Skip to content
2000
image of Superhydrophobic Surfaces in Flexible Electronic Applications: A Visual Analysis of Trends in Patents

Abstract

Surface wettability is the property of any surface when it encounters water. When the surface of electrical components is exposed to water, corrosion or insulation breakdown can occur, potentially leading to short circuits or device malfunction. From 2000 to 2023, flexible electronic devices with superhydrophobic properties have experienced increasing demand in the market. In the proposed work, a review and innovation mapping was conducted using the Espacenet database from 2000 to 2024, considering a total of 48,71,256 patents. In addition to the Espacenet database, Unified Patents and Lens.org were also utilized for citation analysis and the examination of patent indices. The findings demonstrate a significant upward digital trend in superhydrophobic flexible electronics, with versatile applications in the health, textile, nanotechnology, and electrical sectors. The key patent demonstrates the properties that are essential for fabricating superhydrophobic flexible electronics, ., self-cleaning, porous structure, conducting, bendable, and durable with Water Contact Angle (WCA) >150 ˚ and Sliding Angle (SA) <10 ˚. This article also discusses the classification of patents using Cooperative Patent Classification (CPC) and International Patent Classification (IPC) codes, including main and subgroup categorizations, the language of publication, countries, inventors, and applicants who contributed to the progress of superhydrophobic coating for flexible electronics. The insights from this study provide a valuable foundation for future advancements in the field, enabling the development of more durable, efficient, and multifunctional flexible electronic devices. As the demand for water-resistant and high-performance electronics continues to grow, this research is a crucial reference for guiding innovation and fostering technological breakthroughs in wearable electronics, biomedical applications, and next-generation innovative materials.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105375661250821091616
2025-09-12
2025-11-05
Loading full text...

Full text loading...

References

  1. Liu K. Duan T. Zhang F. Flexible electrode materials for emerging electronics: Materials, fabrication and applications. J. Mater. Chem. A Mater. Energy Sustain. 2024 12 32 20606 20637 10.1039/D4TA01960A
    [Google Scholar]
  2. Patil K. Laad M. Kamble A. Laad S. A consumer-based smart home and health monitoring system. Int. J. Comput. Appl. Technol. 2018 58 1 45 10.1504/IJCAT.2018.094063
    [Google Scholar]
  3. Zhang Q. Soham D. Liang Z. Wan J. Advances in wearable energy storage and harvesting systems. Med-X 2025 3 1 3 10.1007/s44258‑024‑00048‑w
    [Google Scholar]
  4. Liu Z. Hu J. Shen G. Bioinspired intelligent electronic skin for medicine and healthcare. Small Methods 2025 2025 2402164 10.1002/smtd.202402164 39906020
    [Google Scholar]
  5. Meng Q. Yan Z. Abbas J. Shankar A. Subramanian M. Human–computer interaction and digital literacy promote educational learning in pre-school children: Mediating role of psychological resilience for kids’ mental well-being and school readiness. Int. J. Hum. Comput. Interact. 2025 41 1 16 30 10.1080/10447318.2023.2248432
    [Google Scholar]
  6. Huang S. Liu Y. Zhao Y. Ren Z. Guo C.F. Flexible electronics: Stretchable electrodes and their future. Adv. Funct. Mater. 2019 29 6 1805924 10.1002/adfm.201805924
    [Google Scholar]
  7. Duan T. Liang J. Liu K. Cobalt-catecholate-functionalized nonwoven alginate fabrics for ultrafast photo-pressure sensing. Chem. Eng. J. 2025 504 158604 10.1016/j.cej.2024.158604
    [Google Scholar]
  8. Flexible Electronics Market Size to Surpass USD 61 Bn by 2030 2023 Available from:https://www.precedenceresearch.com/flexible-electronics-market
  9. Liu K. Zhang M. Du X. Zinc-catecholete frameworks biomimetically grown on marine polysaccharide microfibers for soft electronic platform. Nano Res. 2023 16 1 1296 1303 10.1007/s12274‑022‑4798‑0 36090612
    [Google Scholar]
  10. Hu J. Xian Y. Kang Z. Flow field‐induced one‐step electrodeposition process to fabricate superhydrophobic films for flexible electronics. Adv. Mater. Interfaces 2021 8 18 2100932 10.1002/admi.202100932
    [Google Scholar]
  11. Baylakoğlu İ Fortier A Kyeong S The detrimental effects of water on electronic devices. e-Prime Adv Electr Eng Electron Energy 2021 1: 100016. 10.1016/j.prime.2021.100016
  12. Corzo D. Tostado-Blázquez G. Baran D. Flexible electronics: status, challenges and opportunities. Front Electron 2020 1 594003 10.3389/felec.2020.594003
    [Google Scholar]
  13. Li X. Li Y. Guan T. Xu F. Sun J. Durable, highly electrically conductive cotton fabrics with healable superamphiphobicity. ACS Appl. Mater. Interfaces 2018 10 14 12042 12050 10.1021/acsami.8b01279 29557643
    [Google Scholar]
  14. Kung C.H. Sow P.K. Zahiri B. Mérida W. Assessment and interpretation of surface wettability based on sessile droplet contact angle measurement: Challenges and opportunities. Adv. Mater. Interfaces 2019 6 18 1900839 10.1002/admi.201900839
    [Google Scholar]
  15. Shalu A. Laad M. Polymer composite coatings enhanced with superhydrophobic properties for flexible electronics applications: A review. Polym Technol Mater 2024 1 22 10.1080/25740881.2024.2419644
    [Google Scholar]
  16. Chen D. He Y. Wang Q. Li W. Kang Z. One-step electrodeposition to fabricate robust superhydrophobic silver/graphene coatings with excellent stability. Trans. Nonferrous Met. Soc. China 2022 32 10 3321 3333 10.1016/S1003‑6326(22)66023‑0
    [Google Scholar]
  17. Su X. Li H. Lai X. Chen Z. Zeng X. Highly stretchable and conductive superhydrophobic coating for flexible electronics. ACS Appl. Mater. Interfaces 2018 10 12 10587 10597 10.1021/acsami.8b01382 29508997
    [Google Scholar]
  18. Parvate S. Dixit P. Chattopadhyay S. Superhydrophobic surfaces: Insights from theory and experiment. J. Phys. Chem. B 2020 124 8 1323 1360 10.1021/acs.jpcb.9b08567 31931574
    [Google Scholar]
  19. Nikam A.V. Prasad B.L.V. Kulkarni A.A. Wet chemical synthesis of metal oxide nanoparticles: A review. CrystEngComm 2018 20 35 5091 5107 10.1039/C8CE00487K
    [Google Scholar]
  20. Quan Y.Y. Chen Z. Lai Y. Huang Z.S. Li H. Recent advances in fabricating durable superhydrophobic surfaces: A review in the aspects of structures and materials. Mater. Chem. Front. 2021 5 4 1655 1682 10.1039/D0QM00485E
    [Google Scholar]
  21. Sam E. Sam D. Lv X. Liu B. Xiao X. Recent development in the fabrication of self-healing superhydrophobic surfaces. Chem. Eng. J. 2019 373 531 546 10.1016/j.cej.2019.05.077
    [Google Scholar]
  22. Wang G. Li A. Zhao W. A review on fabrication methods and research progress of superhydrophobic silicone rubber materials. Adv. Mater. Interfaces 2021 8 1 2001460 10.1002/admi.202001460
    [Google Scholar]
  23. Laad M. Ghule B. Fabrication techniques of superhydrophobic coatings: A comprehensive review. Phys Status Solidi, (a) Appl. Mater. Sci. 2022 219 16 2200109 10.1002/pssa.202200109
    [Google Scholar]
  24. Kumar A. Nanda D. Chapter 3 - Methods and fabrication techniques of superhydrophobic surfaces. Superhydrophobic Polymer Coatings Chapter 3 Elsevier 2019 43 75 10.1016/B978‑0‑12‑816671‑0.00004‑7
    [Google Scholar]
  25. Goharshenas Moghadam S. Parsimehr H. Ehsani A. Multifunctional superhydrophobic surfaces. Adv. Colloid Interface Sci. 2021 290 102397 10.1016/j.cis.2021.102397 33706199
    [Google Scholar]
  26. Jia L.C. Sun W.J. Xu L. Facile construction of a superhydrophobic surface on a textile with excellent electrical conductivity and stretchability. Ind. Eng. Chem. Res. 2020 59 16 7546 7553 10.1021/acs.iecr.9b06990
    [Google Scholar]
  27. Yang H. Xu K. Xu C. Femtosecond laser fabricated elastomeric superhydrophobic surface with stretching-enhanced water repellency. Nanoscale Res. Lett. 2019 14 1 333 10.1186/s11671‑019‑3140‑6 31650340
    [Google Scholar]
  28. Lu C. Gao Y. Yu S. Zhou H. Wang X. Li L. Non-fluorinated flexible superhydrophobic surface with excellent mechanical durability and self-cleaning performance. ACS Appl. Mater. Interfaces 2022 14 3 4750 4758 10.1021/acsami.1c21840 35029969
    [Google Scholar]
  29. Cao Y. Salvini A. Camaiti M. Current status and future prospects of applying bioinspired superhydrophobic materials for conservation of stone artworks. Coatings 2020 10 4 353 10.3390/coatings10040353
    [Google Scholar]
  30. Zhang Y. Chen L. Lin Z. Highly sensitive dissolved oxygen sensor with a sustainable antifouling, antiabrasion, and self-cleaning superhydrophobic surface. ACS Omega 2019 4 1 1715 1721 10.1021/acsomega.8b02464 31459428
    [Google Scholar]
  31. Yang W. Yao B. Chai L. Yang G. Deng L. Multifunctional conductive sponge with excellent superhydrophobicity, piezoresistivity, electro/light to heat conversion, and oil/water separation performance. Chem. Eng. J. 2023 455 140532 10.1016/j.cej.2022.140532
    [Google Scholar]
  32. Alhalili Z. Metal oxides nanoparticles: General structural description, chemical, physical, and biological synthesis methods, role in pesticides and heavy metal removal through wastewater treatment. Molecules 2023 28 7 3086 10.3390/molecules28073086 37049850
    [Google Scholar]
  33. Li L. Bai Y. Li L. A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 2017 29 43 1702517 10.1002/adma.201702517 28940841
    [Google Scholar]
  34. Sun J. Sun R. Jia P. Ma M. Song Y. Fabricating flexible conductive structures by printing techniques and printable conductive materials. J. Mater. Chem. C Mater. Opt. Electron. Devices 2022 10 25 9441 9464 10.1039/D2TC01168A
    [Google Scholar]
  35. Dalawai S.P. Saad Aly M.A. Latthe S.S. Recent advances in durability of superhydrophobic self-cleaning technology: A critical review. Prog. Org. Coat. 2020 138 105381 10.1016/j.porgcoat.2019.105381
    [Google Scholar]
  36. Xu W. Yi P. Gao J. Deng Y. Peng L. Lai X. Large-area stable superhydrophobic poly(dimethylsiloxane) films fabricated by thermal curing via a chemically etched template. ACS Appl. Mater. Interfaces 2020 12 2 3042 3050 10.1021/acsami.9b19677 31860263
    [Google Scholar]
  37. Mohd Khairuddin F.A. Rashid A.A. Leo C.P. Recent progress in superhydrophobic rubber coatings. Prog. Org. Coat. 2022 171 107024 10.1016/j.porgcoat.2022.107024
    [Google Scholar]
  38. Song X. Huang X. Luo J. Flexible, superhydrophobic and multifunctional carbon nanofiber hybrid membranes for high performance light driven actuators. Nanoscale 2021 13 27 12017 12027 10.1039/D1NR02254G 34231636
    [Google Scholar]
  39. Torun I. Celik N. Ruzi M. Technology M.O-S. Transferring the structure of paper for mechanically durable superhydrophobic surfaces. Surf. Coat. Tech. 2021 405 126543 10.1016/j.surfcoat.2020.126543
    [Google Scholar]
  40. Li X. Reinhoudt D. Reviews M.C-C-C.S. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007 36 1350 1368 10.1039/b602486f
    [Google Scholar]
  41. Su F. Yao K. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method. ACS Appl. Mater. Interfaces 2014 6 11 8762 8770 10.1021/am501539b 24796223
    [Google Scholar]
  42. Superhydrophobic coatings market analysis 2023 Available from:https://straitsresearch.com/report/superhydrophobic-coatings-market
  43. Grant E. Van den Hof M. Gold E.R. Patent landscape analysis: A methodology in need of harmonized standards of disclosure. World Pat. Inf. 2014 39 3 10 10.1016/j.wpi.2014.09.005
    [Google Scholar]
  44. Stoffels M.A. Klauck F.J.R. Hamadi T. Glorius F. Leker J. Technology trends of catalysts in hydrogenation reactions: A patent landscape analysis. Adv. Synth. Catal. 2020 362 6 1258 1274 10.1002/adsc.201901292 32322184
    [Google Scholar]
  45. Shinde S.R. Apte S. Tiwari A.K. Electro-chlorination technology for disinfection of drinking water: A Patent Landscape. Recent Pat. Eng. 2022 17 4 090522204394 10.2174/1872212116666220509002607
    [Google Scholar]
  46. Baumann M. Domnik T. Haase M. Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy. Technol. Forecast. Soc. Change 2021 165 120505 10.1016/j.techfore.2020.120505
    [Google Scholar]
  47. Yang Y.Y. Akers L. Yang C.B. Klose T. Pavlek S. Enhancing patent landscape analysis with visualization output. World Pat. Inf. 2010 32 3 203 220 10.1016/j.wpi.2009.12.006
    [Google Scholar]
  48. Liu S.J. Shyu J. Strategic planning for technology development with patent analysis. Int. J. Technol. Manag. 1997 13 5/6 661 680 10.1504/IJTM.1997.001689
    [Google Scholar]
  49. Yoon J. Park Y. Kim M. Lee J. Lee D. Tracing evolving trends in printed electronics using patent information. J. Nanopart. Res. 2014 16 7 2471 10.1007/s11051‑014‑2471‑6
    [Google Scholar]
  50. Azimi Yancheshme A. Momen G. Jafari Aminabadi R. Mechanisms of ice formation and propagation on superhydrophobic surfaces: A review. Adv. Colloid Interface Sci. 2020 279 102155 10.1016/j.cis.2020.102155 32305656
    [Google Scholar]
  51. Zhu C. Motohashi K. Identifying the technology convergence using patent text information: A graph convolutional networks (GCN)-based approach. Technol. Forecast. Soc. Change 2022 176 121477 10.1016/j.techfore.2022.121477
    [Google Scholar]
  52. Afifuddin M. Seo W. Predictive modeling for technology convergence: A patent data-driven approach through technology topic networks. Comput. Ind. Eng. 2024 188 109909 10.1016/j.cie.2024.109909
    [Google Scholar]
  53. Kim J. Geum Y. Identifying promising technologies considering technology convergence: A patent-based machine-learning approach. IEEE Trans. Eng. Manage. 2024 71 15096 15109 10.1109/TEM.2024.3477508
    [Google Scholar]
  54. An H Kong D Liu Y Research on technology convergence based on patent knowledge flow network - A case study of industrial robotics. China Automation Congress (CAC). Chongqing, China 17-19 November 2023 3784 3789 Chongqing, China, 10.1109/CAC59555.2023.10450242
    [Google Scholar]
  55. Ashouri S. Mention A.L. Smyrnios K.X. Anticipation and analysis of industry convergence using patent-level indicators. Scientometrics 2021 126 7 5727 5758 10.1007/s11192‑021‑04025‑7
    [Google Scholar]
  56. Ghule B. Laad M. Tiwari A.K. Poly-4-methyl-1-pentene a dielectric material: Patent landscape. J. Energy Storage 2021 36 102335 10.1016/j.est.2021.102335
    [Google Scholar]
  57. Zhang H. Gao S. Zhou P. Role of digitalization in energy storage technological innovation: Evidence from China. Renew. Sustain. Energy Rev. 2023 171 113014 10.1016/j.rser.2022.113014
    [Google Scholar]
  58. Klincewicz K. Szumiał S. Successful patenting—not only how, but with whom: The importance of patent attorneys. Scientometrics 2022 127 9 5111 5137 10.1007/s11192‑022‑04476‑6
    [Google Scholar]
  59. Nakamura H. Suzuki S. Kajikawa Y. Osawa M. The effect of patent family information in patent citation network analysis: A comparative case study in the drivetrain domain. Scientometrics 2015 104 2 437 452 10.1007/s11192‑015‑1626‑2
    [Google Scholar]
  60. Li X. Fan M. Liang Z. Identifying technological competition situations for artificial intelligence technology - A patent landscape analysis. Int. J. Technol. Manag. 2020 82 3/4 322 348 10.1504/IJTM.2020.108987
    [Google Scholar]
  61. Liu B. Patent landscape analysis using family based citation. SSRN Electron J 2014 50 (1) 104117 10.2139/SSRN.2397385
    [Google Scholar]
  62. Aristodemou L. Tietze F. Citations as a measure of technological impact: A review of forward citation-based measures. World Pat. Inf. 2018 53 39 44 10.1016/j.wpi.2018.05.001
    [Google Scholar]
  63. Hur W. Oh J. A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents. Res. Policy 2021 50 1 104117 10.1016/j.respol.2020.104117
    [Google Scholar]
  64. Parr D.L. Jannuzzi C.J. Taylor E.J. Leddy J. Journal patent citations – a new paradigm for journal quality? Electrochem. Soc. Interface 2021 30 2 12 13 10.1149/2.F02212IF
    [Google Scholar]
  65. Farr M Wall FJ Togami C Sasser GD Disposable endoscope and portable display. Patent US8858425B2 2010
  66. Aizenberg J Hatton B Assembly and deposition of materials using a superhydrophobic surface structure. Patent US20110077172A1 2008
  67. Jin H. Liquid-repellent material. Patent WO_2011_001036_A1 2010
  68. Dhinojwala A Ajayan PM Sethi S Aligned carbon nanotube-polymer materials, systems and methods. Patent US20090269560A1 2009
  69. Dacey RG Hyde RA Ishikawa MY Systems, devices, and methods including catheters having self-cleaning surfaces. Patent US8706211B2 2010
  70. Nordin P Strindberg G. Multifunctional de-icing/anti-icing system. Patent US8931740B2, 2010
  71. Aizenberg J Hatton B Assembly and deposition of materials using a superhydrophobic surface structure. Patent US8927464B2 2008
  72. Li J Fan L Wong CP Lambert FC Insulator coating and method for forming same. Patent US7722951B2 2004
  73. Hurley MF Flexible superhydrophobic and/or oleophobic polyurethane coatings. Patent US20160208111A1 2016
  74. Corn RM Toma M Loget G Fung HWM Nanostructured arrays on flexible polymer films. Patent US20150126393A1 2014
  75. Willmot CM Dalton SJ Heated rigid electrical harness for a gas turbine engine. Patent US9814101B2 2013
  76. Ivanov IN Simpson JT Large area controlled assembly of transparent conductive networks. Patent US9147505B2 2011
    [Google Scholar]
  77. Abdollahi A. Domhan S. Jenne J.W. Apoptosis signals in lymphoblasts induced by focused ultrasound. FASEB J. 2004 18 12 1413 1414 10.1096/fj.04‑1601fje 15231731
    [Google Scholar]
  78. Penzes JH Multi-component films for optical display filters. Patent US8630040B2 2008
  79. Penzes JH Clamping assembly for flexible conductors used on elevated platforms. Patent US20140001327A1, 2012
  80. Windmiller JWR Textile-based printable electrodes for electrochemical sensing. Patent US9844339B2 2015
  81. Gupta MC Nayak BK Caffrey PO Micro-structure and nano-structure replication methods and article of manufacture. Patent US10131086B2 2012
  82. Fernandez DS Reconfigurable garment definition and production method. Patent US8185231B2 2004
  83. Zhang L. Liu Z. Research on technology prospect risk of high-tech projects based on patent analysis. PLoS One 2020 15 10 0240050 10.1371/journal.pone.0240050 33017432
    [Google Scholar]
  84. Pandey P.N. Saini N. Sapre N. Kulkarni D.A. Tiwari D.A.K. Prioritising breast cancer theranostics: A current medical longing in oncology. Cancer Treat. Res. Commun. 2021 29 100465 10.1016/j.ctarc.2021.100465 34598060
    [Google Scholar]
  85. Portfolio value index (PVIX) methodology. Available from: https://support.unifiedpatents.com/hc/en-us/articles/360031290014-Portfolio-Value-Index-PVIX-Methodology
  86. Kolhar S. Jagtap J. Tiwari A.K. Patentometric review on automated plant phenotyping. COLLNET J Scientom Inf Manag 2023 17 1 119 140 10.47974/CJSIM‑2022‑0047
    [Google Scholar]
  87. Michael E Young AC Mittal AD Srinivas CP Enhanced surfaces, coatings and related methods. Patent CN102186643B 2014
  88. Yau A. Self-cleaning litter box. Patent US7762213B2, 2004
  89. Boudreaux CP Electrosurgical instrument with jaw cleaning mode. Patent US9993284B2, 2014
  90. Anti-icing, de-icing, and heating configuration, integration, and power methods for aircraft, aerodynamic, and complex surfaces. Patent US10155593B2, 2012
  91. Gilmore CJ Fixter GPW Ice protection of aerodynamic surfaces. Patent US9771158B2 2006
  92. Zimmermann J Seeger S J GA Superhydrophobic coating Patent US8586693B2 2011
  93. Imbott N Chuck C Electrical power supply and control device for equipment of rotor, and aircraft fitted with such device. Patent CN102263442B 2011
  94. Krammer J Hofer G Vehicle with a storage device that can be recharged by way of a charging cable and an external power supply. Patent US10720766B2, 2017
  95. Lewis SM Winter NJ Electrothermal heater mat. Patent US10252806B2, 2011
  96. McCabe BS Laminated lenses with anti-fogging functionality. Patent US10295821B2 2017
  97. Meis CS BOSETTI CK. Supercooled large drop icing condition detection system Patent EP2800690B1 2012
  98. Lewis SM English P Electrical apparatus. Patent CN102883954B 2011
    [Google Scholar]
  99. Lewis SM Winter NJ English P Electrothermal heater mat and method for manufacturing electrothermal heater mat. Patent CN102822056B 2011
    [Google Scholar]
  100. Tour JM Chyan Y Arnusch CJ Methods of fabricating laser-induced graphene and compositions thereof. Patent US2019330064A1 2017
    [Google Scholar]
  101. Friedberger A Helwig A Sensor skin comprising temperature sensors. Patent US2017356866A1 2017
  102. Liu S Yin L Zhang X Yang F Overhead line anti-icing and ice-melting control method and system based on rail transit system. Patent CN114825237B 2022
  103. Presutti J Luongk Y Resistive memory devices having laser-induced graphene composites and methods of making same. PatentUS2022055904A1 2019
  104. Wire assembly for electric anti-icing device. Patent CN212624889U 2020
    [Google Scholar]
  105. Cohen RE Rubner MF McKinley GH Anti-fingerprint photocatalytic nanostructure for transparent surfaces. Patent US2014336039A1, 2014
  106. Chen Dexin Tu Xiaohui Li Wei A method for preparing flexible conductive superhydrophobic composite material on the surface of non-woven cotton fiber fabric. Patent CN111172522A, 2020
  107. Peng F Youheng W Haichun R Anti-icing structure of unmanned aerial vehicle wing. Patent CN111268142A 2020
  108. Ying F. Ice preventing and removing device and ice preventing and removing control method based on same. Patent CN109436338B, 2020
/content/journals/nanotec/10.2174/0118722105375661250821091616
Loading
/content/journals/nanotec/10.2174/0118722105375661250821091616
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test