Skip to content
2000
image of Resistive Switching in Nanoparticle-Based Nanocomposites

Abstract

The recent rapid progress in artificial intelligence (AI) and the processing of big data imposes a strong demand to explore novel approaches for robust and efficient hardware solutions. Neuromorphic engineering and brain-inspired electronics take inspiration from biological information pathways in neural assemblies, particularly their fundamental building blocks and organizational principles. While resistive switching in memristive devices being widely considered as electronic synapse with potential applications for in-memory computing and vector matrix multiplication, further aspects of brain-inspired electronics require to explore both, organization principles from individual building units towards connected networks, as well as the resistive switching properties of each unit. In this context, nanogranular matter made of nano-objects, such as nanoparticles or nanowires, has gained considerable research interest due to emergent brain-like, scale-free switching dynamics originating from the self-organization of its building units into connected networks. In this study, we review resistive switching in nanogranular matter featuring metal nanoparticles as their functional building blocks. First, common deposition strategies for nanoparticles, as well as nanoparticle-based nanocomposites, are discussed, and challenges in the investigation of their inherited resistive switching properties are addressed. Secondly, an overview of resistive switching properties in nanogranular matter, ranging from individual nanoparticles over sparse nanoparticle arrangements to highly interconnected nanogranular networks, is provided. Thirdly, concepts and examples of information processing using nanoparticle networks are outlined. Finally, a survey on patents related to resistive switching in metal nanoparticles and nanocomposites is presented.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105319247250606185502
2025-07-03
2025-12-17
Loading full text...

Full text loading...

/deliver/fulltext/nanotec/10.2174/0118722105319247250606185502/BMS-NANOTEC-2024-HT26-5043-2.html?itemId=/content/journals/nanotec/10.2174/0118722105319247250606185502&mimeType=html&fmt=ahah

References

  1. Kendall J.D. Kumar S. The building blocks of a brain-inspired computer. Appl. Phys. Rev. 2020 7 1 011305 10.1063/1.5129306
    [Google Scholar]
  2. Zidan M.A. Strachan J.P. Lu W.D. The future of electronics based on memristive systems. Nat. Electron. 2018 1 1 22 29 10.1038/s41928‑017‑0006‑8
    [Google Scholar]
  3. Strukov D.B. Snider G.S. Stewart D.R. Williams R.S. The missing memristor found. Nature 2008 453 7191 80 83 10.1038/nature06932 18451858
    [Google Scholar]
  4. Xu M. Chen X. Guo Y. Reconfigurable neuromorphic computing: Materials, devices, and integration. Adv. Mater. 2023 35 51 2301063 10.1002/adma.202301063 37285592
    [Google Scholar]
  5. Edwards A.H. Barnaby H.J. Campbell K.A. Kozicki M.N. Liu W. Marinella M.J. Reconfigurable memristive device technologies. Proc. IEEE 2015 103 7 1004 1033 10.1109/JPROC.2015.2441752
    [Google Scholar]
  6. Zidan M.A. Chen A. Indiveri G. Lu W.D. Memristive computing devices and applications. J. Electroceram. 2017 39 1-4 4 20 10.1007/s10832‑017‑0103‑0
    [Google Scholar]
  7. Waser R. Aono M. Nanoionics-based resistive switching memories. Nat. Mater. 2007 6 11 833 840 10.1038/nmat2023 17972938
    [Google Scholar]
  8. Zhang Y. Wang Z. Zhu J. Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Appl. Phys. Rev. 2020 7 1 011308 10.1063/1.5124027
    [Google Scholar]
  9. Duan X. Cao Z. Gao K. Memristor‐based neuromorphic chips. Adv. Mater. 2024 36 14 2310704 10.1002/adma.202310704 38168750
    [Google Scholar]
  10. Wright C.D. Precise computing with imprecise devices. Nat. Electron. 2018 1 4 212 213 10.1038/s41928‑018‑0061‑9
    [Google Scholar]
  11. Ielmini D. Ambrogio S. Emerging neuromorphic devices. Nanotechnology 2020 31 9 092001 10.1088/1361‑6528/ab554b 31698347
    [Google Scholar]
  12. Terasa M.I. Birkoben T. Noll M. Pathways towards truly brain-like computing primitives. Mater. Today 2023 69 41 53 10.1016/j.mattod.2023.07.019
    [Google Scholar]
  13. Milano G. Pedretti G. Montano K. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 2022 21 2 195 202 10.1038/s41563‑021‑01099‑9 34608285
    [Google Scholar]
  14. Tanaka H. Azhari S. Usami Y. In-materio computing in random networks of carbon nanotubes complexed with chemically dynamic molecules: A review. NCE 2022 2 2 022002 10.1088/2634‑4386/ac676a
    [Google Scholar]
  15. Carstens N. Adejube B. Strunskus T. Faupel F. Brown S. Vahl A. Brain-like critical dynamics and long-range temporal correlations in percolating networks of silver nanoparticles and functionality preservation after integration of insulating matrix. Nanoscale Adv. 2022 4 15 3149 3160 10.1039/D2NA00121G 36132822
    [Google Scholar]
  16. Gronenberg O. Adejube B. Hemke T. In situ imaging of dynamic current paths in a neuromorphic nanoparticle network with critical spiking behavior. Adv. Funct. Mater. 2024 34 28 2312989 10.1002/adfm.202312989
    [Google Scholar]
  17. Bose S.K. Lawrence C.P. Liu Z. Evolution of a designless nanoparticle network into reconfigurable Boolean logic. Nat. Nanotechnol. 2015 10 12 1048 1052 10.1038/nnano.2015.207 26389658
    [Google Scholar]
  18. Mirigliano M. Radice S. Falqui A. Casu A. Cavaliere F. Milani P. Anomalous electrical conduction and negative temperature coefficient of resistance in nanostructured gold resistive switching films. Sci. Rep. 2020 10 1 19613 10.1038/s41598‑020‑76632‑y 33184326
    [Google Scholar]
  19. Minnai C. Mirigliano M. Brown S.A. Milani P. The nanocoherer: An electrically and mechanically resettable resistive switching device based on gold clusters assembled on paper. Nano Futures 2018 2 1 011002 10.1088/2399‑1984/aab4ee
    [Google Scholar]
  20. Mirigliano M. Decastri D. Pullia A. Complex electrical spiking activity in resistive switching nanostructured Au two-terminal devices. Nanotechnology 2020 31 23 234001 10.1088/1361‑6528/ab76ec 32202254
    [Google Scholar]
  21. Mirigliano M. Borghi F. Podestà A. Antidormi A. Colombo L. Milani P. Non-ohmic behavior and resistive switching of Au cluster-assembled films beyond the percolation threshold. Nanoscale Adv. 2019 1 8 3119 3130 10.1039/C9NA00256A 36133584
    [Google Scholar]
  22. Pike M.D. Bose S.K. Mallinson J.B. Atomic scale dynamics drive brain-like avalanches in percolating nanostructured networks. Nano Lett. 2020 20 5 3935 3942 10.1021/acs.nanolett.0c01096 32347733
    [Google Scholar]
  23. Nirmalraj P.N. Bellew A.T. Bell A.P. Manipulating connectivity and electrical conductivity in metallic nanowire networks. Nano Lett. 2012 12 11 5966 5971 10.1021/nl303416h 23062152
    [Google Scholar]
  24. Manning H.G. Niosi F. da Rocha C.G. Emergence of winner-takes-all connectivity paths in random nanowire networks. Nat. Commun. 2018 9 1 3219 10.1038/s41467‑018‑05517‑6 30104665
    [Google Scholar]
  25. Daniels R.K. Mallinson J.B. Heywood Z.E. Bones P.J. Arnold M.D. Brown S.A. Reservoir computing with 3D nanowire networks. Neural Netw. 2022 154 122 130 10.1016/j.neunet.2022.07.001 35882080
    [Google Scholar]
  26. Chopin C. de Wergifosse S. Marchal N. Van Velthem P. Piraux L. Abreu Araujo F. Memristive and tunneling effects in 3D interconnected silver nanowires. ACS Omega 2023 8 7 6663 6668 10.1021/acsomega.2c07171 36844586
    [Google Scholar]
  27. Yan X. Pei Y. Chen H. Self‐assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Adv. Mater. 2019 31 7 1805284 10.1002/adma.201805284 30589113
    [Google Scholar]
  28. Younis A. Chu D. Lin X. Yi J. Dang F. Li S. High-performance nanocomposite based memristor with controlled quantum dots as charge traps. ACS Appl. Mater. Interfaces 2013 5 6 2249 2254 10.1021/am400168m 23470212
    [Google Scholar]
  29. Ali M. Sokolov A. Ko M.J. Choi C. Optically excited threshold switching synapse characteristics on nitrogen-doped graphene oxide quantum dots (N-GOQDs). J. Alloys Compd. 2021 855 157514 10.1016/j.jallcom.2020.157514
    [Google Scholar]
  30. Mallinson J.B. Steel J.K. Heywood Z.E. Studholme S.J. Bones P.J. Brown S.A. Experimental demonstration of reservoir computing with self‐assembled percolating networks of nanoparticles. Adv. Mater. 2024 36 29 2402319 10.1002/adma.202402319 38558447
    [Google Scholar]
  31. Studholme S.J. Heywood Z.E. Mallinson J.B. Computation via neuron-like spiking in percolating networks of nanoparticles. Nano Lett. 2023 23 22 10594 10599 10.1021/acs.nanolett.3c03551 37955398
    [Google Scholar]
  32. Mallinson J.B. Brown S.A. Time-multiplexed reservoir computing with percolating networks of nanoparticles. 2023 International Joint Conference on Neural Networks (IJCNN) Gold Coast, Australia 18-23 June 2023 1 7 10.1109/IJCNN54540.2023.10191253
    [Google Scholar]
  33. Martini G. Mirigliano M. Paroli B. Milani P. The receptron: A device for the implementation of information processing systems based on complex nanostructured systems. Jpn. J. Appl. Phys. 2022 61 SM0801 10.35848/1347‑4065/ac665c
    [Google Scholar]
  34. Paroli B. Martini G. Potenza M.A.C. Siano M. Mirigliano M. Milani P. Solving classification tasks by a receptron based on nonlinear optical speckle fields. Neural Netw. 2023 166 634 644 10.1016/j.neunet.2023.08.001 37604074
    [Google Scholar]
  35. John R.A. Demirağ Y. Shynkarenko Y. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 2022 13 1 2074 10.1038/s41467‑022‑29727‑1 35440122
    [Google Scholar]
  36. Hao D. Yang Z. Huang J. Shan F. Recent developments of optoelectronic synaptic devices based on metal halide perovskites. Adv. Funct. Mater. 2023 33 8 2211467 10.1002/adfm.202211467
    [Google Scholar]
  37. Yin L. Han C. Zhang Q. Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy 2019 63 103859 10.1016/j.nanoen.2019.103859
    [Google Scholar]
  38. Zhang H.T. Park T.J. Islam A.N.M.N. Reconfigurable perovskite nickelate electronics for artificial intelligence. Science 2022 375 6580 533 539 10.1126/science.abj7943 35113713
    [Google Scholar]
  39. Park T.J. Selcuk K. Zhang H.T. Efficient probabilistic computing with stochastic perovskite nickelates. Nano Lett. 2022 22 21 8654 8661 10.1021/acs.nanolett.2c03223 36315005
    [Google Scholar]
  40. Daniels R.K. Arnold M.D. Heywood Z.E. Mallinson J.B. Bones P.J. Brown S.A. Brainlike networks of nanowires and nanoparticles: A change of perspective. Phys. Rev. Appl. 2023 20 3 034021 10.1103/PhysRevApplied.20.034021
    [Google Scholar]
  41. Liu P. Hui F. Aguirre F. Nano‐Memristors with 4 mV switching voltage based on surface‐modified copper nanoparticles. Adv. Mater. 2022 34 20 2201197 10.1002/adma.202201197 35320590
    [Google Scholar]
  42. Wang Y. Yan X. Dong R. Organic memristive devices based on silver nanoparticles and DNA. Org. Electron. 2014 15 12 3476 3481 10.1016/j.orgel.2014.09.042
    [Google Scholar]
  43. Zhao P. Li N. Astruc D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 2013 257 3-4 638 665 10.1016/j.ccr.2012.09.002
    [Google Scholar]
  44. Harish V. Ansari M.M. Tewari D. Nanoparticle and nanostructure synthesis and controlled growth methods. Nanomaterials 2022 12 18 3226 10.3390/nano12183226 36145012
    [Google Scholar]
  45. Wang J. Choudhary S. Harrigan W.L. Crosby A.J. Kittilstved K.R. Nonnenmann S.S. Transferable memristive nanoribbons comprising solution-processed strontium titanate nanocubes. ACS Appl. Mater. Interfaces 2017 9 12 10847 10854 10.1021/acsami.7b00220 28276236
    [Google Scholar]
  46. Zhou Z. López-Domínguez P. Abdullah M. Memristive behavior of mixed oxide nanocrystal assemblies. ACS Appl. Mater. Interfaces 2021 13 18 21635 21644 10.1021/acsami.1c03722 33938727
    [Google Scholar]
  47. Speckbacher M. Rinderle M. Kaiser W. Directed assembly of nanoparticle threshold‐selector arrays. Adv. Electron. Mater. 2019 5 7 1900098 10.1002/aelm.201900098
    [Google Scholar]
  48. Hong J.Y. Chang S.H. Ou Yang K-H. A multifunctional molecular spintronic platform with magnetoresistive and memristive responses via a self-assembled monolayer. J. Appl. Phys. 2019 125 14 142905 10.1063/1.5057893
    [Google Scholar]
  49. Qiu X. Rousseva S. Ye G. Hummelen J.C. Chiechi R.C. In operando modulation of rectification in molecular tunneling junctions comprising reconfigurable molecular self‐assemblies. Adv. Mater. 2021 33 4 2006109 10.1002/adma.202006109 33326147
    [Google Scholar]
  50. Wang Y. Zhang Q. Astier H.P.A.G. Dynamic molecular switches with hysteretic negative differential conductance emulating synaptic behaviour. Nat. Mater. 2022 21 12 1403 1411 10.1038/s41563‑022‑01402‑2 36411348
    [Google Scholar]
  51. Takele H. Jebril S. Strunskus T. Zaporojchenko V. Adelung R. Faupel F. Tuning of electrical and structural properties of metal-polymer nanocomposite films prepared by co-evaporation technique. Appl. Phys., A Mater. Sci. Process. 2008 92 2 345 350 10.1007/s00339‑008‑4524‑0
    [Google Scholar]
  52. Faupel F. Zaporojtchenko V. Strunskus T. Elbahri M. Metal‐polymer nanocomposites for functional applications. Adv. Eng. Mater. 2010 12 12 1177 1190 10.1002/adem.201000231
    [Google Scholar]
  53. Faupel F. Zaporojtchenko V. Greve H. Deposition of nanocomposites by plasmas. Contrib. Plasma Phys. 2007 47 7 537 544 10.1002/ctpp.200710069
    [Google Scholar]
  54. Beyene H.T. Chakravadhanula V.S.K. Hanisch C. Preparation and plasmonic properties of polymer-based composites containing Ag–Au alloy nanoparticles produced by vapor phase co-deposition. J. Mater. Sci. 2010 45 21 5865 5871 10.1007/s10853‑010‑4663‑5
    [Google Scholar]
  55. Sibatov R.T. Savitskiy A.I. L’vov P.E. Vasilevskaya Y.O. Kitsyuk E.P. Self-organized memristive ensembles of nanoparticles below the percolation threshold: Switching dynamics and phase field description. Nanomaterials 2023 13 14 2039 10.3390/nano13142039 37513051
    [Google Scholar]
  56. Jo S.H. Chang T. Ebong I. Bhadviya B.B. Mazumder P. Lu W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010 10 4 1297 1301 10.1021/nl904092h 20192230
    [Google Scholar]
  57. Wang Z. Joshi S. Savel’ev S.E. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017 16 1 101 108 10.1038/nmat4756 27669052
    [Google Scholar]
  58. Wang Z. Rao M. Midya R. Threshold switching of Ag or Cu in dielectrics: Materials, mechanism, and applications. Adv. Funct. Mater. 2018 28 6 1704862 10.1002/adfm.201704862
    [Google Scholar]
  59. Jeong W.H. Han J.H. Choi B.J. Effect of Ag Concentration dispersed in HfOx thin films on threshold switching. Nanoscale Res. Lett. 2020 15 1 27 10.1186/s11671‑020‑3258‑6 32002695
    [Google Scholar]
  60. Vahl A. Strobel J. Reichstein W. Single target sputter deposition of alloy nanoparticles with adjustable composition via a gas aggregation cluster source. Nanotechnology 2017 28 17 175703 10.1088/1361‑6528/aa66ef 28294956
    [Google Scholar]
  61. Huttel Y. Martínez L. Mayoral A. Fernández I. Gas-phase synthesis of nanoparticles: Present status and perspectives. MRS Commun. 2018 8 3 947 954 10.1557/mrc.2018.169 30298115
    [Google Scholar]
  62. Asnaz O.H. Drewes J. Elis M. A novel method for the synthesis of core–shell nanoparticles for functional applications based on long-term confinement in a radio frequency plasma. Nanoscale Adv. 2023 5 4 1115 1123 10.1039/D2NA00806H 36798508
    [Google Scholar]
  63. Martínez L. Mayoral A. Espiñeira M. Roman E. Palomares F.J. Huttel Y. Core@shell, Au@TiOx nanoparticles by gas phase synthesis. Nanoscale 2017 9 19 6463 6470 10.1039/C7NR01148B 28466930
    [Google Scholar]
  64. Kylián O. Štefaníková R. Kuzminova A. In-flight plasma modification of nanoparticles produced by means of gas aggregation sources as an effective route for the synthesis of core-satellite Ag/plasma polymer nanoparticles. Plasma Phys. Contr. Fusion 2020 62 1 014005 10.1088/1361‑6587/ab4115
    [Google Scholar]
  65. Košutová T. Hanuš J. Kylián O. In-flight coating of Ag nanoparticles with Cu. J. Phys. D Appl. Phys. 2021 54 1 015302 10.1088/1361‑6463/abb847
    [Google Scholar]
  66. Khomiakova N. Nikitin D. Kuzminova A. Cu/Ag bimetallic nanoparticles produced by cylindrical post-magnetron gas aggregation source – A novel galvanic corrosion-based antibacterial material. Vacuum 2023 217 112586 10.1016/j.vacuum.2023.112586
    [Google Scholar]
  67. Solař P. Polonskyi O. Olbricht A. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase. Sci. Rep. 2017 7 1 8514 10.1038/s41598‑017‑08274‑6 28819149
    [Google Scholar]
  68. Drewes J. Vahl A. Carstens N. Strunskus T. Polonskyi O. Faupel F. Enhancing composition control of alloy nanoparticles from gas aggregation source by in operando optical emission spectroscopy. Plasma Process. Polym. 2021 18 3 2000208 10.1002/ppap.202000208
    [Google Scholar]
  69. Solař P. Hanuš J. Cieslar M. Composite Ni@Ti nanoparticles produced in arrow-shaped gas aggregation source. J. Phys. D Appl. Phys. 2020 53 19 195303 10.1088/1361‑6463/ab7353
    [Google Scholar]
  70. Drewes J. Rehders S. Strunskus T. Kersten H. Faupel F. Vahl A. In situ laser light scattering for temporally and locally resolved studies on nanoparticle trapping in a gas aggregation source. Part. Part. Syst. Charact. 2022 39 11 2200112 10.1002/ppsc.202200112
    [Google Scholar]
  71. Nikitin D. Hanuš J. Ali-Ogly S. The evolution of Ag nanoparticles inside a gas aggregation cluster source. Plasma Process. Polym. 2019 16 10 1900079 10.1002/ppap.201900079
    [Google Scholar]
  72. Gas-phase synthesis of nanoparticles. Weinheim, Germany 2017 10.1002/9783527698417
    [Google Scholar]
  73. Kylián O. Nikitin D. Hanuš J. Ali-Ogly S. Pleskunov P. Biederman H. Plasma-assisted gas-phase aggregation of clusters for functional nanomaterials. J. Vac. Sci. Technol. A 2023 41 2 020802 10.1116/6.0002374
    [Google Scholar]
  74. López-Martín R. Burgos B.S. Normile P.S. De Toro J.A. Binns C. Gas phase synthesis of multi-element nanoparticles. Nanomaterials 2021 11 11 2803 10.3390/nano11112803 34835568
    [Google Scholar]
  75. Grammatikopoulos P. Bouloumis T. Steinhauer S. Gas-phase synthesis of nanoparticles: Current application challenges and instrumentation development responses. Phys. Chem. Chem. Phys. 2023 25 2 897 912 10.1039/D2CP04068A 36537176
    [Google Scholar]
  76. Potenza M.A.C. Minnai C. Milani P. Metal-polymer nanocomposites for stretchable optics and plasmonics. Richmond, Virginia, United States 2016 101740G 10.1117/12.2246794
    [Google Scholar]
  77. Nikitin D. Biliak K. Pleskunov P. Resistive switching effect in ag‐poly(Ethylene Glycol) nanofluids: Novel avenue toward neuromorphic materials. Adv. Funct. Mater. 2023 2310473 12 2310473 10.1002/adfm.202310473
    [Google Scholar]
  78. Biliak K. Nikitin D. Ali-Ogly S. Plasmonic Ag/Cu/PEG nanofluids prepared when solids meet liquids in the gas phase. Nanoscale Adv. 2023 5 3 955 969 10.1039/D2NA00785A 36756512
    [Google Scholar]
  79. Popok V.N. Kylián O. Gas-phase synthesis of functional nanomaterials. Appl. Nanosci. 2020 1 1 25 58 10.3390/applnano1010004
    [Google Scholar]
  80. Solař P. Škorvánková K. Kuzminova A. Kylián O. Challenges in the deposition of plasma polymer nanoparticles using gas aggregation source: Rebounding upon impact and how to land them on a substrate. Plasma Process. Polym. 2023 20 10 e2300070 10.1002/ppap.202300070
    [Google Scholar]
  81. Solař P. Škorvánková K. Kuzminova A. Kousal J. Kylián O. Measurement of velocities of copper nanoparticles exiting a gas aggregation source. Vacuum 2022 202 111114 10.1016/j.vacuum.2022.111114
    [Google Scholar]
  82. Nelli D. Cerbelaud M. Ferrando R. Minnai C. Tuning the coalescence degree in the growth of Pt–Pd nanoalloys. Nanoscale Adv. 2021 3 3 836 846 10.1039/D0NA00891E 36133833
    [Google Scholar]
  83. Mallinson J.B. Shirai S. Acharya S.K. Bose S.K. Galli E. Brown S.A. Avalanches and criticality in self-organized nanoscale networks. Sci. Adv. 2019 5 11 eaaw8438 10.1126/sciadv.aaw8438 31700999
    [Google Scholar]
  84. Caruso F. Bellacicca A. Milani P. High-throughput shadow mask printing of passive electrical components on paper by supersonic cluster beam deposition. Appl. Phys. Lett. 2016 108 16 163501 10.1063/1.4947281
    [Google Scholar]
  85. Bettini L.G. Bellacicca A. Piseri P. Milani P. Supersonic cluster beam printing of carbon microsupercapacitors on paper. Flex Print Electron 2017 2 2 025002 10.1088/2058‑8585/aa699c
    [Google Scholar]
  86. Bellacicca A. Santaniello T. Milani P. Embedding electronics in 3D printed structures by combining fused filament fabrication and supersonic cluster beam deposition. Addit. Manuf. 2018 24 60 66 10.1016/j.addma.2018.09.010
    [Google Scholar]
  87. Terasa M.I. Holtz P. Carstens N. Sparse CNT networks with implanted AgAu nanoparticles: A novel memristor with short-term memory bordering between diffusive and bipolar switching. PLoS One 2022 17 3 e0264846 10.1371/journal.pone.0264846 35358187
    [Google Scholar]
  88. Carstens N. Strunskus T. Faupel F. Hassanien A. Vahl A. Neuronal‐like irregular spiking dynamics in highly volatile memristive intermediate‐scale AgPt‐nanoparticle assemblies. Part. Part. Syst. Charact. 2023 40 3 2200131 10.1002/ppsc.202200131
    [Google Scholar]
  89. Vahl A. Carstens N. Strunskus T. Faupel F. Hassanien A. Diffusive memristive switching on the nanoscale, from individual nanoparticles towards scalable nanocomposite devices. Sci. Rep. 2019 9 1 17367 10.1038/s41598‑019‑53720‑2 31758021
    [Google Scholar]
  90. Carstens N. Vahl A. Gronenberg O. Enhancing reliability of studies on single filament memristive switching via an unconventional cAFM approach. Nanomaterials 2021 11 2 265 10.3390/nano11020265 33498494
    [Google Scholar]
  91. Yang Y. Gao P. Li L. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 2014 5 1 4232 10.1038/ncomms5232 24953477
    [Google Scholar]
  92. Casu A. In situ TEM investigation of thermally induced modifications of cluster-assembled gold films undergoing resistive switching: Implications for nanostructured neuromorphic devices. ACS Appl. Nano Mater. 2024 7 7 7203 7212 10.1021/acsanm.3c06261
    [Google Scholar]
  93. Neelisetty K.K. Mu X. Gutsch S. Electron beam effects on oxide thin films—structure and electrical property correlations. Microsc. Microanal. 2019 25 3 592 600 10.1017/S1431927619000175 30829197
    [Google Scholar]
  94. Stieg A.Z. Avizienis A.V. Sillin H.O. Martin-Olmos C. Aono M. Gimzewski J.K. Emergent criticality in complex turing B-type atomic switch networks. Adv. Mater. 2012 24 2 286 293 10.1002/adma.201103053 22329003
    [Google Scholar]
  95. Heywood Z. Mallinson J. Galli E. Self-organized nanoscale networks: Are neuromorphic properties conserved in realistic device geometries? NCE 2022 2 2 024009 10.1088/2634‑4386/ac74da
    [Google Scholar]
  96. Mallinson J.B. Heywood Z.E. Daniels R.K. Arnold M.D. Bones P.J. Brown S.A. Reservoir computing using networks of memristors: Effects of topology and heterogeneity. Nanoscale 2023 15 22 9663 9674 10.1039/D2NR07275K 37211815
    [Google Scholar]
  97. Diaz-Alvarez A. Higuchi R. Sanz-Leon P. Emergent dynamics of neuromorphic nanowire networks. Sci. Rep. 2019 9 1 14920 10.1038/s41598‑019‑51330‑6 31624325
    [Google Scholar]
  98. Choi B.J. Torrezan A.C. Norris K.J. Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch. Nano Lett. 2013 13 7 3213 3217 10.1021/nl401283q 23746124
    [Google Scholar]
  99. Mahata C. Algadi H. Ismail M. Kwon D. Kim S. Controlled multilevel switching and artificial synapse characteristics in transparent HfAlO-alloy based memristor with embedded TaN nanoparticles. J. Mater. Sci. Technol. 2021 95 203 212 10.1016/j.jmst.2021.03.079
    [Google Scholar]
  100. Raab N. Schmidt D.O. Du H. Kruth M. Simon U. Dittmann R. Au nanoparticles as template for defect formation in memristive SrTiO3 thin films. Nanomaterials 2018 8 11 869 10.3390/nano8110869 30360546
    [Google Scholar]
  101. You B.K. Kim J.M. Joe D.J. Reliable memristive switching memory devices enabled by densely packed silver nanocone arrays as electric-field concentrators. ACS Nano 2016 10 10 9478 9488 10.1021/acsnano.6b04578 27718554
    [Google Scholar]
  102. Kim H.J. Park T.H. Yoon K.J. Fabrication of a Cu‐Cone‐shaped cation source inserted conductive bridge random access memory and its improved switching reliability. Adv. Funct. Mater. 2019 29 8 1806278 10.1002/adfm.201806278
    [Google Scholar]
  103. Lv Z. Xing X. Huang S. Self-assembling crystalline peptide microrod for neuromorphic function implementation. Matter 2021 4 5 1702 1719 10.1016/j.matt.2021.02.018
    [Google Scholar]
  104. Milano G. Luebben M. Ma Z. Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities. Nat. Commun. 2018 9 1 5151 10.1038/s41467‑018‑07330‑7 30514894
    [Google Scholar]
  105. Milano G. Boarino L. Valov I. Ricciardi C. Memristive devices based on single ZnO nanowires—from material synthesis to neuromorphic functionalities. Semicond. Sci. Technol. 2022 37 3 034002 10.1088/1361‑6641/ac4b8a
    [Google Scholar]
  106. Chekol S.A. Menzel S. Ahmad R.W. Waser R. Hoffmann-Eifert S. Effect of the threshold kinetics on the filament relaxation behavior of Ag‐based diffusive memristors. Adv. Funct. Mater. 2022 32 15 2111242 10.1002/adfm.202111242
    [Google Scholar]
  107. Lübben M. Menzel S. Park S.G. Yang M. Waser R. Valov I. SET kinetics of electrochemical metallization cells: Influence of counter-electrodes in SiO2/Ag based systems. Nanotechnology 2017 28 13 135205 10.1088/1361‑6528/aa5e59 28248653
    [Google Scholar]
  108. Kozicki M.N. Barnaby H.J. Conductive bridging random access memory—materials, devices and applications. Semicond. Sci. Technol. 2016 31 11 113001 10.1088/0268‑1242/31/11/113001
    [Google Scholar]
  109. Valov I. Interfacial interactions and their impact on redox-based resistive switching memories (ReRAMs). Semicond. Sci. Technol. 2017 32 9 093006 10.1088/1361‑6641/aa78cd
    [Google Scholar]
  110. Valov I. Linn E. Tappertzhofen S. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 2013 4 1 1771 10.1038/ncomms2784 23612312
    [Google Scholar]
  111. Valov I. Lu W.D. Nanoscale electrochemistry using dielectric thin films as solid electrolytes. Nanoscale 2016 8 29 13828 13837 10.1039/C6NR01383J 27150952
    [Google Scholar]
  112. Tsuruoka T. Valov I. Tappertzhofen S. Redox reactions at Cu,Ag/Ta2O5 interfaces and the effects of Ta2O5 film density on the forming process in atomic switch structures. Adv. Funct. Mater. 2015 25 40 6374 6381 10.1002/adfm.201500853
    [Google Scholar]
  113. Yang Y. Gao P. Gaba S. Chang T. Pan X. Lu W. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 2012 3 1 732 10.1038/ncomms1737 22415823
    [Google Scholar]
  114. Bousoulas P. Sakellaropoulos D. Papakonstantinopoulos C. Investigating the origins of ultra-short relaxation times of silver filaments in forming-free SiO2 -based conductive bridge memristors. Nanotechnology 2020 31 45 454002 10.1088/1361‑6528/aba3a1 32634787
    [Google Scholar]
  115. Speckbacher M. Jakob M. Döblinger M. Nonvolatile memristive switching in self-assembled nanoparticle dimers. ACS Appl. Electron. Mater. 2020 2 4 1099 1105 10.1021/acsaelm.0c00099
    [Google Scholar]
  116. Jiang H. Belkin D. Savel’ev S.E. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 2017 8 1 882 10.1038/s41467‑017‑00869‑x 29026110
    [Google Scholar]
  117. Acharya S.K. Galli E. Mallinson J.B. Stochastic spiking behavior in neuromorphic networks enables true random number generation. ACS Appl. Mater. Interfaces 2021 13 44 52861 52870 10.1021/acsami.1c13668 34719914
    [Google Scholar]
  118. Bose S.K. Mallinson J.B. Gazoni R.M. Brown S.A. Stable self-assembled atomic-switch networks for neuromorphic applications. IEEE Trans. Electron Dev. 2017 64 12 5194 5201 10.1109/TED.2017.2766063
    [Google Scholar]
  119. Vahl A. Milano G. Kuncic Z. Brown S.A. Milani P. Brain-inspired computing with self-assembled networks of nano-objects. J. Phys. D Appl. Phys. 2024 57 50 503001 10.1088/1361‑6463/ad7a82
    [Google Scholar]
  120. Beggs J.M. Plenz D. Neuronal avalanches in neocortical circuits. J. Neurosci. 2003 23 35 11167 11177 10.1523/JNEUROSCI.23‑35‑11167.2003 14657176
    [Google Scholar]
  121. Dunham C.S. Lilak S. Hochstetter J. Nanoscale neuromorphic networks and criticality: A perspective. J Phys: Complex 2021 2 4 042001 10.1088/2632‑072X/ac3ad3
    [Google Scholar]
  122. Mirigliano M. Paroli B. Martini G. A binary classifier based on a reconfigurable dense network of metallic nanojunctions. Neuromorph Comput Eng 2021 1 2 024007 10.1088/2634‑4386/ac29c9
    [Google Scholar]
  123. Heywood Z.E. Mallinson J.B. Bones P.J. Brown S.A. From ‘follow the leader’ to autonomous swarming: Physical reservoir computing in two dimensions. Neuromorph Comput Eng 2024 4 3 034011 10.1088/2634‑4386/ad7314
    [Google Scholar]
  124. Zhou Z-L. Henze R.H. Sheng X. Nanoparticle-based memristor structure. U.S. Patent 9,035,272B2 2015
    [Google Scholar]
  125. Yang J. Xia Q. McLean M. Wu Q. Barnell M. Nanoparticle-based memristor structure. U.S. Patent 10,741,759B2 2020
    [Google Scholar]
  126. Xia Q. True random number generator (TRNG) circuit using a diffusive memristor. U.S. Patent 11,126,403B2, 2021
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105319247250606185502
Loading
/content/journals/nanotec/10.2174/0118722105319247250606185502
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test