosis of gastric cancer based on breath analysis with a tubular surface-enhanced Raman scattering sensor. ACS Sens. 2022 7 5 1439 1450 10.1021/acssensors.2c00146 35561250
    [Google Scholar]
  136. Qasim M. Asghar K. Das D. Preparation and characterization of CoFe2O4 and CoFe2O4@Albumen nanoparticles for biomedical applications. Ceram. Int. 2019 45 18 24971 24981 10.1016/j.ceramint.2019.04.049
    [Google Scholar]
  137. Mokhosi S. Mdlalose W. Mngadi S. Singh M. Moyo T. Assessing the structural, morphological and magnetic properties of polymer-coated magnesium-doped cobalt ferrite (CoFe2O4) nanoparticles for biomedical application. J. Phys. Conf. Ser. 2019 1310 012014 10.1088/1742‑6596/1310/1/012014
    [Google Scholar]
  138. Al-Qasmi N. Almughem F.A. Jarallah S.J. Almaabadi A. Efficient green synthesis of (Fe3O4) and (NiFe2O4) nanoparticles using star anise (illicium verum) extract and their biomedical activity against some cancer cells. Materials 2022 15 14 4832 10.3390/ma15144832 35888298
    [Google Scholar]
  139. Esther Nimshi R. Judith Vijaya J. Al-Najar B. Multifunctional core‐shell NiFe2O4 shield with TiO2/rGO nanostructures for biomedical and environmental applications. Bioinorg. Chem. Appl. 2022 2022 1 4805490 10.1155/2022/4805490 35686291
    [Google Scholar]
  140. Wang J. Nanomaterial-based electrochemical biosensors. Analyst 2005 130 4 421 426 10.1039/b414248a 15846872
    [Google Scholar]
  141. Zhu Z. Garcia-Gancedo L. Flewitt A.J. Xie H. Moussy F. Milne W.I. A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 2012 12 5 5996 6022 10.3390/s120505996 22778628
    [Google Scholar]
  142. Kuila T. Bose S. Khanra P. Mishra A.K. Kim N.H. Lee J.H. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 2011 26 12 4637 4648 10.1016/j.bios.2011.05.039 21683572
    [Google Scholar]
  143. Ioniţă M. Vlăsceanu G.M. Watzlawek A.A. Voicu S.I. Burns J.S. Iovu H. Graphene and functionalized graphene: Extraordinary prospects for nanobiocomposite materials. Compos., Part B Eng. 2017 121 34 57 10.1016/j.compositesb.2017.03.031
    [Google Scholar]
  144. Xu X. Huang J. Li J. Yan J. Qin J. Li Z. A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin. Chem. Commun. 2011 47 45 12385 12387 10.1039/c1cc15735c 22011887
    [Google Scholar]
  145. Suvarnaphaet P. Pechprasarn S. Graphene-based materials for biosensors: a review. Sensors 2017 17 10 2161 10.3390/s17102161 28934118
    [Google Scholar]
  146. Bobrinetskiy I.I. Knezevic N.Z. Graphene-based biosensors for on-site detection of contaminants in food. Anal. Methods 2018 10 42 5061 5070 10.1039/C8AY01913D
    [Google Scholar]
  147. Bollella P. Fusco G. Tortolini C. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron. 2017 89 Pt 1 152 166 10.1016/j.bios.2016.03.068 27132999
    [Google Scholar]
  148. Hasler R. Fenoy G.E. Götz A. “Clickable” graphene nanoribbons for biosensor interfaces. Nanoscale Horiz. 2024 9 4 598 608 10.1039/D3NH00590A 38385442
    [Google Scholar]
  149. Zhang H. Zhang H. Aldalbahi A. Zuo X. Fan C. Mi X. Fluorescent biosensors enabled by graphene and graphene oxide. Biosens. Bioelectron. 2017 89 Pt 1 96 106 10.1016/j.bios.2016.07.030 27459883
    [Google Scholar]
  150. Kasry A. Ardakani A.A. Tulevski G.S. Menges B. Copel M. Vyklicky L. Highly efficient fluorescence quenching with graphene. J. Phys. Chem. C 2012 116 4 2858 2862 10.1021/jp207972f
    [Google Scholar]
  151. Deka M.J. Chowdhury D. Tuning electrical properties of graphene with different π-stacking organic molecules. J. Phys. Chem. C 2016 120 7 4121 4129 10.1021/acs.jpcc.5b12403
    [Google Scholar]
  152. Krishnan S.K. Singh E. Singh P. Meyyappan M. Nalwa H.S. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Advances 2019 9 16 8778 8881 10.1039/C8RA09577A 35517682
    [Google Scholar]
  153. Kim J. Park S.J. Min D.H. Emerging approaches for graphene oxide biosensor. Anal. Chem. 2017 89 1 232 248 10.1021/acs.analchem.6b04248 28105836
    [Google Scholar]
  154. Shankar Tade R. Onkar Patil P. Fabrication of poly (aspartic) acid functionalized graphene quantum dots based FRET sensor for selective and sensitive detection of MAGE-A11 antigen. Microchem. J. 2022 183 107971 10.1016/j.microc.2022.107971
    [Google Scholar]
  155. Rong Y. Li H. Ouyang Q. Ali S. Chen Q. Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 239 118500 10.1016/j.saa.2020.118500 32470816
    [Google Scholar]
  156. Tamborelli A. Mujica M.L. Amaranto M. L-lactate electrochemical biosensor based on an integrated supramolecular architecture of multiwalled carbon nanotubes functionalized with avidin and a recombinant biotinylated lactate oxidase. Biosensors 2024 14 4 196 10.3390/bios14040196 38667189
    [Google Scholar]
  157. Meng L.L. Song T.T. Mao X. Novel immunochromatographic assay on cotton thread based on carbon nanotubes reporter probe. Talanta 2017 167 379 384 10.1016/j.talanta.2017.02.023 28340734
    [Google Scholar]
  158. Jia X. Song T. Liu Y. Meng L. Mao X. An immunochromatographic assay for carcinoembryonic antigen on cotton thread using a composite of carbon nanotubes and gold nanoparticles as reporters. Anal. Chim. Acta 2017 969 57 62 10.1016/j.aca.2017.02.040 28411630
    [Google Scholar]
  159. Peng B. Cui J. Wang Y. CeO2−x /C/rGO nanocomposites derived from Ce-MOF and graphene oxide as a robust platform for highly sensitive uric acid detection. Nanoscale 2018 10 4 1939 1945 10.1039/C7NR08858B 29319098
    [Google Scholar]
  160. Chang L.Y. Rinawati M. Guo Y.T. Nitrogen-doped graphene quantum dots incorporated into MOF-derived NiCo layered double hydroxides for nonenzymatic lactate detection in noninvasive biosensors. ACS Appl. Nano Mater. 2024 7 12 14431 14442 10.1021/acsanm.4c01899
    [Google Scholar]
  161. Purohit B. Vernekar P.R. Shetti N.P. Chandra P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sens. Int. 2020 1 100040 10.1016/j.sintl.2020.100040
    [Google Scholar]
  162. Wang J.Y. Su Y.L. Wu B.H. Cheng S.H. Reusable electrochemical sensor for bisphenol A based on ionic liquid functionalized conducting polymer platform. Talanta 2016 147 103 110 10.1016/j.talanta.2015.09.035 26592583
    [Google Scholar]
  163. Wang T. Kumar S. Electrospinning of polyacrylonitrile nanofibers. J. Appl. Polym. Sci. 2006 102 2 1023 1029 10.1002/app.24123
    [Google Scholar]
  164. Huang Z.M. Zhang Y.Z. Kotaki M. Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003 63 15 2223 2253 10.1016/S0266‑3538(03)00178‑7
    [Google Scholar]
  165. Çetin M.Z. Guven N. Apetrei R.M. Camurlu P. Highly sensitive detection of glucose via glucose oxidase immobilization onto conducting polymer-coated composite polyacrylonitrile nanofibers. Enzyme Microb. Technol. 2023 164 110178 10.1016/j.enzmictec.2022.110178 36566669
    [Google Scholar]
  166. Yang G.G. Kim D.H. Samal S. Polymer-based thermally stable chemiresistive sensor for real-time monitoring of NO2 gas emission. ACS Sens. 2023 8 10 3687 3692 10.1021/acssensors.3c01530 37721017
    [Google Scholar]
  167. Shirazi M. Rad G.M. Tamsilian Y. Encyclopedia of materials: Composites. Elsevier 2021 Vol. 1 725 745 10.1016/B978‑0‑12‑819724‑0.00083‑5
    [Google Scholar]
  168. Han E. Pan Y. Li L. Cai J. Bisphenol A detection based on nano gold-doped molecular imprinting electrochemical sensor with enhanced sensitivity. Food Chem. 2023 426 136608 10.1016/j.foodchem.2023.136608 37348395
    [Google Scholar]
  169. Kaewda C. Sriwichai S. Label-Free Electrochemical dopamine biosensor based on electrospun nanofibers of polyaniline/carbon nanotube composites. Biosensors 2024 14 7 349 10.3390/bios14070349 39056625
    [Google Scholar]
  170. Zhao B. Yang T. Qu Y. Mills A.J. Zhang G. He L. Rapid capture and SERS detection of triclosan using a silver nanoparticle core – protein satellite substrate. Sci. Total Environ. 2020 716 137097 10.1016/j.scitotenv.2020.137097 32045763
    [Google Scholar]
  171. Yaghoubi M. Rahimi F. Negahdari B. Rezayan A.H. Shafiekhani A. A lectin-coupled porous silicon-based biosensor: label-free optical detection of bacteria in a real-time mode. Sci. Rep. 2020 10 1 16017 10.1038/s41598‑020‑72457‑x 32994483
    [Google Scholar]
  172. Zhu Z. Song H. Wang Y. Zhang Y.H.P.J. Protein engineering for electrochemical biosensors. Curr. Opin. Biotechnol. 2022 76 102751 10.1016/j.copbio.2022.102751 35777077
    [Google Scholar]
  173. Farka Z. Juřík T. Kovář D. Trnková L. Skládal P. Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem. Rev. 2017 117 15 9973 10042 10.1021/acs.chemrev.7b00037 28753280
    [Google Scholar]
  174. Edwardraja S. Guo Z. Whitfield J. Caged activators of artificial allosteric protein biosensors. ACS Synth. Biol. 2020 9 6 1306 1314 10.1021/acssynbio.9b00500 32339455
    [Google Scholar]
  175. Ortiz R. Rahman M. Zangrilli B. Engineering of cellobiose dehydrogenases for improved glucose sensitivity and reduced maltose affinity. ChemElectroChem 2017 4 4 846 855 10.1002/celc.201600781
    [Google Scholar]
  176. Wen W. Yan X. Zhu C. Du D. Lin Y. Recent advances in electrochemical immunosensors. Anal. Chem. 2017 89 1 138 156 10.1021/acs.analchem.6b04281 28105820
    [Google Scholar]
  177. Sharma S. Byrne H. O’Kennedy R.J. Antibodies and antibody-derived analytical biosensors. Essays Biochem. 2016 60 1 9 18 10.1042/EBC20150002 27365031
    [Google Scholar]
  178. Guo W. Yu Y. Xin C. Jin G. Comparative study of optical fiber immunosensors based on traditional antibody or nanobody for detecting HER2. Talanta 2024 277 126317 10.1016/j.talanta.2024.126317 38810383
    [Google Scholar]
  179. Moussy F. Kreutzer D. Burgess D. Koberstein J. Papadimitrakopoulos F. Huang S. Implant coating for control of tissue/implant interactions. US Patent US6497729B1 1999
  180. Natan M. Self-assembled metal colloid monolayers. US Patent US5609907A 1995
  181. Ewart T.G. Bogle G.T. Nanoparticles biosensor. US Patent US5922537A 1996
  182. Li Y Wang G Long C Chen YT Huang L Preparation and immunosensing application of a laser direct writing graphene/precious metal nanoparticle composite electrode. CN Patent CN113295748A 2021
  183. Reed J.D. Kruger C.G. Alfaro-Vickers E. Madrigal-Caballo S. Sabrio H.U. Tanin composite fibers. US Patent US20210230777A1 2021
  184. Jin S. Choi C. Mola P. Merriman B. Method, apparatus and system for single-molecule polymerase biosensor with transition metal disulfide US Patent US20200393440A1 2020
  185. Hauser C.A.E. Jadhav S. A peptide capable of forming a gel for use in tissue engineering and bioprinting. US Patent US20200148720A1 2020
  186. Shanjani Y. Cam B. Morton J.Y. Sato J. Biosensor performance indicator for intraoral appliances. US Patent US10639134B2 2020
  187. Zhou Q. Mark Z. Zhang L. Yu L. Wang Z. Boron doped diamond electrode and preparation method and applications thereof. US Patent US20200048776A1 2020
  188. He J Yu C Ma Y. A biosensor based on double signal amplification for detecting heavy metal lead ions. CN Patent CN110438200A 2019
  189. Zhang H Li G Du C Cheng S Zuo D The invention relates to a preparation process of seven color fluorescent carbon quantum dots. CN Patent CN110342490A 2019
  190. Wu H Zou P Liu Y Wang H Wu J Han G The invention relates to a fluorescent biological probe for miRNA detection, detection method and application. CN Patent CN109913546A 2019
  191. Bradbury M. Methods of cancer treatment via regulated ferroptosis. WO Patent WO2019113004A1 2019
  192. Badylak S.F. Huleihel L. Hussey G.S. Gutierrez J.D.N. Matrix bound nanovesicles and their use. US Patent US20190117837A1 2019
  193. Zhang Z Ma N Li X Zhang X Song F The invention relates to a light-color adjustable fluorescent oxide nanocellulose film and a preparation method thereof. CN Patent CN109762206A 2019
/content/journals/nanotec/10.2174/0118722105397248250919080111
Loading
/content/journals/nanotec/10.2174/0118722105397248250919080111
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test