Skip to content
2000
image of Introduction to Memristive Mechanisms and Models

Abstract

The increase in computational power demand led by the development of Artificial Intelligence is rapidly becoming unsustainable. New paradigms of computation, which potentially differ from digital computation, together with novel hardware architecture and devices, are anticipated to reduce the exorbitant energy demand for data-processing tasks. Memristive systems with resistive switching behavior are under intense research, given their prominent role in the fabrication of memory devices that promise the desired hardware revolution in our intensive data-driven era. They are suggested to provide the hardware substrate to scale up computational capabilities while improving their energy expenditure and speed. This work provides an orientation map for those interested in the vast topic of memristive systems with application to neuromorphic computing. We address the description of the most notable emerging devices and we illustrate models that capture the complex dynamical behavior of these systems under the dynamical-systems framework developed by Chua. We then review the memristive behavior under the perspective of statistical physics and percolation theory suited to describe fluctuations and disorder which are otherwise precluded in the dynamical-system approach. Percolation theory allows the investigation of these systems at the mesoscopic level, enabling material-independent modeling of non-linear conductance networks. We finally discuss recent and less recent successes in deep learning methods that bridge the field of physics-based and biological-inspired neuromorphic computing.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105327900250115102034
2025-01-24
2025-09-14
Loading full text...

Full text loading...

/deliver/fulltext/nanotec/10.2174/0118722105327900250115102034/BMS-NANOTEC-2024-HT26-5043-3.html?itemId=/content/journals/nanotec/10.2174/0118722105327900250115102034&mimeType=html&fmt=ahah

References

  1. McKee S.A. Reflections on the memory wall. Proceedings of the 1st conference on Computing frontiers New York, NY, USA ACM 2004 162 10.1145/977091.977115
    [Google Scholar]
  2. Balasubramanian V. Brain power. Proc. Natl. Acad. Sci. 2021 118 32 e2107022118 10.1073/pnas.2107022118 34341108
    [Google Scholar]
  3. Danijela M.C. Alice M. Damien Q. Julie G. Physics for neuromorphic computing. Nat. Rev. Phys. 2020 2 9 499 510
    [Google Scholar]
  4. Lee J.S. Lee S. Noh T.W. Resistive switching phenomena: A review of statistical physics approaches. Appl. Phys. Rev. 2015 2 3 031303 10.1063/1.4929512
    [Google Scholar]
  5. Chua L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 1971 18 5 507 519 10.1109/TCT.1971.1083337
    [Google Scholar]
  6. Strukov D.B. Snider G.S. Stewart D.R. Williams S.R. The missing memristor found. Nature 2008 453 7191 80 83 10.1038/nature06932
    [Google Scholar]
  7. Song Z. Cai D. Cheng Y. Wang L. Lv S. Xin T. Feng G. 12-state multi-level cell storage implemented in a 128 Mb phase change memory chip. Nanoscale 2021 13 23 10455 10461 10.1039/D1NR00100K 34137747
    [Google Scholar]
  8. Gotarredona S.T. Masquelier T. Prodromakis T. Indiveri G. Barranco L.B. STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front. Neurosci. 2013 7 2 10.3389/fnins.2013.00002 23423540
    [Google Scholar]
  9. Sung C. Hwang H. Yoo I.K. Perspective: A review on memristive hardware for neuromorphic computation. J. Appl. Phys. 2018 124 15 151903 10.1063/1.5037835
    [Google Scholar]
  10. Ielmini D. Ambrogio S. Emerging neuromorphic devices. Nanotechnology 2020 31 9 092001 10.1088/1361‑6528/ab554b 31698347
    [Google Scholar]
  11. Mannocci P. Farronato M. Lepri N. Cattaneo L. Glukhov A. Sun Z. Ielmini D. In-memory computing with emerging memory devices: Status and outlook. APL Mach. Learn. 2023 1 010902
    [Google Scholar]
  12. Xiao Y. Jiang B. Zhang Z. Ke S. Jin Y. Wen X. Ye C. A review of memristor: Material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 2023 24 1 2162323 10.1080/14686996.2022.2162323 36872944
    [Google Scholar]
  13. Song M.K. Kang J.H. Zhang X. Ji W. Ascoli A. Messaris I. Demirkol A.S. Dong B. Aggarwal S. Wan W. Hong S.M. Cardwell S.G. Boybat I. Seo J. Lee J.S. Lanza M. Yeon H. Onen M. Li J. Yildiz B. Alamo D.J.A. Kim S. Choi S. Milano G. Ricciardi C. Alff L. Chai Y. Wang Z. Bhaskaran H. Hersam M.C. Strukov D. Wong H.S.P. Valov I. Gao B. Wu H. Tetzlaff R. Sebastian A. Lu W. Chua L. Yang J.J. Kim J. Recent advances and future prospects for memristive materials, devices, and systems. ACS Nano 2023 17 13 11994 12039 10.1021/acsnano.3c03505 37382380
    [Google Scholar]
  14. Abbas H. Li J. Ang D. Conductive bridge random access memory (CBRAM): Challenges and opportunities for memory and neuromorphic computing applications. Micromachines 2022 13 5 725 10.3390/mi13050725 35630191
    [Google Scholar]
  15. Waser Rainer Nanoelectronics and information technology: Advanced electronic materials and novel devices. 3rd Ed. John Wiley & Sons Weinheim, Germany 2012
    [Google Scholar]
  16. Funck C. Menzel S. Comprehensive model of electron conduction in oxide-based memristive devices. ACS Appl. Electron. Mater. 2021 3 9 3674 3692 10.1021/acsaelm.1c00398
    [Google Scholar]
  17. Dittmann R. Menzel S. Waser R. Nanoionic memristive phenomena in metal oxides: The valence change mechanism. Adv. Phys. 2021 70 2 155 349 10.1080/00018732.2022.2084006
    [Google Scholar]
  18. Kim K.M. Kim G.H. Song S.J. Seok J.Y. Lee M.H. Yoon J.H. Hwang C.S. Electrically configurable electroforming and bipolar resistive switching in Pt/TiO 2 /Pt structures. Nanotechnology 2010 21 30 305203 10.1088/0957‑4484/21/30/305203 20610869
    [Google Scholar]
  19. Yoon J.H. Song S.J. Yoo I.H. Seok J.Y. Yoon K.J. Kwon D.E. Park T.H. Hwang C.S. Highly uniform, electroforming-free, and self-rectifying resistive memory in the pt/ta2o5/hfo2-x/tin structure. Adv. Funct. Mater. 2014 24 32 5086 5095 10.1002/adfm.201400064
    [Google Scholar]
  20. Yang J. Hu L. Shen L. Wang J. Cheng P. Lu H. Zhuge F. Ye Z. Optically driven intelligent computing with ZnO memristor. Fund. Res. 2024 4 1 158 166 10.1016/j.fmre.2022.06.019 38933832
    [Google Scholar]
  21. Hu L. Yang J. Wang J. Cheng P. Chua L.O. Fei Z. All-optically controlled memristor for optoelectronic neuromorphic computing. Adv. Funct. Mater. 2020 31 4 2005582
    [Google Scholar]
  22. Milano G. Aono M. Boarino L. Celano U. Hasegawa T. Kozicki M. Majumdar S. Menghini M. Miranda E. Ricciardi C. Tappertzhofen S. Terabe K. Valov I. Quantum conductance in memristive devices: Fundamentals, developments, and applications. Adv. Mater. 2022 34 32 2201248 10.1002/adma.202201248 35404522
    [Google Scholar]
  23. Longo M. Fantini P. NoA(c) P. Phase-change memories: Materials science, technological applications and perspectives. J. Phys. D Appl. Phys. 2020 53 44 440201 10.1088/1361‑6463/aba0e0
    [Google Scholar]
  24. Zhang W. Mazzarello R. Wuttig M. Ma E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 2019 4 3 150 168 10.1038/s41578‑018‑0076‑x
    [Google Scholar]
  25. Gallo L.M. Sebastian A. An overview of phase-change memory device physics. J. Phys. D Appl. Phys. 2020 53 21 213002 10.1088/1361‑6463/ab7794
    [Google Scholar]
  26. Koelmans W.W. Sebastian A. Jonnalagadda V.P. Krebs D. Dellmann L. Eleftheriou E. Projected phase-change memory devices. Nat. Commun. 2015 6 1 8181 10.1038/ncomms9181 26333363
    [Google Scholar]
  27. Tuma T. Pantazi A. Gallo L.M. Sebastian A. Eleftheriou E. Stochastic phase-change neurons. Nat. Nanotechnol. 2016 11 8 693 699 10.1038/nnano.2016.70 27183057
    [Google Scholar]
  28. Locatelli N. Cros V. Grollier J. Spin-torque building blocks. Nat. Mater. 2014 13 1 11 20 10.1038/nmat3823 24343514
    [Google Scholar]
  29. Grollier J. Querlioz D. Stiles M.D. Spintronic nanodevices for bioinspired computing. Proc. IEEE 2016 104 10 2024 2039 10.1109/JPROC.2016.2597152 27881881
    [Google Scholar]
  30. Grollier J. Querlioz D. Camsari K.Y. Sitte E.K. Fukami S. Stiles M.D. Neuromorphic spintronics. Nat. Electron. 2020 3 7 360 370 10.1038/s41928‑019‑0360‑9 33367204
    [Google Scholar]
  31. Jarollahi H. Onizawa N. Gripon V. Sakimura N. Sugibayashi T. Endoh T. Ohno H. Hanyu T. Gross W.J. A nonvolatile associative memory-based context-driven search engine using 90 nm cmos/mtj-hybrid logic-in-memory architecture. IEEE J. Emerg. Sel. Top. Circuits Syst. 2014 4 4 460 474 10.1109/JETCAS.2014.2361061
    [Google Scholar]
  32. Vincent A.F. Larroque J. Locatelli N. Romdhane B.N. Bichler O. Gamrat C. Zhao W.S. Klein J.O. Retailleau G.S. Querlioz D. Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems. IEEE Trans. Biomed. Circuits Syst. 2015 9 2 166 174 10.1109/TBCAS.2015.2414423 25879967
    [Google Scholar]
  33. Sharad M. Augustine C. Panagopoulos G. Roy K. Spin-based neuron model with domain-wall magnets as synapse. IEEE Trans. Nanotechnol. 2012 11 4 843 853 10.1109/TNANO.2012.2202125
    [Google Scholar]
  34. Lequeux S. Sampaio J. Cros V. Yakushiji K. Fukushima A. Matsumoto R. Kubota H. Yuasa S. Grollier J. A magnetic synapse: Multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 2016 6 1 31510 10.1038/srep31510 27539144
    [Google Scholar]
  35. Huang Y. Kang W. Zhang X. Zhou Y. Zhao W. Magnetic skyrmion-based synaptic devices. Nanotechnology 2017 28 8 08LT02 10.1088/1361‑6528/aa5838 28070023
    [Google Scholar]
  36. Zhang K. Han S. Lee Y. Coak M.J. Kim J. Hwang I. Son S. Shin J. Lim M. Jo D. Kim K. Kim D. Lee H.W. Park J.G. Gigantic current control of coercive field and magnetic memory based on nanometer-thin ferromagnetic van der waals fe3gete2. Adv. Mater. 2021 33 4 2004110 10.1002/adma.202004110 33283320
    [Google Scholar]
  37. Zhang K. Lee Y. Coak M.J. Kim J. Son S. Hwang I. Ko D.S. Oh Y. Jeon I. Kim D. Zeng C. Lee H.W. Park J.G. Highly efficient nonvolatile magnetization switching and multi-level states by current in single van der waals topological ferromagnet fe3gete2. Adv. Funct. Mater. 2021 31 49 2105992 10.1002/adfm.202105992
    [Google Scholar]
  38. Cui J. Zhang K.X. Park J.G. All van der waals three-terminal sot-mram realized by topological ferromagnet fe3gete2. Adv. Electron. Mater. 2024 10 9 2400041 10.1002/aelm.202400041
    [Google Scholar]
  39. Sengupta A. Panda P. Wijesinghe P. Kim Y. Roy K. Magnetic tunnel junction mimics stochastic cortical spiking neurons. Sci. Rep. 2016 6 1 30039 10.1038/srep30039 27443913
    [Google Scholar]
  40. Tagantsev A.K. Stolichnov I. Setter N. Cross J.S. Tsukada M. Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B Condens. Matter 2002 66 21 214109 10.1103/PhysRevB.66.214109
    [Google Scholar]
  41. Scott J.F. Applications of modern ferroelectrics. Science 2007 315 5814 954 959 10.1126/science.1129564 17303745
    [Google Scholar]
  42. Tsymbal E.Y. Kohlstedt H. Applied physics. Tunneling across a ferroelectric. Science 2006 313 5784 181 183 10.1126/science.1126230 16840688
    [Google Scholar]
  43. Gruverman A. Wu D. Lu H. Wang Y. Jang H.W. Folkman C.M. Zhuravlev M.Y. Felker D. Rzchowski M. Eom C.B. Tsymbal E.Y. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 2009 9 10 3539 3543 10.1021/nl901754t 19697939
    [Google Scholar]
  44. Chanthbouala A. Garcia V. Cherifi R.O. Bouzehouane K. Fusil S. Moya X. Xavier S. Yamada H. Deranlot C. Mathur N.D. Bibes M. BarthA(c)lA(c)my A. Grollier J. A ferroelectric memristor. Nat. Mater. 2012 11 10 860 864 10.1038/nmat3415 22983431
    [Google Scholar]
  45. Garcia V. Fusil S. Bouzehouane K. Vedrenne E.S. Mathur N.D. BarthA(c)lA(c)my A. Bibes M. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 2009 460 7251 81 84 10.1038/nature08128 19483675
    [Google Scholar]
  46. Kittel C. Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 1946 70 11-12 965 971 10.1103/PhysRev.70.965
    [Google Scholar]
  47. Kittel C. Physical theory of ferromagnetic domains. Rev. Mod. Phys. 1949 21 4 541 583 10.1103/RevModPhys.21.541
    [Google Scholar]
  48. Khan A.I. Keshavarzi A. Datta S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 2020 3 10 588 597 10.1038/s41928‑020‑00492‑7
    [Google Scholar]
  49. BAscke T.S. MA1/4ller J. BrAuhaus D. SchrAder U. BAttger U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011 99 10 102903 10.1063/1.3634052
    [Google Scholar]
  50. Oh S. Hwang H. Yoo I.K. Ferroelectric materials for neuromorphic computing. APL Mater. 2019 7 9 091109 10.1063/1.5108562
    [Google Scholar]
  51. Salje E.K.H. Mild and wild ferroelectrics and their potential role in neuromorphic computation. APL Mater. 2021 9 1 010903 10.1063/5.0035250
    [Google Scholar]
  52. Catalan G. Seidel J. Ramesh R. Scott J.F. Domain wall nanoelectronics. Rev. Mod. Phys. 2012 84 1 119 156 10.1103/RevModPhys.84.119
    [Google Scholar]
  53. Meier D. Selbach S.M. Ferroelectric domain walls for nanotechnology. Nat. Rev. Mater. 2021 7 3 157 173 10.1038/s41578‑021‑00375‑z
    [Google Scholar]
  54. Rieck J.L. Cipollini D. Salverda M. Quinteros C.P. Schomaker L.R.B. Noheda B. Ferroelastic domain walls in BiFeO3 as memristive networks. Adv. Intell. Syst. 2022 5 2200292
    [Google Scholar]
  55. Liu Z. Wang H. Li M. Tao L. Paudel T.R. Yu H. Wang Y. Hong S. Zhang M. Ren Z. Xie Y. Tsymbal E.Y. Chen J. Zhang Z. Tian H. In-plane charged domain walls with memristive behaviour in a ferroelectric film. Nature 2023 613 7945 656 661 10.1038/s41586‑022‑05503‑5 36653455
    [Google Scholar]
  56. Lu H. Tan Y. McConville J.P.V. Ahmadi Z. Wang B. Conroy M. Moore K. Bangert U. Shield J.E. Chen L.Q. Gregg J.M. Gruverman A. Electrical tunability of domain wall conductivity in LiNbO3 thin films. Adv. Mater. 2019 31 48 1902890 10.1002/adma.201902890 31588637
    [Google Scholar]
  57. McConville J.P.V. Lu H. Wang B. Tan Y. Cochard C. Conroy M. Moore K. Harvey A. Bangert U. Chen L.Q. Gruverman A. Gregg J.M. Ferroelectric domain wall memristor. Adv. Funct. Mater. 2020 30 28 2000109 10.1002/adfm.202000109 32684905
    [Google Scholar]
  58. Risch F. Tikhonov Y. Lukyanchuk I. Ionescu A.M. Stolichnov I. Giant switchable non thermally-activated conduction in 180A domain walls in tetragonal Pb (Zr,Ti) O3. Nat. Commun. 2022 13 1 7239 10.1038/s41467‑022‑34777‑6 36433950
    [Google Scholar]
  59. Maksymovych P. Seidel J. Chu Y.H. Wu P. Baddorf A.P. Chen L.Q. Kalinin S.V. Ramesh R. Dynamic conductivity of ferroelectric domain walls in BiFeO. Nano Lett. 2011 11 5 1906 1912 10.1021/nl104363x 21486089
    [Google Scholar]
  60. Erokhin V. Organic memristive devices and neuromorphic circuits. Springer International Publishing 2014 389 411
    [Google Scholar]
  61. Park H.L. Kim M.H. Kim H. Lee S.H. Self-selective organic memristor by engineered conductive nanofilament diffusion for realization of practical neuromorphic system. Adv. Electron. Mater. 2021 7 8 2100299 10.1002/aelm.202100299
    [Google Scholar]
  62. Gkoupidenis P. Schaefer N. Garlan B. Malliaras G.G. Neuromorphic functions in pedot: Pss organic electrochemical transistors. Adv. Mater. 2015 27 44 7176 7180 10.1002/adma.201503674 26456708
    [Google Scholar]
  63. Park H.L. Kim H. Lim D. Zhou H. Kim Y.H. Lee Y. Park S. Lee T.W. Retina-inspired carbon nitride-based photonic synapses for selective detection of uv light. Adv. Mater. 2020 32 11 1906899 10.1002/adma.201906899 31984573
    [Google Scholar]
  64. Subramanian A. Tiwale N. Kisslinger K. Nam C.Y. Reduced stochastic resistive switching in organic-inorganic hybrid memristors by vapor-phase infiltration. Adv. Electron. Mater. 2022 8 7 2200172 10.1002/aelm.202200172
    [Google Scholar]
  65. Goswami S. Thompson D. Williams R.S. Goswami S. Venkatesan T. Colossal current and voltage tunability in an organic memristor via electrode engineering. Appl. Mater. Today 2020 19 100626 10.1016/j.apmt.2020.100626
    [Google Scholar]
  66. Feng Y. Gao X. Zhong Y.N. Wu J.L. Xu J.L. Wang S.D. Solution-processed polymer thin-film memristors with an electrochromic feature and frequency-dependent synaptic plasticity. Adv. Intell. Syst. 2019 1 3 1900022 10.1002/aisy.201900022
    [Google Scholar]
  67. Berzina T. Pucci A. Ruggeri G. Erokhin V. Fontana M.P. Gold nanoparticles Polyaniline composite material: Synthesis, structure and electrical properties. Synth. Met. 2011 161 13-14 1408 1413 10.1016/j.synthmet.2011.04.038
    [Google Scholar]
  68. Sillin H.O. Aguilera R. Shieh H.H. Avizienis A.V. Aono M. Stieg A.Z. Gimzewski J.K. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 2013 24 38 384004 10.1088/0957‑4484/24/38/384004 23999129
    [Google Scholar]
  69. Loeffler A. Zhu R. Hochstetter J. Li M. Fu K. Alvarez D.A. Nakayama T. Shine J.M. Kuncic Z. Topological properties of neuromorphic nanowire networks. Front. Neurosci. 2020 14 184 10.3389/fnins.2020.00184 32210754
    [Google Scholar]
  70. Milano G. Pedretti G. Montano K. Ricci S. Hashemkhani S. Boarino L. Ielmini D. Ricciardi C. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 2022 21 2 195 202 10.1038/s41563‑021‑01099‑9 34608285
    [Google Scholar]
  71. Mambretti F. Mirigliano M. Tentori E. Pedrani N. Martini G. Milani P. Galli D.E. Dynamical stochastic simulation of complex electrical behavior in neuromorphic networks of metallic nanojunctions. Sci. Rep. 2022 12 1 12234 10.1038/s41598‑022‑15996‑9 35851078
    [Google Scholar]
  72. Bose S.K. Mallinson J.B. Gazoni R.M. Brown S.A. Stable self-assembled atomic-switch networks for neuromorphic applications. IEEE Trans. Electron Dev. 2017 64 12 5194 5201 10.1109/TED.2017.2766063
    [Google Scholar]
  73. Profumo F. Borghi F. Falqui A. Milani P. Potentiation and depression behaviour in a two-terminal memristor based on nanostructured bilayer ZrO x /Au films. J. Phys. D Appl. Phys. 2023 56 35 355301 10.1088/1361‑6463/acd704
    [Google Scholar]
  74. Chen T. Gelder V.J. van de Ven B. Amitonov S.V. Wilde D.B. Euler R.H.C. Broersma H. Bobbert P.A. Zwanenburg F.A. van der Wiel W.G. Classification with a disordered dopant-atom network in silicon. Nature 2020 577 7790 341 345 10.1038/s41586‑019‑1901‑0 31942054
    [Google Scholar]
  75. Jaeger H. The state approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany. German Nat. Res. Cent. Inform. Technol. GMD Tech. Rep. 2001 148 34 13
    [Google Scholar]
  76. Mantas L. A practical guide to applying echo state networks. Neural Networks: Tricks of the Trade. 2nd ed Springer 2012 659 686
    [Google Scholar]
  77. Zhu R. Lilak S. Loeffler A. Lizier J. Stieg A. Gimzewski J. Kuncic Z. Online dynamical learning and sequence memory with neuromorphic nanowire networks. Nat. Commun. 2023 14 1 6697 10.1038/s41467‑023‑42470‑5 37914696
    [Google Scholar]
  78. Du C. Cai F. Zidan M.A. Ma W. Lee S.H. Lu W.D. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017 8 1 2204 10.1038/s41467‑017‑02337‑y 29259188
    [Google Scholar]
  79. Moon J. Ma W. Shin J.H. Cai F. Du C. Lee S.H. Lu W.D. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2019 2 10 480 487 10.1038/s41928‑019‑0313‑3
    [Google Scholar]
  80. Midya R. Wang Z. Asapu S. Zhang X. Rao M. Song W. Zhuo Y. Upadhyay N. Xia Q. Yang J.J. Reservoir computing using diffusive memristors. Adv. Intell. Syst. 2019 1 7 1900084 10.1002/aisy.201900084
    [Google Scholar]
  81. Zhong Y. Tang J. Li X. Gao B. Qian H. Wu H. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun. 2021 12 1 408 10.1038/s41467‑020‑20692‑1 33462233
    [Google Scholar]
  82. Payvand M. Moro F. Nomura K. Dalgaty T. Vianello E. Nishi Y. Indiveri G. Self-organization of an inhomogeneous memristive hardware for sequence learning. Nat. Commun. 2022 13 1 5793 10.1038/s41467‑022‑33476‑6
    [Google Scholar]
  83. Strogatz S.H. Exploring complex networks. Nature 2001 410 6825 268 276 10.1038/35065725 11258382
    [Google Scholar]
  84. Milano G. Miranda E. Ricciardi C. Connectome of memristive nanowire networks through graph theory. Neural Netw. 2022 150 137 148 10.1016/j.neunet.2022.02.022 35313246
    [Google Scholar]
  85. Cipollini D. Swierstra A. Schomaker L. Modeling a domain wall network in BiFeO3 with stochastic geometry and entropy-based similarity measure. Front. Mater. 2024 11 1323153 10.3389/fmats.2024.1323153
    [Google Scholar]
  86. Chua L.O. Memristive devices and systems In Proceedings of the IEEE 1976 64 2 209 223
    [Google Scholar]
  87. Chua L. If its pinched its a memristor. Semicond. Sci. Technol. 2014 29 10 104001 10.1088/0268‑1242/29/10/104001
    [Google Scholar]
  88. Linn E. Siemon A. Waser R. Menzel S. Applicability of well-established memristive models for simulations of resistive switching devices. IEEE Trans. Circuits Syst. I Regul. Pap. 2014 61 8 2402 2410 10.1109/TCSI.2014.2332261
    [Google Scholar]
  89. Laiho M. Memristive synapses are becoming reality. The Neuromorphic Engineer 2010
    [Google Scholar]
  90. Chang T. Jo S.H. Lu W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 2011 5 9 7669 7676 10.1021/nn202983n 21861506
    [Google Scholar]
  91. Yakopcic C. Taha T.M. Subramanyam G. Pino R.E. Generalized memristive device spice model and its application in circuit design. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 2013 32 8 1201 1214 10.1109/TCAD.2013.2252057
    [Google Scholar]
  92. Biolek Dalibor BiolkovA Viera Spice model of memristor with nonlinear dopant drift. Radioengineering 2009 18 210 214
    [Google Scholar]
  93. Shin S. Kim K. Kang S.M. Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 2010 29 4 590 598 10.1109/TCAD.2010.2042891
    [Google Scholar]
  94. Joglekar Y.N. Wolf S.J. The elusive memristor: Properties of basic electrical circuits. Eur. J. Phys. 2009 30 4 661 675 10.1088/0143‑0807/30/4/001
    [Google Scholar]
  95. Prodromakis T. Peh B.P. Papavassiliou C. Toumazou C. A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron Dev. 2011 58 9 3099 3105 10.1109/TED.2011.2158004
    [Google Scholar]
  96. Ascoli A. Corinto F. Tetzlaff R. Generalized boundary condition memristor model. Int. J. Circuit Theory Appl. 2016 44 1 60 84 10.1002/cta.2063
    [Google Scholar]
  97. Ascoli A. Corinto F. Senger V. Tetzlaff R. Memristor model comparison. IEEE Circuits Syst. Mag. 2013 13 2 89 105 10.1109/MCAS.2013.2256272
    [Google Scholar]
  98. Corinto F. Ascoli A. A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Trans. Circuits Syst. I Regul. Pap. 2012 59 11 2713 2726 10.1109/TCSI.2012.2190563
    [Google Scholar]
  99. Pickett M.D. Strukov D.B. Borghetti J.L. Yang J.J. Snider G.S. Stewart D.R. Williams R.S. Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 2009 106 7 074508 10.1063/1.3236506
    [Google Scholar]
  100. Abdalla H. Pickett M.D. SPICE modeling of memristors IEEE International Symposium of Circuits and Systems (ISCAS) Rio de Janeiro, Brazil, 15-18 May, 2011, pp. 1832-1835. 10.1109/ISCAS.2011.5937942
    [Google Scholar]
  101. Kvatinsky S. Friedman E.G. Kolodny A. Weiser U.C. TEAM: ThrEshold adaptive memristor model. IEEE Trans. Circuits Syst. I Regul. Pap. 2013 60 1 211 221 10.1109/TCSI.2012.2215714
    [Google Scholar]
  102. Sarwat S.G. Timothy M. Projected mushroom type phase-change memory. Adv. Funct. Mater. 2021 31 49 2106547
    [Google Scholar]
  103. Secco J. Corinto F. Sebastian A. Flux Charge memristor model for phase change memory. IEEE Trans. Circuits Syst. II Express Briefs 2018 65 1 111 114 10.1109/TCSII.2017.2701282
    [Google Scholar]
  104. Pratap R. Agarwal V. Singh R.K. Review of various available spice simulators. 2014 International Conference on Power, Control and Embedded Systems (ICPCES) Allahabad, India, 26-28 December, 2014, pp. 1-6.
    [Google Scholar]
  105. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940 8 2 212 224 10.1063/1.1750631
    [Google Scholar]
  106. Ishibashi Y. Takagi Y. Note on ferroelectric domain switching. J. Phys. Soc. Jpn. 1971 31 2 506 510 10.1143/JPSJ.31.506
    [Google Scholar]
  107. Jo J.Y. Han H.S. Yoon J.G. Song T.K. Kim S.H. Noh T.W. Domain switching kinetics in disordered ferroelectric thin films. Phys. Rev. Lett. 2007 99 26 267602 10.1103/PhysRevLett.99.267602 18233604
    [Google Scholar]
  108. Antonov I. Antonova I. Kandel E.R. Hawkins R.D. Activity-dependent presynaptic facilitation and hebbian LTP are both required and interact during classical conditioning in Aplysia. Neuron 2003 37 1 135 147 10.1016/S0896‑6273(02)01129‑7 12526779
    [Google Scholar]
  109. Zucker R.S. Regehr W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002 64 1 355 405 10.1146/annurev.physiol.64.092501.114547 11826273
    [Google Scholar]
  110. Bi G. Poo M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 1998 18 24 10464 10472 10.1523/JNEUROSCI.18‑24‑10464.1998 9852584
    [Google Scholar]
  111. Pershin Y.V. Ventra D.M. Neuromorphic, digital, and quantum computation with memory circuit elements. Proc. IEEE 2012 100 6 2071 2080 10.1109/JPROC.2011.2166369
    [Google Scholar]
  112. Du C. Ma W. Chang T. Sheridan P. Lu W.D. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater. 2015 25 27 4290 4299 10.1002/adfm.201501427
    [Google Scholar]
  113. Wang Z. Joshi S. Savelev S.E. Jiang H. Midya R. Lin P. Hu M. Ge N. Strachan J.P. Li Z. Wu Q. Barnell M. Li G.L. Xin H.L. Williams R.S. Xia Q. Yang J.J. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017 16 1 101 108 10.1038/nmat4756 27669052
    [Google Scholar]
  114. Stauffer D. Aharony A. Introduction to percolation theory. Taylor and Francis 2018 10.1201/9781315274386
    [Google Scholar]
  115. Bunde A. Havlin S. Fractals and disordered systems. Springer Berlin Heidelberg 1996 10.1007/978‑3‑642‑84868‑1
    [Google Scholar]
  116. Kirkpatrick S. Percolation and conduction. Rev. Mod. Phys. 1973 45 4 574 588 10.1103/RevModPhys.45.574
    [Google Scholar]
  117. Chae S.C. Lee J.S. Kim S. Lee S.B. Chang S.H. Liu C. Kahng B. Shin H. Kim D.W. Jung C.U. Seo S. Lee M.J. Noh T.W. Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 2008 20 6 1154 1159 10.1002/adma.200702024
    [Google Scholar]
  118. Oskoee E.N. Sahimi M. Electric currents in networks of interconnected memristors. Phys. Rev. E 2011 83 3 031105
    [Google Scholar]
  119. Sheldon F.C. Ventra D.M. Conducting-insulating transition in adiabatic memristive networks. Phys. Rev. E 2017 95 1 012305 10.1103/PhysRevE.95.012305 28208448
    [Google Scholar]
  120. Cipollini D. Schomaker L. Conduction and entropy analysis of a mixed memristor-resistor model for neuromorphic networks. Neuromorphic Computing and Engineering 2023 10.1088/2634‑4386/acd6b3
    [Google Scholar]
  121. Ambrosetti G. Balberg I. Grimaldi C. Percolation-to-hopping crossover in conductor-insulator composites. Phys. Rev. B Condens. Matter Mater. Phys. 2010 82 13 134201 10.1103/PhysRevB.82.134201
    [Google Scholar]
  122. Meester Ronald Roy Rahul Continuum percolation. Cambridge University Press 1996 10.1017/CBO9780511895357
    [Google Scholar]
  123. Fostner S. Brown R. Carr J. Brown S.A. Continuum percolation with tunneling. Phys. Rev. B Condens. Matter Mater. Phys. 2014 89 7 075402 10.1103/PhysRevB.89.075402
    [Google Scholar]
  124. Grimaldi C. Theory of percolation and tunneling regimes in nanogranular metal films. Phys. Rev. B Condens. Matter Mater. Phys. 2014 89 21 214201 10.1103/PhysRevB.89.214201
    [Google Scholar]
  125. Landau LALE On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Perspectives in Theoretical Physics Pergamon 1992 51 65
    [Google Scholar]
  126. Ricci S. Kappel D. Tetzlaff C. Ielmini D. Covi E. Tunable synaptic working memory with volatile memristive devices. Neuromorphic Computing and Engineering 2023 3 4 044004 10.1088/2634‑4386/ad01d6
    [Google Scholar]
  127. Pascanu R. Jaeger H. A neurodynamical model for working memory. Neural Netw. 2011 24 2 199 207 10.1016/j.neunet.2010.10.003 21036537
    [Google Scholar]
  128. Henseler J. Braspenning P.J. Membrain: A cellular neural network model based on a vibrating membrane. Int. J. Circuit Theory Appl. 1992 20 5 483 496 10.1002/cta.4490200505
    [Google Scholar]
  129. Schomaker L.R.B. A neural oscillator-network model of temporal pattern generation. Hum. Mov. Sci. 1992 11 1-2 181 192 10.1016/0167‑9457(92)90059‑K
    [Google Scholar]
  130. Rusch K.T. Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. arXiv e-prints 2020 arXiv-2010
    [Google Scholar]
  131. Keller A.T. Neural wave machines: Learning spatiotemporally structured representations with locally coupled oscillatory recurrent neural networks. International Conference on Machine Learning. PMLR 2023
    [Google Scholar]
  132. Keller A.T. Traveling waves encode the recent past and enhance sequence learning. arXiv preprint 2023 2309.08045
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105327900250115102034
Loading
/content/journals/nanotec/10.2174/0118722105327900250115102034
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Self-assembled ; RRAM ; Ferroelectric ; Memristor ; Percolation ; Neuromorphic ; Models ; PCM ; Domain walls
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test