Skip to content
2000
image of Reaction of Decomposition of Hydrogen-containing Components of Aqueous-organic Mixture on Metal Nanoparticles Produced by Laser Synthesis and Ablation Methods

Abstract

Introduction

The method of laser deposition of metal nanoparticles from a solution has been considered a promising approach for various applications in microelectronics since the end of the 20th century. Two new patents describe this promising method. They concern microelectronic applications. Meanwhile, as it turns out, the possibilities of the method are much broader. Laser-assisted liquid deposition is characterized by very low process rates (millimeters per hour) and high electrical resistance—2-5 orders of magnitude higher than the original materials. Therefore, we focused on another side effect of the process: the active release of gas phases of unsaturated hydrocarbons and hydrogen during the reaction. The goal was to explore the potential use of the effect of organic catalysis, which accompanies laser reactions in a liquid medium, in hydrogen energy and controlled organic synthesis.

Methods

The experiments were conducted with respect to water-organic alcohol mixtures of glycerol and isopropanol. V, Zr, Pb, Mo, Zn, and Nb were used as the tested nanocatalysts. The results of the process were monitored by liquid and gas phase GCMS, electron microscopy, optical microscopy and VX analysis. The competition of two processes was studied: laser deposition and laser ablation.

Results

There was largely confirmed the assumptions regarding the high catalytic activity of metal nanoparticles formed as a result of two competing reactions: ablation and deposition occurring simultaneously in the laser beam focus in the solution. These reactions are dehydrogenation of saturated hydrocarbons and water, resulting in the formation of hydrogen and unsaturated hydrocarbons. Another result of the reaction is the deposition of pure reduced metal layers on the substrate in the reaction zone.

Discussion

Some chemical reactions leading to this result have been deciphered. Firstly, these are reactions of formation of unsaturated hydrocarbons under the action of high energy flow on the surface. Then reactions of elongation of carbon chain at the place of formation of double bond can proceed. Complexation in solution with participation of organic compounds leads to autocatalytic reactions of precipitation of pure metals, including gold.

Conclusion

These arise due to an ability in liquid and precipitation reactions. This opens up another potential application for the process: refining trace amounts of precious metals, as demonstrated with gold. Both processes are environmentally friendly, which enhances the potential positive impact of their application.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105373192250531082417
2025-06-30
2025-10-31
Loading full text...

Full text loading...

References

  1. Mokhorov DD Mokhorov DA Kochemirovskaya SV Kochemirovskii VA Metod for obtaining material for enzim-free biosensor by lazser-indused coprecipitation of metals from solution of mixture of their salts. RU patent 2805054C1 2023
  2. Kochemirovskij VA Logunov LS Menchikov LG Safonov SV Method for laser deposition of copper into dielectric surface. RU Patent 2474095C1 2013
  3. Tver’yanovich Y.S. Kuz’min A.G. Menchikov L.G. Composition of the gas phase formed upon laser-induced copper deposition from solutions. Mendeleev Commun. 2011 21 1 34 35 10.1016/j.mencom.2011.01.014
    [Google Scholar]
  4. Kochemirovskaia S. Novomlinsky M. Alyukov I. Laser synthesis of catalytically active materials for organic synthesis and sensor technology. Curr. Catal. 2024 13 1 33 48 10.2174/0122115447290286240314051551
    [Google Scholar]
  5. Yogesh G.K. Shukla S. Sastikumar D. Koinkar P. Progress in pulsed laser ablation in liquid (PLAL) technique for the synthesis of carbon nanomaterials: A review. Appl. Phys., A Mater. Sci. Process. 2021 127 11 810 10.1007/s00339‑021‑04951‑6
    [Google Scholar]
  6. Naik Shreyanka S. Theerthagiri J. Lee S.J. Yu Y. Choi M.Y. Multiscale design of 3D metal–organic frameworks (M−BTC, M: Cu, Co, Ni) via PLAL enabling bifunctional electrocatalysts for robust overall water splitting. Chem. Eng. J. 2022 446 137045 10.1016/j.cej.2022.137045
    [Google Scholar]
  7. Mereshchenko A.S. Olshin P.K. Myasnikova O.S. Ultrafast photochemistry of copper (II) monochlorocomplexes in methanol and acetonitrile by broadband deep-UV-to-near-IR femtosecond transient absorption spectroscopy. J. Phys. Chem. A 2016 120 11 1833 1844 10.1021/acs.jpca.5b12509 26901567
    [Google Scholar]
  8. Mereshchenko A.S. Olshin P.K. Karabaeva K.E. Mechanism of formation of copper (II) chloro complexes revealed by transient absorption spectroscopy and DFT/TDDFT calculations. J. Phys. Chem. B 2015 119 28 8754 8763 10.1021/acs.jpcb.5b03889 26079181
    [Google Scholar]
  9. Lebedev D. Novomlinsky M. Kochemirovsky V. Glass/Au composite membranes with gold nanoparticles synthesized inside pores for selective ion transport. Materials (Basel) 2020 13 7 1767 10.3390/ma13071767 32283851
    [Google Scholar]
  10. Kochemirovskaia S.V. Fogel A.A. Novomlinsky M.O. Mokhorov D.A. Kochemirovsky V.A. The correlation between the structures of bimetallic tartrate complexes in solutions for laser-induced synthesis and sensor characteristics of microbiosensors materials. Curr. Organocatal. 2023 10 4 304 319 10.2174/2213337210666230427101553
    [Google Scholar]
  11. Smikhovskaia A.V. Kochemirovskaya S.V. Novomlinskii M.O. Laser-induced continuous generation of Ni nanoparticles for organic synthesis. Russ. Chem. Bull. 2019 68 11 2020 2027 10.1007/s11172‑019‑2661‑6
    [Google Scholar]
  12. Kochemirovskaia S.V. Myund L.A. Ershova K.O. Structure of bimetallic tartrate complexes for the rapid formation of new non-enzymatic bimetallic sensors of glucose and hydrogen peroxide in aqueous solutions using laser synthesis. Mater. Lett. 2022 306 130973 10.1016/j.matlet.2021.130973
    [Google Scholar]
  13. Gordeychuk D. Kochemirovsky V. Sorokoumov V. Tumkin I. Kuzmin A. Balova I. Copper particles generated during in situ laser-induced synthesis exhibit catalytic activity towards formation of gas phase. J. Laser Micro Nanoeng. 2017 12 2 57 61 10.2961/jlmn.2017.02.0001
    [Google Scholar]
  14. Gordeychuk D.I. Sorokoumov V.N. Mikhaylov V.N. Copper-based nanocatalysts produced via laser-induced ex situ generation for homo- and cross-coupling reactions. Chem. Eng. Sci. 2020 227 115940 10.1016/j.ces.2020.115940
    [Google Scholar]
  15. Mohajer F. Heravi M.M. Zadsirjan V. Poormohammad N. Copper-free Sonogashira cross-coupling reactions: An overview. RSC Advances 2021 11 12 6885 6925 10.1039/D0RA10575A 35423221
    [Google Scholar]
  16. Yan F. Zhang X. Li D. Zhu N. Bao H. Recent applications of the Sonogashira reaction in the synthesis of drugs and their derivatives: A review. Appl. Organomet. Chem. 2025 39 1 e7932 10.1002/aoc.7932
    [Google Scholar]
  17. Mehrabova M. Gulmemmedov K. Kochemirovskaya S. Mokhorov D. Novomlinsky M. Kochemirovsky V. Laser LCLD catalysis as a method for creating new nanomaterials for electronic technology and organic synthesis. Polish J Sci 2024 2 39 49 10.5281/ZENODO.11195258
    [Google Scholar]
  18. Olshin P.K. Myasnikova O.S. Kashina M.V. The electronic spectra and the structures of the individual copper(II) chloride and bromide complexes in acetonitrile according to steady-state absorption spectroscopy and DFT/TD-DFT calculations. Chem. Phys. 2018 503 14 19 10.1016/j.chemphys.2018.01.020
    [Google Scholar]
  19. Deraedt C. Ye R. Ralston W.T. Toste F.D. Somorjai G.A. Dendrimer-stabilized metal nanoparticles as efficient catalysts for reversible dehydrogenation/hydrogenation of N-heterocycles. J. Am. Chem. Soc. 2017 139 49 18084 18092 10.1021/jacs.7b10768 29144751
    [Google Scholar]
  20. Borthakur I. Kumari S. Kundu S. Water as a solvent: Transition metal catalyzed dehydrogenation of alcohols going green. Dalton Trans. 2022 51 32 11987 12020 10.1039/D2DT01060G 35894592
    [Google Scholar]
  21. Kochemirovsky V.A. Skripkin M.Y. Tveryanovich Y.S. Laser-induced copper deposition from aqueous and aqueous–organic solutions: State of the art and prospects of research. Russ. Chem. Rev. 2015 84 10 1059 1075 10.1070/RCR4535
    [Google Scholar]
  22. Shafeev G.A. Laser activation and metallisation of oxide ceramics. Adv. Mater. Opt. Electron. 1993 2 4 183 189 10.1002/amo.860020405
    [Google Scholar]
  23. Bal’makov M.D. Muradova G.M. Control of the synthesis of nanostructured materials under laser and microwave irradiation. Glass Phys. Chem. 2010 36 1 116 119 10.1134/S1087659610010190
    [Google Scholar]
  24. Kordás K. Pap A.E. Saavalainen J. Laser-induced surface activation of LTCC materials for chemical metallization. IEEE Trans. Adv. Packag. 2005 28 2 259 263 10.1109/TADVP.2005.847899
    [Google Scholar]
  25. Nanai L. Kordas K. Bali K. Laser Induced Chemical Liquid Phase Deposition (LCLD). Laser-Assisted Microtechnol 2000 4157 228 248 10.1117/12.413763
    [Google Scholar]
  26. Kordás K. Leppävuori S. Békési J. Nickel deposition on porous silicon utilizing lasers. Applied Surface Sci 2002 186 232 236 10.1016/S0169‑4332(01)00636‑5
    [Google Scholar]
  27. Vidal-Iglesias F.J. Solla-Gullón J. Rodes A. Herrero E. Aldaz A. Understanding the Nernst equation and other electrochemical concepts: An easy experimental approach for students. J. Chem. Educ. 2012 89 7 936 939 10.1021/ed2007179
    [Google Scholar]
  28. Krowne C.M. Nernst equations and concentration chemical reaction overpotentials for VRFB operation. J. Electrochem. Soc. 2023 170 10 100534 10.1149/1945‑7111/ad0073
    [Google Scholar]
  29. Scholz F. Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation. J. Solid State Electrochem. 2017 21 7 1847 1859 10.1007/s10008‑017‑3619‑y
    [Google Scholar]
  30. Nguyen T.H. Sonu C.H. Lee M.S. Separation of Pt(IV), Pd(II), Rh(III) and Ir(IV) from concentrated hydrochloric acid solutions by solvent extraction. Hydrometallurgy 2016 164 71 77 10.1016/j.hydromet.2016.05.014
    [Google Scholar]
  31. Zhu Z. Zhang W. Pranolo Y. Cheng C.Y. Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction. Hydrometallurgy 2012 127-128 1 7 10.1016/j.hydromet.2012.07.001
    [Google Scholar]
  32. Fohlmeister L. Liu S. Schulten C. Low-coordinate iron(I) and manganese(I) dimers: Kinetic stabilization of an exceptionally short Fe-Fe multiple bond. Angew. Chem. Int. Ed. 2012 51 33 8294 8298 10.1002/anie.201203711 22778063
    [Google Scholar]
  33. Martell A.E. Hancock R.D. Metal Complexes in Aqueous Solutions. Springer Science and Business Media 2013
    [Google Scholar]
  34. Qadir K. Kim S.H. Kim S.M. Ha H. Park J.Y. Support effect of arc plasma deposited Pt Nanoparticles/TiO2 substrate on catalytic activity of CO oxidation. J. Phys. Chem. C 2012 116 45 24054 24059 10.1021/jp306461v
    [Google Scholar]
  35. Jasuja K. Linn J. Melton S. Berry V. Microwave-reduced uncapped metal nanoparticles on graphene: tuning catalytic, electrical, and Raman properties. J. Phys. Chem. Lett. 2010 1 12 1853 1860 10.1021/jz100580x
    [Google Scholar]
  36. van de L’Isle MON Ortega-Liebana MC, Unciti-Broceta A. Transition metal catalysts for the bioorthogonal synthesis of bioactive agents. Curr. Opin. Chem. Biol. 2021 61 32 42 10.1016/j.cbpa.2020.10.001 33147552
    [Google Scholar]
  37. Tadikonda R.R. Sappidi H. Likhitha L.K. Gas chromatography-mass spectroscopy: An overview of biomedical and pharmaceutical sciences. Eur J Biomed Pharm Sci 2024 10 5 83 89
    [Google Scholar]
  38. Isokawa M. Funatsu T. Tsunoda M. Evaluation of the effects of sample dilution and volume in hydrophilic interaction liquid chromatography. Chromatographia 2014 77 21-22 1553 1556 10.1007/s10337‑014‑2748‑z
    [Google Scholar]
  39. Peñalvo J.L. Haajanen K.M. Botting N. Adlercreutz H. Quantification of lignans in food using isotope dilution gas chromatography/mass spectrometry. J. Agric. Food Chem. 2005 53 24 9342 9347 10.1021/jf051488w 16302745
    [Google Scholar]
  40. Olegovna Ershova K. Valerievna Kochemirovskaia S. Ciesla R. Pavlovna Kirillova N. Anatolyevich Mokhorov D. Alekseevich Kochemirovsky V. Physicochemical analysis of the age of handwritten inscriptions on documents: Trends and prospects. Expert Syst. Appl. 2022 205 117683 10.1016/j.eswa.2022.117683
    [Google Scholar]
  41. Kochemirovsky V.A. Fateev S.A. Logunov L.S. Tumkin I.I. Safonov S.V. Laser-induced copper deposition with weak reducing agents. Int. J. Electrochem. Sci. 2014 9 2 644 658 10.1016/S1452‑3981(23)07746‑5
    [Google Scholar]
  42. Bashir S. Rafique M.S. Ajami A.A. Nathala C.S. Husinsky W. Whitmore K. Femtosecond laser ablation of Zn in air and ethanol: effect of fluence on the surface morphology, ablated area, ablation rate and hardness. Appl. Phys., A Mater. Sci. Process. 2021 127 4 226 10.1007/s00339‑020‑04226‑6
    [Google Scholar]
  43. Salajková Z. Holá M. Prochazka D. Influence of sample surface topography on laser ablation process. Talanta 2021 222 121512 10.1016/j.talanta.2020.121512 33167223
    [Google Scholar]
  44. Russo R. Mao X. Liu H. Gonzalez J. Mao S.S. Laser ablation in analytical chemistry: A review. Talanta 2002 57 3 425 451 10.1016/S0039‑9140(02)00053‑X 18968642
    [Google Scholar]
  45. Ahmed N. Darwish S. Alahmari A.M. Laser ablation and laser-hybrid ablation processes: A review. Mater. Manuf. Process. 2016 31 9 1121 1142 10.1080/10426914.2015.1048359
    [Google Scholar]
  46. Simpson J.A. Sherman M.L. Wood D.S. Hall J.A. Cardiac Pacemakers Inc, assignee. Ablation system and method having multiplesensor electrodes to assist in assessment of electrode and sensor position and adjustment of energy levels. US Patent 6752804 2004
  47. Zepeda J Hirsch C Lee K Gough EJ Medical Systems Inc, assignee. Multiple electrode ablation apparatus and method 2000
  48. Bechtold C. de Miranda R.L. Chluba C. Quandt E. Fabrication of self-expandable NiTi thin film devices with micro-electrode array for bioelectric sensing, stimulation and ablation. Biomed. Microdevices 2016 18 6 106 10.1007/s10544‑016‑0131‑6 27830452
    [Google Scholar]
  49. Araromi O.A. Rosset S. Shea H.R. High-resolution, large-area fabrication of compliant electrodes via laser ablation for robust, stretchable dielectric elastomer actuators and sensors. ACS Appl. Mater. Interfaces 2015 7 32 18046 18053 10.1021/acsami.5b04975 26197865
    [Google Scholar]
  50. Samsonov G.V. Handbook of the Physicochemical Properties of the nlms. Springer 2012
    [Google Scholar]
  51. Hodgman C.D. Handbook of chemistry and physics. CRC Press 1951 10.1097/00010694‑195103000‑00018
    [Google Scholar]
  52. Kaye G.W. Laby T.H. Tables of physical and chemical constants and some mathematical functions. Longmans, Green and Company Limited 1928
    [Google Scholar]
  53. Mairanovsky V.G. Organic Electrochemistry in the USSR. In:Electrochemistry in a Divided World. Springer 2015 257 314 10.1007/978‑3‑319‑21221‑0_9
    [Google Scholar]
  54. Korotcenkov G. Handbook of Gas Sensor Materials. Springer 2013 10.1007/978‑1‑4614‑7165‑3
    [Google Scholar]
  55. Von Gutfeld R. West A.C. Electrodeposition onto oxide-coated substrates. ECS Trans. 2008 16 13 59 67 10.1149/1.2987759
    [Google Scholar]
  56. Safonov S.V. Fateev S.A. Logunov L.S. Khairullina E.M. Kochemirovsky V.A. Laser-induced copper deposition from solution: Removing the thermodynamic restrictions. Adv. Mat. Res. 2014 893 45 51 10.4028/www.scientific.net/AMR.893.45
    [Google Scholar]
  57. Ganeev R.A. Ryasnyanskii A.I. Kodirov M.K. Kamalov S.R. Usmanov T. Nonlinear optical characteristics of colloidal solutions of metals. Opt. Spectrosc. 2001 90 4 568 573 10.1134/1.1366752
    [Google Scholar]
  58. Dyukin R.V. Martsinovskiy G.A. Sergaeva O.N. Shandybina G.D. Svirina V.V. Yakovlev E.B. Interaction of femtosecond laser pulses with solids: Electron/Phonon/Plasmon Dynamics. In:Laser Pulses - Theory. Technology, and Applications. IntechOpen 2012 10.5772/46237
    [Google Scholar]
  59. Benderskii V.A. Benderskii A.V. Laser Electrochemistry of Intermediates. Boca Raton CRC Press 2024 10.1201/9781003574125
    [Google Scholar]
  60. Forbes R.G. Extraction of emission parameters for large-area field emitters, using a technically complete Fowler–Nordheim-type equation. Nanotechnology 2012 23 9 095706 10.1088/0957‑4484/23/9/095706 22327471
    [Google Scholar]
  61. Cutler P.H. He J. Miller J. Miskovsky N.M. Weiss B. Sullivan T.E. Theory of electron emission in high fields from atomically sharp emitters: Validity of the Fowler-Nordheim equation. Prog. Surf. Sci. 1993 42 1-4 169 185 10.1016/0079‑6816(93)90068‑7
    [Google Scholar]
  62. Houache M.S.E. Hughes K. Baranova E.A. Study on catalyst selection for electrochemical valorization of glycerol. Sustain. Energy Fuels 2019 3 8 1892 1915 10.1039/C9SE00108E
    [Google Scholar]
  63. Ting N.H. Nguyen T.X. Lee C.H. Composition-controlled high entropy metal glycerate as high-performance electrocatalyst for oxygen evolution reaction. Appl. Mater. Today 2022 27 101398 10.1016/j.apmt.2022.101398
    [Google Scholar]
  64. Gonçalves J.M. Hennemann A.L. Ruiz-Montoya J.G. Metal-glycerolates and their derivatives as electrode materials: A review on recent developments, challenges, and future perspectives. Coord. Chem. Rev. 2023 477 214954 10.1016/j.ccr.2022.214954
    [Google Scholar]
  65. Liu H. Liu Y. Sheng X. Exploration of cobalt zinc glycerate microspheres with catalytic activity for antibacterial applications. Mater. Lett. 2024 357 135683 10.1016/j.matlet.2023.135683
    [Google Scholar]
  66. Liu Y. Qu X. Liu H. Cobalt copper glycerate hollow nanospheres as antibacterial agents. ACS Appl. Nano Mater. 2023 6 22 20793 20800 10.1021/acsanm.3c03781
    [Google Scholar]
  67. Fong C. Wells D. Krodkiewska I. Booth J. Hartley P.G. Synthesis and mesophases of glycerate surfactants. J. Phys. Chem. B 2007 111 6 1384 1392 10.1021/jp0659655 17286353
    [Google Scholar]
  68. Wang Y. Yu L. Lou X.W.D. Synthesis of highly uniform molybdenum–glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium‐ion batteries. Angew. Chem. Int. Ed. 2016 55 26 7423 7426 10.1002/anie.201601673 27095261
    [Google Scholar]
  69. Kochemirovskaya S. Kochemirovsky V. Laser method of micro-composite materials synthesis for new sensor platforms of an “Electronic Tongue”. Technolog Language 2021 2 2 16 30 10.48417/technolang.2021.02.03
    [Google Scholar]
  70. Smikhovskaia A.V. Novomlinsky M.O. Fogel A.A. Kochemirovskaia S.V. Lebedev D.V. Kochemirovsky V.A. Laser method of microscopic sensor synthesis for liquid and gas analysis using glucose and H2S as an example. J. Solid State Electrochem. 2019 23 11 3173 3185 10.1007/s10008‑019‑04389‑0
    [Google Scholar]
  71. Zhang Y. Zhou B. Wei Z. Coupling glucose‐assisted Cu (I)/Cu (II) redox with electrochemical hydrogen production. Adv. Mater. 2021 33 48 2104791 10.1002/adma.202104791 34561909
    [Google Scholar]
  72. Pasta M. La Mantia F. Cui Y. Mechanism of glucose electrochemical oxidation on gold surface. Electrochim. Acta 2010 55 20 5561 5568 10.1016/j.electacta.2010.04.069
    [Google Scholar]
  73. Park S. Boo H. Chung T.D. Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 2006 556 1 46 57 10.1016/j.aca.2005.05.080 17723330
    [Google Scholar]
  74. Holade Y. Guesmi H. Filhol J.S. Deciphering the electrocatalytic reactivity of glucose anomers at bare gold electrocatalysts for biomass-fueled electrosynthesis. ACS Catal. 2022 12 20 12563 12571 10.1021/acscatal.2c03399
    [Google Scholar]
  75. Zhao Z.J. Chiu C. Gong J. Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts. Chem. Sci. (Camb.) 2015 6 8 4403 4425 10.1039/C5SC01227A 29142696
    [Google Scholar]
  76. Piccini M. Leak D.J. Chuck C.J. Buchard A. Polymers from sugars and unsaturated fatty acids: ADMET polymerisation of monomers derived from d -xylose, d -mannose and castor oil. Polym. Chem. 2020 11 15 2681 2691 10.1039/C9PY01809C
    [Google Scholar]
  77. Karmakar S. Silamkoti A. Meanwell N.A. Mathur A. Gupta A.K. Utilization of C(sp3)‐Carboxylic acids and their redox‐active esters in decarboxylative carbon−carbon bond formation. Adv. Synth. Catal. 2021 363 15 3693 3736 10.1002/adsc.202100314
    [Google Scholar]
  78. DeRuiter J. Carboxylic acid structure and chemistry: Part 1. Principles of drug action 2005 1 1 10
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105373192250531082417
Loading
/content/journals/nanotec/10.2174/0118722105373192250531082417
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test