Skip to content
2000
image of Advancing Dye-Sensitized Solar Cells: Synergistic Effects of Polyaniline, Graphene Oxide, and Carbon Nanotubes for Enhanced Efficiency and Sustainability Developments

Abstract

This paper provides an in-depth look at the latest developments in dye-sensitized solar cell (DSSC) technology. It focuses on the use of special materials, like polyaniline (PANI), graphene oxide (GO), and carbon nanotubes (CNTs). These materials improve the efficiency and stability of solar cells, and this study offers significant insights into their characteristics and practical uses. This article examines major trends in material selection, structural optimization, and manufacturing procedures by juxtaposing results from scientific literature with advancements in the patent arena, addressing the issues of developing next-generation solar cell designs. We examine the synergistic effects of PANI's stability, GO's electrical conductivity, and CNTs' mechanical strength, highlighting their roles in enhancing light absorption, charge transfer efficiency, and overall device longevity. Bibliometric data from sites, like Scopus and Lens.org, indicate substantial advancements in energy conversion efficiency and decreases in charge transfer resistance. Patents, like WO 2020 and EP3824-B1, illustrate the increasing significance of flexibility, resilience, and scalability in solar cell designs. Biopolymer-based electrolytes made from chitosan, guar gum, and starch are examples of sustainable solutions that show better ionic conductivity and mechanical stability, making them eco-friendly choices. This paper highlights the significance of nano and microfillers in enhancing electron mobility and minimizing resistive losses. Practical implementations, including photovoltaic chargers and flexible solar panels, illustrate the conversion of theoretical advancements into functional technologies. The study delineates future research avenues, promoting the utilization of nanocomposites and catalytic materials to enhance solar cell performance and thus facilitate sustainable and scalable energy solutions to address escalating global energy demands.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105366556250402051103
2025-05-07
2025-09-04
Loading full text...

Full text loading...

References

  1. Zhou L. Qi F. Yan X. A review of research on the passive effect of building photovoltaic systems and analysis of influencing factors. Sol. Energy 2024 278 112766 10.1016/j.solener.2024.112766
    [Google Scholar]
  2. Chetri R. Devadiga D. Ahipa T.N. A review on 4,4′-Dimethoxydiphenylamines bearing carbazoles as hole transporting materials for highly efficient perovskite solar cell. Sol. Energy 2024 278 112791 10.1016/j.solener.2024.112791
    [Google Scholar]
  3. Aji D. Darsono N. Roza L. Khaerudini D.S. Timuda G.E. Bibliometric analysis of carbon-based electrode perovskite solar cells progress. Sol. Energy 2024 274 112587 10.1016/j.solener.2024.112587
    [Google Scholar]
  4. Lana G.M. Bello I.T. Adedokun O.M. One-dimensional TiO2 nanocomposite-based photoanode for dye-sensitized solar Cells: A review. Sol. Energy 2024 279 112850 10.1016/j.solener.2024.112850
    [Google Scholar]
  5. Ngagoum Ndalloka Z. Vijayakumar Nair H. Alpert S. Schmid C. Solar photovoltaic recycling strategies. Sol. Energy 2024 270 112379 10.1016/j.solener.2024.112379
    [Google Scholar]
  6. Wu W. Li Y. Zhang J. Guo X. Wang L. Ågren H. Theoretical modelling of metal-based and metal-free dye sensitizers for efficient dye-sensitized solar cells: A review. Sol. Energy 2024 277 112748 10.1016/j.solener.2024.112748
    [Google Scholar]
  7. Devarajan N. Naik P. Gorle D.B. Exploring the potential of heterocyclic carbazole-derived dyes for DSSCs. J. Photochem. Photobiol. Chem. 2025 462 116177 10.1016/j.jphotochem.2024.116177
    [Google Scholar]
  8. Naik P. Keremane K.S. Elmorsy M.R. El-Shafei A. Adhikari A.V. Carbazole based organic dyes as effective photosensitizers: A comprehensive analysis of their structure-property relationships. Electrochem. Sci. Adv. 2022 2 3 e2100061 10.1002/elsa.202100061
    [Google Scholar]
  9. Naik P. Swain N. Naik R. Exploring optical, electrochemical, thermal, and theoretical aspects of simple carbazole-derived organic dyes. Heliyon 2024 10 4 e25624 10.1016/j.heliyon.2024.e25624 38380028
    [Google Scholar]
  10. Naik P. Elias L. Keremane K.S. Babu D.D. Abdellah I.M. Metal-free organic dyes for nio-based dye-sensitized solar cells: Recent developments and future perspectives. Energy Technol. (Weinheim) 2024 12 7 2301666 10.1002/ente.202301666
    [Google Scholar]
  11. Dale P.J. Scarpulla M.A. Efficiency versus effort: A better way to compare best photovoltaic research cell efficiencies? Sol. Energy Mater. Sol. Cells 2023 251 112097 10.1016/j.solmat.2022.112097
    [Google Scholar]
  12. Higashino T. Imahori H. Emergence of copper(i/ii) complexes as third-generation redox shuttles for dye-sensitized solar cells. ACS Energy Lett. 2022 7 6 1926 1938 10.1021/acsenergylett.2c00716
    [Google Scholar]
  13. Sasikumar R. Thirumalaisamy S. Kim B. Hwang B. Dye-sensitized solar cells: Insights and research divergence towards alternatives. Renew. Sustain. Energy Rev. 2024 199 114549 10.1016/j.rser.2024.114549
    [Google Scholar]
  14. Rahman S. Haleem A. Siddiq M. Research on dye sensitized solar cells: Recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects. RSC Advances 2023 13 28 19508 19529 10.1039/D3RA00903C 37388146
    [Google Scholar]
  15. Gangwar P. Tripathi R.P. Singh A.K. Solar photovoltaic tree: A review of designs, performance, applications, and challenges. Energy Sources A Recovery Util. Environ. Effects 2021 0 1 28 10.1080/15567036.2021.1901802
    [Google Scholar]
  16. Souza F.G. Jr Michel R.C. Soares B.G. A methodology for studying the dependence of electrical resistivity with pressure in conducting composites. Polym. Test. 2005 24 8 998 1004 10.1016/j.polymertesting.2005.08.001
    [Google Scholar]
  17. Picciani P.H.S. Souza F.G. Jr Comerlato N.M. Soares B.G. A novel material based on polyaniline doped with [Cs][In(dmit)2], (cesium) [bis(1,3-dithiole-2-thione-4,5-dithiolato)indium (III). Synth. Met. 2007 157 24 1074 1079 10.1016/j.synthmet.2007.11.004
    [Google Scholar]
  18. Souza F.G. Jr Oliveira G.E. Anzai T. A sensor for acid concentration based on cellulose paper sheets modified with polyaniline nanoparticles. Macromol. Mater. Eng. 2009 294 11 739 748 10.1002/mame.200900111
    [Google Scholar]
  19. Almeida Moraes T. Farrôco M.J. Pontes K. Fontes Bittencourt M. Guenter Soares B. Gomes Souza F. Jr An optical-magnetic Material as a toxic gas filter and sensing device. RSC Advances 2020 10 39 23233 23244 10.1039/D0RA00537A 35520348
    [Google Scholar]
  20. Souza F.G. Jr Soares B.G. Mantovani G.L. Blends of styrene butadiene styrene TRI block copolymer/polyaniline-Characterization by WAXS. Polymer (Guildf.) 2006 47 6 2163 2171 10.1016/j.polymer.2006.01.033
    [Google Scholar]
  21. Souza F.G. Jr Soares B.G. Siddaramaiah A. Manjunath A. Somashekar R. Blends of styrene-butadiene-styrene tri-block copolymer/polyaniline—Characterization by SAXS. Mater. Sci. Eng. A 2008 476 1-2 240 247 10.1016/j.msea.2007.05.099
    [Google Scholar]
  22. de Souza F.G. da Silva A.M. de Oliveira G.E. Costa R.M. Fernandes E.R. Pereira E.D. Conducting and magnetic mango fibers. Ind. Crops Prod. 2015 68 97 104 10.1016/j.indcrop.2014.09.032
    [Google Scholar]
  23. Souza FG Jr Soares1 BG Silveira F Dielectric behavior of SBS/polyaniline thermally processable blends. Chem Chemi Technol 2018 18 4 441 10.23939/chcht12.04.441
    [Google Scholar]
  24. Ferreira S.R. da Silva A.M. de Souza F.G. Jr Filho R.D.T. de Andrade Silva F. Effect of polyaniline and H2O2 Surface modification on the tensile behavior and chemical properties of coir fibers. J. Biobased Mater. Bioenergy 2014 8 6 578 586 10.1166/jbmb.2014.1478
    [Google Scholar]
  25. Souza F.G. Jr Soares B.G. Dahmouche K. Effect of preparation method on nanoscopic structure of conductive SBS/PANI blends: Study using small-angle X-ray scattering. J. Polym. Sci., B, Polym. Phys. 2007 45 22 3069 3077 10.1002/polb.21305
    [Google Scholar]
  26. Souza F.G. Jr Orlando M.T.D. Michel R.C. Pinto J.C. Cosme T. Oliveira G.E. Effect of pressure on the structure and electrical conductivity of cardanol-furfural-polyaniline blends. J. Appl. Polym. Sci. 2011 119 5 2666 2673 10.1002/app.32848
    [Google Scholar]
  27. de Souza F.G. Jr Soares B.G. Pinto J.C. Electrical surface resistivity of conductive polymers - A non-Gaussian approach for determination of confidence intervals. Eur. Polym. J. 2008 44 11 3908 3914 10.1016/j.eurpolymj.2008.07.022
    [Google Scholar]
  28. Picciani P.H.S. Soares B.G. Medeiros E.S. Electrospinning of polyaniline/poly(lactic acid) ultrathin fibers: Process and statistical modeling using a non-gaussian approach. Macromol. Theory Simul. 2009 18 9 528 536 10.1002/mats.200900053
    [Google Scholar]
  29. Souza F.G. Jr Pinto J.C. de Oliveira G.E. Soares B.G. Evaluation of electrical properties of SBS/Pani blends plasticized with DOP and CNSL using an empirical statistical model. Polym. Test. 2007 26 6 720 728 10.1016/j.polymertesting.2007.03.004
    [Google Scholar]
  30. de Almeida T.M. da Silveira Maranhão F. de Carvalho F.V. Middea A. de Araujo J.R. de Souza Júnior F.G. H2S sensing material based on cotton fabrics modified with polyaniline. Macromol. Symp. 2018 381 1 1800111 10.1002/masy.201800111
    [Google Scholar]
  31. Souza F.G. Jr Sirelli L. Michel R.C. Soares B.G. Herbst M.H. In situ polymerization of aniline in the presence of carbon black. J. Appl. Polym. Sci. 2006 102 1 535 541 10.1002/app.24280
    [Google Scholar]
  32. Souza F.G. Jr Soares B.G. Siddaramaiah G.M.O. Barra G.M.O. Herbst M.H. Influence of plasticizers (DOP and CNSL) on mechanical and electrical properties of SBS/polyaniline blends. Polymer (Guildf.) 2006 47 21 7548 7553 10.1016/j.polymer.2006.08.026
    [Google Scholar]
  33. de Souza F.G. Jr Anzai T.K. Melo P.A. Jr Soares B.G. Nele M. Pinto J.C. Influence of reaction media on pressure sensitivity of polyanilines doped with DBSA. J. Appl. Polym. Sci. 2008 107 4 2404 2413 10.1002/app.27290
    [Google Scholar]
  34. Siddaramaiah F.G. Souza F.G. Jr Soares B.G. Somashekar R. Investigation on microstructural behavior of styroflex/polyaniline blends by WAXS. J. Appl. Polym. Sci. 2012 124 6 5097 5105 10.1002/app.35652
    [Google Scholar]
  35. de Souza F.G. Jr Marins J.A. Pinto J.C. de Oliveira G.E. Rodrigues C.M. Lima L.M.T.R. Magnetic field sensor based on a maghemite/polyaniline hybrid material. J. Mater. Sci. 2010 45 18 5012 5021 10.1007/s10853‑010‑4321‑y
    [Google Scholar]
  36. de Souza F.G. Jr Soares B.G. Methodology for determination of Pani.DBSA content in conductive blends by using UV-Vis spectrometry. Polym. Test. 2006 25 4 512 517 10.1016/j.polymertesting.2006.01.014
    [Google Scholar]
  37. Siddaramaiah F.G. Souza F.G. Jr Soares B.G. Parameswara P. Somashekar R. Microstructural behaviors of polyaniline/CB Composites by SAXS. J. Appl. Polym. Sci. 2010 116 2 673 679 10.1002/app.30904
    [Google Scholar]
  38. de Souza F.G. Junior Carlos Pinto J. Alves Garcia F. Modification of coconut fibers with polyaniline for manufacture of pressure-sensitive devices. Polym. Eng. Sci. 2014 54 12 2887 2895 10.1002/pen.23845
    [Google Scholar]
  39. Gomes de Souza F. Junior Nogueira Barradas T. Freitas Caetano V. Becerra A. Nanoparticles improving polyaniline electrical conductivity: A meta-analysis study. Braz J Exp Des Data Anal Infer Stat 2022 2 1 26 59 10.55747/bjedis.v2i1.52468
    [Google Scholar]
  40. Souza F.G. Jr Oliveira G.E. Rodrigues C.H.M. Soares B.G. Nele M. Pinto J.C. Natural brazilian amazonic (curauá) fibers modified with polyaniline nanoparticles. Macromol. Mater. Eng. 2009 294 8 484 491 10.1002/mame.200900033
    [Google Scholar]
  41. Souza F.G. Jr Richa P. de Siervo A. New in situ blends of polyaniline and cardanol bio-resins. Macromol. Mater. Eng. 2008 293 8 675 683 10.1002/mame.200800077
    [Google Scholar]
  42. Souza F.G. Jr Pinto J.C. Rodrigues M.V. New polyaniline/polycardanol conductive blends characterized by FTIR, NIR, and XPS. Polym. Eng. Sci. 2008 48 10 1947 1952 10.1002/pen.21047
    [Google Scholar]
  43. Veloso de Carvalho F. Pal K. Gomes de Souza F. Junior Polyaniline and magnetite on curaua fibers for molecular interface improvement with a cement matrix. J. Mol. Struct. 2021 1233 130101 10.1016/j.molstruc.2021.130101
    [Google Scholar]
  44. Gomes F. Polyaniline: Trends and perspectives from text mining analysis. Braz J Exp Des Data Anal Infer Stat 2021 1 1 9 39 10.29327/232092.1.1‑8
    [Google Scholar]
  45. Gomes de Souza F. Jr Almeida M. Soares B.G. Carlos Pinto J. Preparation of a semi-conductive thermoplastic elastomer vulcanizate based on EVA and NBR blends with polyaniline. Polym. Test. 2007 26 5 692 697 10.1016/j.polymertesting.2007.04.008
    [Google Scholar]
  46. da Paixão C.P.S. Júnior F.G.S. Lima A.S. Production of biopolymeric energy nanocomposite. Abstr Int Conf Meet 2021 1 6 6
    [Google Scholar]
  47. Maranhão F.D.S. De Araujo K.V. Gomes de Souza F. Junior Filho S.T. Das D.B. Production of portland cement loaded with polyaniline and evaluation of sulphidric gas sorption capacity. Braz J Exp Des Data Anal Infer Stat 2021 1 2 88 94 10.55747/bjedis.v1i2.48360
    [Google Scholar]
  48. Maranhão F.D.S. Dos Santos N.D.S.C. Paixão C.P.S. Filho S.T. Das D.B. Gomes de Souza F. Junior Reaction of activated geopolymers in acid medium and application of polyaniline as a conductor of electricity. Brazil J Experi Desi. Data Analy Inferen Statis 2021 1 2 47 53 10.55747/bjedis.v1i2.48335
    [Google Scholar]
  49. Souza F.G. Jr Pinto J.C. Soares B.G. SBS/Pani·DBSA mixture plasticized with DOP and NCLS - Effect of the plasticizers on the probability density of volume resistivity measurements. Eur. Polym. J. 2007 43 5 2007 2016 10.1016/j.eurpolymj.2007.02.037
    [Google Scholar]
  50. Souza F.G. Jr Soares B.G. Pinto J.C. Sbs/polyaniline or carbon black system: Finding the optimal process and molding temperatures through experimental design. Macromol. Mater. Eng. 2006 291 5 463 469 10.1002/mame.200500406
    [Google Scholar]
  51. Soares B.G. Amorim G.S. Souza F.G. Jr Oliveira M.G. Silva J.E.P. The in situ polymerization of aniline in nitrile rubber. Synth. Met. 2006 156 2-4 91 98 10.1016/j.synthmet.2005.09.045
    [Google Scholar]
  52. Lopes E.S. Domingos E. Neves R.S. The role of intermolecular interactions in polyaniline/polyamide-6,6 pressure-sensitive blends studied by DFT and 1H NMR. Eur. Polym. J. 2016 85 588 604 10.1016/j.eurpolymj.2016.11.011
    [Google Scholar]
  53. Soares B.G. Souza F.G. Jr Manjunath A. Somashekarappa H. Somashekar R. Siddaramaiah. Variation of long periodicity in blends of styrene butadiene, styrene copolymer/polyaniline using small angle X-ray scattering data. Pramana 2007 69 3 435 443 10.1007/s12043‑007‑0144‑z
    [Google Scholar]
  54. Bindu Sharmila T.K. George N. Sasi S. A comprehensive investigation of dielectric properties of epoxy composites containing conducting fillers: Fluffy carbon black and various types of reduced graphene oxide. Inorg. Chem. Commun. 202113 2021 1092 1099 10.1002/pat.5767
    [Google Scholar]
  55. Singh P.K. Sharma K. Singh P.K. A low cost, bulk synthesis of the thermally reduced graphene oxide in an aqueous solution of sulphuric acid hydrogen peroxide via electrochemical method. Inorg. Chem. Commun. 2022 140 109378 10.1016/j.inoche.2022.109378
    [Google Scholar]
  56. Mensah B. Konadu D.S. Nsaful F. Angnunavuri P.N. Kwofie S. A systematic study of the effect of graphene oxide and reduced graphene oxide on the thermal degradation behavior of acrylonitrile-butadiene rubber in air and nitrogen media. Sci. Am. 2023 19 e01501 10.1016/j.sciaf.2022.e01501
    [Google Scholar]
  57. Bouider B. Bouakaz B.S. Haffad S. Composite nanoarchitectonics of poly(lactic acid)/metal organic framework with property investigations toward packaging applications. J. Inorg. Organomet. Polym. Mater. 2023 33 12 3689 3702 10.1007/s10904‑023‑02780‑z
    [Google Scholar]
  58. Medhi S. Chowdhury S. Dehury R. Comprehensive review on the recent advancements in nanoparticle-based drilling fluids: Properties, performance, and perspectives. Energy Fuels 2024 38 15 13455 13513 10.1021/acs.energyfuels.4c01161
    [Google Scholar]
  59. Sreelekshmi P.B. Pillai R.R. Meera A.P. Controlled synthesis of novel graphene oxide nanoparticles for the photodegradation of organic dyes. Top. Catal. 2022 65 19-20 1659 1668 10.1007/s11244‑022‑01600‑x
    [Google Scholar]
  60. Pal K. Si A. El-Sayyad G.S. Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: optoelectronics and biotechnological aspects. Crit. Rev. Solid State Mater. Sci. 2021 46 5 385 449 10.1080/10408436.2020.1805295
    [Google Scholar]
  61. Ramadan A. Anas M. Ebrahim S. Soliman M. Abou-Aly A. Effect of Co-doped graphene quantum dots to polyaniline ratio on performance of supercapacitor. J. Mater. Sci. Mater. Electron. 2020 31 9 7247 7259 10.1007/s10854‑020‑03297‑8
    [Google Scholar]
  62. Singh P.K. Singh P.K. Sharma K. Kumari S. Effect of thermal annealing on physical, structural, and performance variation of graphene oxide: A review. Mod. Phys. Lett. B 2023 37 24 2330001 10.1142/S0217984923300016
    [Google Scholar]
  63. Soren S. Chakroborty S. Pal K. Enhanced in tunning of photochemical and electrochemical responses of inorganic metal oxide nanoparticles via rGO frameworks (MO/rGO) A comprehensive review. Mater. Sci. Eng. B 2022 278 115632 10.1016/j.mseb.2022.115632
    [Google Scholar]
  64. Sreelekshmi P.B. Pillai R.R. Binish B. Meera A.P. Enhanced photocatalytic degradation of malachite green using highly efficient copper oxide/graphene oxide nanocomposites. Top. Catal. 2022 65 19-20 1885 1898 10.1007/s11244‑022‑01693‑4
    [Google Scholar]
  65. Taherkhani A. Shahbazi M. Nasrollah Gavgani J. Enhanced quantum efficiency of silicon solar cell via TRGO-MnO2 hybrid. Opt. Laser Technol. 2023 159 108993 10.1016/j.optlastec.2022.108993
    [Google Scholar]
  66. Yilmaz Dogan H. Altin Y. Bedeloğlu A.Ç. Fabrication and properties of graphene oxide and reduced graphene oxide reinforced Poly(Vinyl alcohol) nanocomposite films for packaging applications. Polym. Polymer Compos. 2022 30 09673911221113328 10.1177/09673911221113328
    [Google Scholar]
  67. Atta A. Abdeltwab E. Negm H. Al-Harbi N. Rabia M. Abdelhamied M.M. Fabrication of polypyrrole/graphene oxide polymer nanocomposites and evaluation of their optical behavior for optoelectronic applications. J. Inorg. Organomet. Polym. Mater. 2023 33 12 4083 4095 10.1007/s10904‑023‑02643‑7
    [Google Scholar]
  68. Wan Q. Liu M. Xie Y. Facile and highly efficient fabrication of graphene oxide-based polymer nanocomposites through mussel-inspired chemistry and their environmental pollutant removal application. J. Mater. Sci. 2017 52 1 504 518 10.1007/s10853‑016‑0349‑y
    [Google Scholar]
  69. Sahu P.S. Verma R.P. Tewari C. Sahoo N.G. Saha B. Facile fabrication and application of highly efficient reduced graphene oxide (rGO)-wrapped 3D foam for the removal of organic and inorganic water pollutants. Environ. Sci. Pollut. Res. Int. 2023 30 40 93054 93069 10.1007/s11356‑023‑28976‑x 37498430
    [Google Scholar]
  70. Agarwal C. Csóka L. Functionalization of wood/plant-based natural cellulose fibers with nanomaterials: A review. Tappi J. 2018 17 2 92 111 10.32964/TJ17.02.92
    [Google Scholar]
  71. Doghish A.S. El-Sayyad G.S. Sallam A.A.M. Khalil W.F. El Rouby W.M.A. Graphene oxide and its nanocomposites with EDTA or chitosan induce apoptosis in MCF-7 human breast cancer. RSC Advances 2021 11 46 29052 29064 10.1039/D1RA04345E 35478542
    [Google Scholar]
  72. Khalil W.F. El-Sayyad G.S. El Rouby W.M.A. Sadek M.A. Farghali A.A. El-Batal A.I. Graphene oxide-based nanocomposites (GO-chitosan and GO-EDTA) for outstanding antimicrobial potential against some Candida species and pathogenic bacteria. Int. J. Biol. Macromol. 2020 164 1370 1383 10.1016/j.ijbiomac.2020.07.205 32735925
    [Google Scholar]
  73. Lekshmi M.L.A. Prakash A.J. Jerlin R.J. Dinesh K.R. Graphene oxide: Unveiling its chemistry and its emerging applications (a review). Russ. J. Gen. Chem. 2024 94 9 2413 2431 10.1134/S1070363224090202
    [Google Scholar]
  74. Asthana N. Kumar D. Kyzas G.Z. Graphene‐reinforced hybrid polymer nanocomposites‐based biosensor implementation for environmental remediation. In Macromolecular. Symposia 2024 413 2 1 6 10.1002/masy.202300074
    [Google Scholar]
  75. Kalaiarasi J. Pragathiswaran C. Subramani P. Green chemistry approach for the functionalization of reduced graphene and ZnO as efficient supercapacitor application. J. Mol. Struct. 2021 1242 130704 10.1016/j.molstruc.2021.130704
    [Google Scholar]
  76. Bantun F. Singh R. Alkhanani M.F. Gut microbiome interactions with graphene based nanomaterials: Challenges and opportunities. Sci. Total Environ. 2022 830 154789 10.1016/j.scitotenv.2022.154789 35341865
    [Google Scholar]
  77. Mohammadi A. Shojaei A. Khasraghi S.S. Improvement of nanosilica effects on the performance of mechanically processed styrene-butadiene rubber by rational hybridization with nanodiamond. Diamo Relat Mater 2022 130 109487 10.1016/j.diamond.2022.109487
    [Google Scholar]
  78. Carr A.J. Lee S.E. Uysal A. Ion and water adsorption to graphene and graphene oxide surfaces. Nanoscale 2023 15 35 14319 14337 10.1039/D3NR02452K 37561081
    [Google Scholar]
  79. Xu G. Zhang L. Yu W. Low optical dosage heating-reduced viscosity for fast and large-scale cleanup of spilled crude oil by reduced graphene oxide melamine nanocomposite adsorbents. Nanotechnology 2020 31 22 225402 10.1088/1361‑6528/ab76eb 32066134
    [Google Scholar]
  80. Malik A. Sajjad S. Leghari S.A.K. Marvelous oleophillic adsorption ability of SiO2/activated carbon and GO composite nanostructure using polyurethane for rapid oil spill cleanup. Appl. Nanosci. 2021 11 4 1211 1223 10.1007/s13204‑021‑01727‑5
    [Google Scholar]
  81. Nizam P.A. Arumughan V. Baby A. Mechanically robust antibacterial nanopapers through mixed dimensional assembly for anionic dye removal. J. Polym. Environ. 2020 28 4 1279 1291 10.1007/s10924‑020‑01681‑3
    [Google Scholar]
  82. Bouider B. Haffad S. Bouakaz B.S. Berd M. Ouhnia S. Habi A. MOF-5/graphene oxide composite photocatalyst for enhanced photocatalytic activity of methylene blue degradation under solar light. J. Inorg. Organomet. Polym. Mater. 2023 33 12 4001 4011 10.1007/s10904‑023‑02668‑y
    [Google Scholar]
  83. Arshad R. Hassan D. Sani A. Nano-engineered solutions for ibuprofen therapy: Unveiling advanced co-delivery strategies and nanoparticle systems. J. Drug Deliv. Sci. Technol. 2024 98 105815 10.1016/j.jddst.2024.105815
    [Google Scholar]
  84. P PV P G C Abraham P. Nanocoatings: Universal antiviral surface solution against COVID-19. Prog. Org. Coat. 2022 163 106670 10.1016/j.porgcoat.2021.106670 34955586
    [Google Scholar]
  85. Abd Elkodous M S El-Sayyad G Abdel Maksoud MIA Nanocomposite matrix conjugated with carbon nanomaterials for photocatalytic wastewater treatment. J. Hazard. Mater. 2021 410 124657 10.1016/j.jhazmat.2020.124657 33272728
    [Google Scholar]
  86. Liakos E.V. Gkika D.A. Mitropoulos A.C. Matis K.A. Kyzas G.Z. On the combination of modern sorbents with cost analysis: A review. J. Mol. Struct. 2021 1229 129841 10.1016/j.molstruc.2020.129841
    [Google Scholar]
  87. Li L. Liu Y. Sun K. He Y. Liu L. One step synthesis of magnetic composite Fe3O4/Cu-BTC/GO. Mater. Lett. 2017 197 196 200 10.1016/j.matlet.2017.03.004
    [Google Scholar]
  88. Jiya S.D. Lawaniya S.D. Pandey G. Saini N. Awasthi K. Pani/cd/sno2 ternary nanocomposite for efficient room-temperature ammonia detection. J. Electron. Mater. 2024 53 9 5103 5117 10.1007/s11664‑024‑11168‑9
    [Google Scholar]
  89. Kizhisseri D.R. Venugopal G. Lalitha Lekshmi C. Joseph K. Mahesh S. Photoresponse modulation of reduced graphene oxide by surface modification with cardanol derived azobenzene. New J. Chem. 2018 42 22 18182 18188 10.1039/C8NJ02201A
    [Google Scholar]
  90. Potential of the vegetable species mandevilla moricandiana (apocynaceae) to combat larvae of the mosquito Aedes aegypti. Rev Virtual Quim 2021 13 1092 1099 10.21577/1984‑6835.20210054
    [Google Scholar]
  91. Wang X. Wang B. Wei S. Preparation and derivation mechanism of methyl methacrylate/nitrile butadiene rubber/graphene oxide composites by ball-milling. J. Appl. Polym. Sci. 2022 140 3 e53329 10.1002/app.53329
    [Google Scholar]
  92. Liu J. Chen S. Liu Y. Zhao B. Progress in preparation, characterization, surface functional modification of graphene oxide: A review. J. Saudi Chem. Soc. 2022 26 6 101560 10.1016/j.jscs.2022.101560
    [Google Scholar]
  93. Elbasuney S. El-Sayyad G.S. Tantawy H. Hashem A.H. Promising antimicrobial and antibiofilm activities of reduced graphene oxide-metal oxide (RGO-NiO, RGO-AgO, and RGO-ZnO) nanocomposites. RSC Advances 2021 11 42 25961 25975 10.1039/D1RA04542C 35479482
    [Google Scholar]
  94. Vijayan J.G. Prabhu T.N. Recent advancement in porous graphene from synthesis to properties: Critical review on functionalization chemistry and applications. Macromol. Symp. 2024 413 2 2300099 10.1002/masy.202300099
    [Google Scholar]
  95. Sun J. Dai L. Lv K. Recent advances in nanomaterial-stabilized pickering foam: Mechanism, classification, properties, and applications. Adv. Colloid Interface Sci. 2024 328 103177 10.1016/j.cis.2024.103177 38759448
    [Google Scholar]
  96. Kumar A. Pratap Singh D. Singh G. Recent progress and future perspectives on carbon-nanomaterial-dispersed liquid crystal composites. J. Phys. D Appl. Phys. 2022 55 8 083002 10.1088/1361‑6463/ac2ced
    [Google Scholar]
  97. Drabczyk A. Kudłacik-Kramarczyk S. Korniejenko K. Figiela B. Furtos G. Review of geopolymer nanocomposites: Novel materials for sustainable development. Materials (Basel) 2023 16 9 3478 10.3390/ma16093478 37176360
    [Google Scholar]
  98. Kumar A. Gautam V. Verma A. Madhwal D. Jain V.K. RGO/SiNW hybrid nanostructure developed on Si chip for enhanced and selective detection of acetone. J. Nanopart. Res. 2024 26 3 58 10.1007/s11051‑024‑05962‑z
    [Google Scholar]
  99. Sreeja VG Vinitha G Reshmi R Jayaraj MK Anila EI Structural, spectral, electrical and nonlinear optical characterizations of RGO-PANI composites Mater Tod Process 2019 10 Part 3 456 65 10.1016/j.matpr.2019.03.010
    [Google Scholar]
  100. Aftab K. Naseem T. Hussain S. Haq S. Mahfooz-ur-Rehman, Waseem M. Synthesis and characterization of Ag2O, CoFe2O4, GO, and their ternary composite for antibacterial activity. Environ. Sci. Pollut. Res. Int. 2023 30 2 4079 4093 10.1007/s11356‑022‑22516‑9 35962168
    [Google Scholar]
  101. Liu P.Z. Zhang L. Wang W.F. Cheng W. Li D.F. Zhang D.Y. Synthesis and electromagnetic shielding properties of graphene-fe3o4-batio3/silicone rubber nanocomposites. Mater. Sci. For 2019 950 97 102 10.4028/www.scientific.net/MSF.950.97
    [Google Scholar]
  102. Elkhenany H. Elkodous M.A. Mansell J.P. Ternary nanocomposite potentiates the lysophosphatidic acid effect on human osteoblast (MG63) maturation. Nanomedicine (Lond.) 2023 18 21 1459 1475 10.2217/nnm‑2023‑0117 37815159
    [Google Scholar]
  103. Mahamude A.S.F. Harun W.S.W. Kadirgama K. Thermal performance of nanomaterial in solar collector: State-of-play for graphene. J Ener Stor 2021 42 103022 10.1016/j.est.2021.103022
    [Google Scholar]
  104. Fathi-karkan S Easwaran EC Kharaba Z Rahdar A Pandey S Unlocking mysteries: The cutting-edge fusion of nanotechnology and forensic science. Bio Nano Sci 2024 14 3 3572 98 10.1007/s12668‑024‑01542‑6
    [Google Scholar]
  105. Tang B. Wang S. Li R. Gou X. Long J. Urea treated metal organic frameworks-graphene oxide composites derived N-doped Co-based materials as efficient catalyst for enhanced oxygen reduction. J. Pow Sour 2019 425 76 86 10.1016/j.jpowsour.2019.04.007
    [Google Scholar]
  106. Tohidlou H. Shafiei S.S. Abbasi S. Asadi-Eydivand M. Fathi-Roudsari M. Amine-functionalized single-walled carbon nanotube/polycaprolactone electrospun scaffold for bone tissue engineering: In vitro study. Fibers Polym. 2019 20 9 1869 1882 10.1007/s12221‑019‑1262‑1
    [Google Scholar]
  107. Jiang T. Wan P. Ren Z. Yan S. Anisotropic polyaniline/swcnt composite films prepared by in situ electropolymerization on highly oriented polyethylene for high-efficiency ammonia sensor. ACS Appl. Mater. Interfaces 2019 11 41 38169 38176 10.1021/acsami.9b13336 31552732
    [Google Scholar]
  108. Li S.N. Zhang J. Liu Y.Q. Zhou K.P. Jiang X.Y. Yu J.G. Cobalt vanadate intertwined in carboxylated multiple-walled carbon nanotubes for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Talanta 2025 282 127038 10.1016/j.talanta.2024.127038 39406089
    [Google Scholar]
  109. Oh J. Kim D.Y. Kim H. Hur O.N. Park S.H. Comparative study of carbon nanotube composites as capacitive and piezoresistive pressure sensors under varying conditions. Materials (Basel) 2022 15 21 7637 10.3390/ma15217637 36363228
    [Google Scholar]
  110. Yoo J. Kim D.Y. Kim H. Hur O.N. Park S.H. Comparison of pressure sensing properties of carbon nanotubes and carbon black polymer composites. Materials (Basel) 2022 15 3 1213 10.3390/ma15031213 35161157
    [Google Scholar]
  111. Kourtidou D. Grigora M-E. Papadopoulos L. Tzetzis D. Bikiaris D.N. Chrissafis K. Crystallization kinetics and nanomechanical behavior of biobased poly(ethylene 2,5-furandicarboxylate) reinforced with carbon nanotubes. Polym. Compos. 2022 44 1 1 6 10.1002/pc.27124
    [Google Scholar]
  112. Leyva Egurrola S del Castillo Castro T Castillo Ortega MM Electrical, mechanical, and piezoresistive properties of carbon nanotube-polyaniline hybrid filled polydimethylsiloxane composites. J Appl Polym Sci 2017 134 18 44780 10.1002/app.44780
    [Google Scholar]
  113. Ge F.F. Yao W.H. Potiyaraj P. Enhanced PBS nanocomposites with ZnO-Coated MWCNT for extending shelf life in sustainable food packaging applications. J. Polym. Res. 2024 31 9 278 10.1007/s10965‑024‑04125‑x
    [Google Scholar]
  114. Ogurtsov N.A. Noskov Y.V. Bliznyuk V.N. Evolution and interdependence of structure and properties of nanocomposites of multiwall carbon nanotubes with polyaniline. J. Phys. Chem. C 2016 120 1 230 242 10.1021/acs.jpcc.5b08524
    [Google Scholar]
  115. Qureshi N. Dhand V. Subhani S. Exploring conductive filler-embedded polymer nanocomposite for electrical percolation via electromagnetic shielding-based additive manufacturing. Adv. Mater. Technol. 2024 2400250 2400250 10.1002/admt.202400250
    [Google Scholar]
  116. Luo J. Yin D. Yu K. Zhou H. Wen B. Wang X. Facile fabrication of pbs/cnts nanocomposite foam for electromagnetic interference shielding. ChemPhysChem 2021 23 4 e202100778 10.1002/cphc.202100778 34973043
    [Google Scholar]
  117. Cao X. Zhou Y. Wei X. Lightweight, mechanical robust foam with a herringbone-like porous structure for oil/water separation and filtering. Polym. Test. 2018 72 86 93 10.1016/j.polymertesting.2018.09.033
    [Google Scholar]
  118. Wang J. Zhan J. Mu X. Manganese phytate dotted polyaniline shell enwrapped carbon nanotube: Towards the reinforcements in fire safety and mechanical property of polymer. J. Colloid Interface Sci. 2018 529 345 356 10.1016/j.jcis.2018.06.038 29936412
    [Google Scholar]
  119. Yang B. Wang S. Song Z. Liu L. Li H. Li Y. Molecular dynamics study on the reinforcing effect of incorporation of graphene/carbon nanotubes on the mechanical properties of swelling rubber. Polym. Test. 2021 102 107337 10.1016/j.polymertesting.2021.107337
    [Google Scholar]
  120. Ghassamipour S. Rostapour N. Multi-walled carbon nanotube-CO-NH(CH2)2NH-SO3H: A New adsorbent for removal of methylene blue from aqueous media. Anal Bioanal Chem Res 2017 4 201 211 10.22036/abcr.2017.70146.1128
    [Google Scholar]
  121. Wang C. Zhang N. Liu C. New advances in antenna design toward wearable devices based on nanomaterials. Biosensors (Basel) 2024 14 1 35 10.3390/bios14010035 38248412
    [Google Scholar]
  122. Razavi-Nouri M. Salavati M. Physico-mechanical properties of poly(ethylene-co-vinyl acetate)/acrylonitrile-butadiene rubber/multi-walled carbon nanotubes nanocomposites. Polym. Compos. 2022 43 4358 4370 10.1002/pc.26697
    [Google Scholar]
  123. Irfan M.S. Gill Y.Q. Ullah S. Naeem M.T. Saeed F. Hashmi M. Polyaniline-NBR blends by in situ polymerization: Application as stretchable strain sensors. Smart Mater. Struct. 2019 28 9 095024 10.1088/1361‑665X/ab1df3
    [Google Scholar]
  124. Vovchenko L. Matzui L. Oliynyk V. Polyethylene composites with segregated carbon nanotubes network: Low frequency plasmons and high electromagnetic interference shielding efficiency. Materials (Basel) 2020 13 5 1118 10.3390/ma13051118 32138185
    [Google Scholar]
  125. Khan A. Abas Z. Kim H. Kim J. Recent progress on cellulose-based electro-active paper, its hybrid nanocomposites and applications. Sensors (Basel) 2016 16 8 1172 10.3390/s16081172 27472335
    [Google Scholar]
  126. Mohamadian N. Ramhormozi M.Z. Wood D.A. Ashena R. Reinforcement of oil and gas wellbore cements with a methyl methacrylate/carbon-nanotube polymer nanocomposite additive. Cement Concr. Compos. 2020 114 103763 10.1016/j.cemconcomp.2020.103763
    [Google Scholar]
  127. Yang X. Xie Z. Lu X. Research on the utilization of ultra-long carbon nanotubes in lithium-ion batteries based on an environment-friendly society. Environ. Sci. Pollut. Res. Int. 2023 30 19 56003 56015 10.1007/s11356‑023‑26309‑6 36913024
    [Google Scholar]
  128. Liu X. Guo R. Lin Z. Yang Y. Xia H. Yao Z. Resistance-strain sensitive rubber composites filled by multiwalled carbon nanotubes for structuraldeformation monitoring. Nanomat Nanotechnol 2021 11 1 6 10.1177/18479804211011384
    [Google Scholar]
  129. Peng T. Huang J. Gong Z. Chen X. Chen Y. Self-healing of reversibly cross-linked thermoplastic vulcanizates. Mater. Chem. Phys. 2022 292 126804 10.1016/j.matchemphys.2022.126804
    [Google Scholar]
  130. Mohammadi S. Mahmoudi Alemi F. Simultaneous control of formation and growth of asphaltene solids and wax crystals using single-walled carbon nanotubes: An experimental study under real oilfield conditions. Energy Fuels 2021 35 18 14709 14724 10.1021/acs.energyfuels.1c02244
    [Google Scholar]
  131. Ramachandran A.A. Reghunadhan A. Kunjappan A.M. Synergistic effect of MWCNTs and MA- g -PP on the thermal and viscoelastic properties of immiscible PTT/PP blends. New J. Chem. 2020 44 38 16557 16568 10.1039/D0NJ02970J
    [Google Scholar]
  132. Bhakta A.K. Kumari S. Hussain S. Synthesis and characterization of maghemite nanocrystals decorated multi-wall carbon nanotubes for methylene blue dye removal. J. Mater. Sci. 2019 54 1 200 216 10.1007/s10853‑018‑2818‑y
    [Google Scholar]
  133. Abd Elkodous M. El-Sayyad G.S. Abdelrahman I.Y. Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Coll Surf B Biointerf 2019 180 411 428 10.1016/j.colsurfb.2019.05.008 31085460
    [Google Scholar]
  134. Pattanaik S. Vishwkarma A.K. Yadav T. In silico investigation on sensing of tyramine by boron and silicon doped C60 fullerenes. Sci. Rep. 2023 13 1 22264 10.1038/s41598‑023‑49414‑5 38097755
    [Google Scholar]
  135. Xu Y. Mu B. Li T. Chen H. Effect of carbon nanotube mass fraction and distribution on microwave heating effect of rubber composites. J. Therm. Anal. Calorim. 2023 148 12 5347 5356 10.1007/s10973‑023‑12088‑2
    [Google Scholar]
  136. Dang Quang L.N. Kaliamurthy A.K. Hao N.H. Co-sensitization of metal based N719 and metal free D35 dyes: An effective strategy to improve the performance of DSSC. Opt. Mater. 2021 111 110589 10.1016/j.optmat.2020.110589
    [Google Scholar]
  137. Shahid M.U. Mohamed N.M. Muhsan A.S. Bashiri R. Shamsudin A.E. Zaine S.N.A. Few-layer graphene supported polyaniline (PANI) film as a transparent counter electrode for dye-sensitized solar cells. Diam Rela Mater 2019 94 242 251 10.1016/j.diamond.2019.03.009
    [Google Scholar]
  138. Chandrasekaran K. Nangan S. Okhawilai M. Converting waste PET plastic into sulfonated carbon nanosheets supported PANI nanocomposite as anode catalyst in biophotovoltaic cells. Fuel 2024 362 130583 10.1016/j.fuel.2023.130583
    [Google Scholar]
  139. Dawo C. Krishnan Iyer P. Chaturvedi H. Carbon nanotubes/PANI composite as an efficient counter electrode material for dye sensitized solar cell. Mater. Sci. Eng. B 2023 297 116722 10.1016/j.mseb.2023.116722
    [Google Scholar]
  140. Patil K. Rashidi S. Wang H. Wei W. Recent progress of graphene‐based photoelectrode materials for dye‐sensitized solar cells. Int. J. Photoenergy 2019 2019 1 16 10.1155/2019/1812879
    [Google Scholar]
  141. Beygisangchin M. Hossein Baghdadi A. Kartom Kamarudin S. Abdul Rashid S. Jakmunee J. Shaari N. Recent progress in polyaniline and its composites; Synthesis, properties, and applications. Eur. Polym. J. 2024 210 112948 10.1016/j.eurpolymj.2024.112948
    [Google Scholar]
  142. Shaheen Shah S. Oladepo S. Ali Ehsan M. Recent progress in polyaniline and its composites for supercapacitors. Chem. Rec. 2024 24 1 e202300105 10.1002/tcr.202300105 37222655
    [Google Scholar]
  143. Kyomuhimbo H.D. Feleni U. Electroconductive green metal-polyaniline nanocomposites: Synthesis and application in sensors. Electroanalysis 2023 35 2 e202100636 10.1002/elan.202100636
    [Google Scholar]
  144. Sajjad M. Shah M.Z.U. Mahmood F. CdO nanocubes decorated on rGO sheets as novel high conductivity positive electrode material for hybrid supercapacitor. J. Alloys Compd. 2023 938 168462 10.1016/j.jallcom.2022.168462
    [Google Scholar]
  145. El-Shafai N.M. Ramadan M.S. Alkhamis K.M. Aljohani M.M. El-Metwaly N.M. El-Mehasseb I.M. A unique engineering building of nanoelectrodes based on titanium and metal oxides nanoparticles captured on graphene oxide surface for supercapacitors and energy storage. J. Alloys Compd. 2023 939 168685 10.1016/j.jallcom.2022.168685
    [Google Scholar]
  146. Liu I.P. Wang L.W. Chen Y.Y. Cho Y.S. Teng H. Lee Y.L. Performance enhancement of dye-sensitized solar cells by utilizing carbon nanotubes as an electrolyte-treating agent. ACS Sustain. Chem.& Eng. 2020 8 2 1102 1111 10.1021/acssuschemeng.9b06003
    [Google Scholar]
  147. Gomes Souza F. Jr Bhansali S. Pal K. A 30-year review on nanocomposites: Comprehensive bibliometric insights into microstructural, electrical, and mechanical properties assisted by artificial intelligence. Materials (Basel) 2024 17 5 1088 10.3390/ma17051088 38473560
    [Google Scholar]
  148. Konwar S. Singh P.K. Dhapola P. Developing biopolymer-based electrolytes for supercapacitor and dye-sensitized solar cell applications. ACS Appl. Electron. Mater. 2023 5 10 5503 5512 10.1021/acsaelm.3c00736
    [Google Scholar]
  149. Das A. Ringu T. Ghosh S. Pramanik N. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym. Bull. 2023 80 7 7247 7312 10.1007/s00289‑022‑04443‑4 36043186
    [Google Scholar]
  150. Galliano S. Bella F. Bonomo M. Hydrogel electrolytes based on xanthan gum: Green route towards stable dye-sensitized solar cells. Nanomaterials (Basel) 2020 10 8 1585 10.3390/nano10081585 32806671
    [Google Scholar]
  151. Qamar S.A. Junaid M. Riasat A. Jahangeer M. Bilal M. Mu B.Z. Carrageenan-based hybrids with biopolymers and nano-structured materials for biomimetic applications. Stärke 2024 76 1-2 2200018 10.1002/star.202200018
    [Google Scholar]
  152. Srinivas B. Sreekanth T. Eco-friendly guar gum composites as solid-state electrolytes. Mater. Chem. Phys. 2024 320 129453 10.1016/j.matchemphys.2024.129453
    [Google Scholar]
  153. Li N. Qiu L. Li B. Highly conductive, rapid self-healing, and anti-freezing poly(3,4-ethylenedioxythiophene)/lignosulfonate-cationic guar gum ionogels for multifunctional sensors. Int. J. Biol. Macromol. 2024 274 Pt 1 133159 10.1016/j.ijbiomac.2024.133159 38880459
    [Google Scholar]
  154. Rudnicka E. Galiński M. Jakóbczyk P. Enhanced electrochemical performance of SnS-PPy-carbon black composite with a locust bean gum as a binder as in anode in lithium-ion batteries. J. Appl. Electrochem. 2024 54 9 1945 1956 10.1007/s10800‑024‑02079‑y
    [Google Scholar]
  155. Zou Y. Yuan C. Cui B. Liu P. Wu Z. Zhao H. Formation of high amylose corn starch/konjac glucomannan composite film with improved mechanical and barrier properties. Carbohydr. Polym. 2021 251 117039 10.1016/j.carbpol.2020.117039 33142597
    [Google Scholar]
  156. Wang S. Yu L. Wang S. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions. Nat. Commun. 2022 13 1 3408 10.1038/s41467‑022‑30224‑8 35729107
    [Google Scholar]
  157. Masud H.K. Kim H.K. Advanced polymeric matrices for gel electrolytes in quasi-solid-state dye-sensitized solar cells: Recent progress and future perspective. Mater. Tod Ener 2023 38 101440 10.1016/j.mtener.2023.101440
    [Google Scholar]
  158. Abdulwahid R.T. Aziz S.B. Kadir M.F.Z. Replacing synthetic polymer electrolytes in energy storage with flexible biodegradable alternatives: Sustainable green biopolymer blend electrolyte for supercapacitor device. Mater Today Sustain 2023 23 100472 10.1016/j.mtsust.2023.100472
    [Google Scholar]
  159. Ndioukane R. Baldé F. Fall N.C.Y. Realization of high efficient ferroelectric perovskite nanoparticles in biopolymer-matrix solar cells under low lighting. J. Mod. Phys. 2023 14 7 1019 1033 10.4236/jmp.2023.147056
    [Google Scholar]
  160. Dhorkule M. Lamrood P. Ralegankar S. Patole S.P. Wagh S.S. Pathan H.M. Unveiling the efficiency of dye-sensitized solar cells: A journey from synthetic to natural dyes. ES Food Agrofor 2024 16 1 6 10.30919/esfaf1086
    [Google Scholar]
  161. Chee A.K.W. On current technology for light absorber materials used in highly efficient industrial solar cells. Renew. Sustain. Energy Rev. 2023 173 113027 10.1016/j.rser.2022.113027
    [Google Scholar]
  162. Zheng D. Yang X. Čuček L. Wang J. Ma T. Yin C. Revolutionizing dye-sensitized solar cells with nanomaterials for enhanced photoelectric performance. J. Clean. Prod. 2024 464 142717 10.1016/j.jclepro.2024.142717
    [Google Scholar]
  163. Chalkias D.A. Verykokkos N.E. Kollia E. Petala A. Kostopoulos V. Papanicolaou G.C. High-efficiency quasi-solid state dye-sensitized solar cells using a polymer blend electrolyte with “polymer-in-salt” conduction characteristics. Sol. Ener 2021 222 35 47 10.1016/j.solener.2021.04.051
    [Google Scholar]
  164. Kassem H. Salehi A. Kahrizi M. Recent advances in poly(3-hexylthiophene) and its applications in perovskite solar cells. Energy Technol. (Weinheim) 2024 12 5 2301032 10.1002/ente.202301032
    [Google Scholar]
  165. Flores-Diaz N. De Rossi F. Das A. Deepa M. Brunetti F. Freitag M. Progress of photocapacitors. Chem. Rev. 2023 123 15 9327 9355 10.1021/acs.chemrev.2c00773 37294781
    [Google Scholar]
  166. Khan I.S. Hussain Gul I. Synergistic advancements in bafe2o4 nanoparticles: Unveiling enhanced structural, magnetic, dielectric, and optical properties through silver (ag) doping for next-generation photovoltaic applications. SSRN 2024 1 4715916 10.2139/ssrn.4715916
    [Google Scholar]
  167. Kaushalya T. Littow M. Virta E. Ruotsalainen T. Juuti J. Bai Y. A system-level study of indoor light energy harvesting integrating commercially available power management circuitry. Ener Harvest Syst 2024 11 1 20230164 10.1515/ehs‑2023‑0164
    [Google Scholar]
  168. da Costa J.P.C. Gounella R.H. Bastos W.B. Longo E. Carmo J.P. Photovoltaic sub-module with optical sensor for angular measurements of incident light. IEEE Sens. J. 2019 19 8 3111 3120 10.1109/JSEN.2019.2891307
    [Google Scholar]
  169. Osmani K. Haddad A. Alkhedher M. Lemenand T. Castanier B. Ramadan M. A novel mppt-based lithium-ion battery solar charger for operation under fluctuating irradiance conditions. Sustainability (Basel) 2023 15 12 9839 10.3390/su15129839
    [Google Scholar]
  170. Fakour H. Imani M. Lo S.L. Evaluation of solar photovoltaic carport canopy with electric vehicle charging potential. Sci. Rep. 2023 13 1 2136 10.1038/s41598‑023‑29223‑6 36746978
    [Google Scholar]
  171. Mui T.W. Yang J. Lin Y. A dual-power-path charge pump for solar-energy harvesting. Int. J. Circuit Theory Appl. 2021 49 11 3894 3907 10.1002/cta.3072
    [Google Scholar]
  172. Mohapatra D. Padhee S. Jena J. Conference on electrical, Electronics and computer science (SCEECS) Micromachines (Basel) 2018 1 5 10.1109/SCEECS.2018.8546929
    [Google Scholar]
  173. Salim K. Asif M. Ali F. Low-stress and optimum design of boost converter for renewable energy systems. Micromachines (Basel) 2022 13 7 1085 10.3390/mi13071085 35888902
    [Google Scholar]
  174. Gomes Souza F. Jr Pal K. Ampah J.D. Biofuels and nanocatalysts: Python boosting visualization of similarities. Materials (Basel) 2023 16 3 1175 10.3390/ma16031175 36770184
    [Google Scholar]
  175. PyMuPDF is hosted on GitHub and registered on PyPI. 2024 Available from:https://pymupdf.readthedocs.io/en/latest/
    [Google Scholar]
  176. Tesseract Open Source O.C.R. Engine (main repository). 2024 Available from:https://github.com/tesseract-ocr/tesseract
    [Google Scholar]
  177. Special Tokens used with Meta Llama 2. Available from: https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-2
  178. Introducing Meta Llama 3: The most capable openly available LLM to date. 2024 Available from: https://ai.meta.com/blog/meta-llama-3/
  179. Valladão V.S. da Silva E.O. Souza F.G. Jr A data mining study of zinc oxide nanostructures utilization in drug delivery nanosystems. Macromol. Symp. 2024 413 2 2300141 10.1002/masy.202300141
    [Google Scholar]
  180. Gomes Souza F. Pal K. Maranhão F. Advancing hybrid nanocatalyst research: A python-based visualization of similarity analysis for interdisciplinary and sustainable development. Curr. Nanosci. 2024 20 6 830 856 10.2174/0115734137274085231214100609
    [Google Scholar]
  181. Almeida T.M.D. de Souza F.G. Pal K. Bibliometric analysis of the hot theme “phytosynthesized nanoparticles,”. ABEB 2020 4 1 5 10.33552/ABEB.2020.04.000580
    [Google Scholar]
  182. Santos J.F. Silva-Calpa L.D.R. de Souza F.G. Pal K. Central countries’ and brazil’s contributions to nanotechnology. Curr. Nanomater. ••• 9 109 147 10.2174/2405461508666230525124138
    [Google Scholar]
  183. Daher E. Gomes de Souza F. Junior Carelo J. Brandão V. Drug delivery polymers: An analysis based on literature text mining. Braz J Exp Design Data Anal Infer Stat 2021 1 1 40 55 10.55747/bjedis.v1i1.48405
    [Google Scholar]
  184. Costa V.C. Gomes de Souza F. Junior Thomas S. Nanotechnology in concrete: A bibliometric review. Braz J Exp Des Data Anal Infer Stat 2021 1 1 100 113 10.55747/bjedis.v1i1.48410
    [Google Scholar]
  185. Daher E. Gomes de Souza F. Junior Brandão V. Carelo J. Poly(lactic acid)-pla: An analysis based on literature text mining. Braz J Exp Des Data Anal Infer Stat 2021 1 1 56 68 10.55747/bjedis.v1i1.48406
    [Google Scholar]
  186. Delfino C Cordovés AI P Jr FG S The use of biosensor as a new trend in cancer: Bibliometric analysis from 2007 to 2017 Population 7 5 1 6 10.31031/RDMS.2018.07.000675
    [Google Scholar]
  187. Santos F.D.D.P.B. Gomes de Souza F. Junior Up-and-coming oil-sorbing green fibers: A text mining study. Braz J Exp Des Data Anal Infer Stat 2021 1 1 114 129 10.55747/bjedis.v1i1.48411
    [Google Scholar]
  188. Henrik L. Giovanni F. A1-A dye-sensitized solar cell unit, a photovoltaic charger including the dye-sensitized solar cell unit and a method for producing the solar cell unit. Patent WO 2020/015882 A1, 2019
    [Google Scholar]
  189. Henrik L. Giovanni F. A1-A dye-sensitized solar cell unit, a photovoltaic charger including the dye-sensitized solar cell unit and a method for producing the solar cell unit. Patent US 2021/0142956 A1, 2019
    [Google Scholar]
  190. Lindström H Fili G. A dye-sensitized solar cell unit, a photovoltaic charger including the dye-sensitized solar cell unit and a method for producing the solar cell unit. Patent EP3824488B1, 2023
    [Google Scholar]
  191. Laura T. Giancarlo U. B2-Foldable solar panel. Patent US 11996803 B2, 2023
    [Google Scholar]
  192. Laura T. Giancarlo U. B2-Foldable solar panel. Patent US 11750149 B, 2019
    [Google Scholar]
  193. Laura T. Giancarlo U. A1-Foldable solar panel. Patent US 2023/0412119 A1, 2023
    [Google Scholar]
  194. Laura T. Giancarlo U. A1-Foldable solar panel. Patent US 2020/0059196 A1, 2019
    [Google Scholar]
  195. Heath S. Foldable solar panel. Patent US 20190245155A1, 2019
    [Google Scholar]
  196. Urade A.R. Lahiri I. Suresh K.S. Graphene properties, synthesis and applications: A review. J. Miner. Met. Mater. Soc. 2023 75 3 614 630 10.1007/s11837‑022‑05505‑8 36267692
    [Google Scholar]
  197. Ijaz H. Mahmood A. Abdel-Daim M.M. Review on carbon nanotubes (CNTs) and their chemical and physical characteristics, with particular emphasis on potential applications in biomedicine. Inorg. Chem. Commun. 2023 155 111020 10.1016/j.inoche.2023.111020
    [Google Scholar]
  198. Gunasekaran A. Sorrentino A. Asiri A.M. Anandan S. Guar gum-based polymer gel electrolyte for dye-sensitized solar cell applications. Sol. Energy 2020 208 160 165 10.1016/j.solener.2020.07.084
    [Google Scholar]
  199. Afzalina B. Nurhafizah M.D. Razak S. Nawawi W.I. Effect of modified titanium dioxide photoanode and agarose gel electrolyte on electrochemical studies of dye-sensitized solar cell. Opt. Mater. 2024 150 115275 10.1016/j.optmat.2024.115275
    [Google Scholar]
  200. Johnson Mary Leeda Rani A Gunasekeran A. Sundaramurthy D. Sambandam A. Effect of a locust bean gum based gel electrolyte with nanocomposite additives on the performance of a dye-sensitized solar cell. New J. Chem. 2022 46 27 13156 13166 10.1039/D2NJ02182J
    [Google Scholar]
  201. Hasan M.M. Islam M.D. Rashid T.U. Biopolymer-based electrolytes for dye-sensitized solar cells: A critical review. Energy Fuels 2020 34 12 15634 15671 10.1021/acs.energyfuels.0c03396
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105366556250402051103
Loading
/content/journals/nanotec/10.2174/0118722105366556250402051103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test