Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Introduction

Two-phase hybrid mode thermal interface materials were created and characterized for mechanical properties, thermal conductivity, and wear behaviour. Therefore, the ultimate goal of this current research was to use alkali-treated glass fibre and other allotropes to produce high-performance two-phase thermal interface materials that can be patented for engineering applications.

Methods

Three different polymer composites were prepared to contain 20 vol.% alkalies (NaOH) treated e-glass fibre (E) and epoxy as a matrix with varying proportions of multi-walled carbon nanotube (MWCNT), graphene (G), copper oxide (C). The one-phase material contained epoxy+20%e-glass+1%MWCNT (EMGC1), the two-phase hybrid composite contained epoxy+20%e-glass+1%MWCNT+1%graphene+1%CuO (EMGC2), and two-phase material contained epoxy+20%e-glass+1%graphene+1%CuO (EMGC3). Vacuum bagging method was used for fabricating the composites.

Results

The higher thermal conductivity observed was 0.3466 W/mK for EMGC2, the alkali-treated glass fibre/hybrid mode nanofillers epoxy matrix composite was mechanically tougher than the other two composites (EMGC1 & EMGC3). Scanning electron microscopy analysis revealed the fine filler dispersion and homogenous interaction with the glass fibre/epoxy resin composite of the upper and lower zone, which also revealed the defective zone, fibre elongation, fibre/filler breakages, and filler leached surfaces.

Conclusion

Finally, it was concluded that the hybrid mode two-phased structure EMGC2 epoxy matrix composite replicated the maximum thermal conductivity, mechanical properties, and wear properties of the other two specimens.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105296725240308094344
2024-05-23
2025-09-05
Loading full text...

Full text loading...

References

  1. GowdaY.T.G. SanjayM.R. BhatS.K. MadhuP. SenthamaraikannanP. YogeshaB. Polymer matrix-natural fiber composites: An overview.Cogent Eng.201851144666710.1080/23311916.2018.1446667
    [Google Scholar]
  2. FengC.P. YangL.Y. YangJ. Recent advances in polymer-based thermal interface materials for thermal management: A mini-review.Composit Commun20202210052810.1016/j.coco.2020.100528
    [Google Scholar]
  3. ShakerK. AdnanM. NawabY. Mechanical performance of glass/epoxy composites loaded with silane-treated aluminum hydroxide fillers.Polymers20231517351410.3390/polym15173514 37688139
    [Google Scholar]
  4. RamuS. SenthilkumarN. DeepanrajB. Experimental investigation on alkali treated (NaOH) groundnut shell (Arachis hypogaea L.) and rick husk (Oryza sativa) particle epoxy hybrid composites.Mater. Today Proc.202310.1016/j.matpr.2023.03.171
    [Google Scholar]
  5. KumanekB. JanasD. Thermal conductivity of carbon nanotube networks: A review.J. Mater. Sci.201954107397742710.1007/s10853‑019‑03368‑0
    [Google Scholar]
  6. ParkJ.G. ChengQ. LuJ. Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization.Carbon20125062083209010.1016/j.carbon.2011.12.046
    [Google Scholar]
  7. XueY. LoflandS. HuX. Thermal conductivity of protein-based materials: A review.Polymers201911345610.3390/polym11030456 30960440
    [Google Scholar]
  8. KimK. KimJ. Exfoliated boron nitride nanosheet/MWCNT hybrid composite for thermal conductive material via epoxy wetting.Compos., Part B Eng.201814091510.1016/j.compositesb.2017.12.002
    [Google Scholar]
  9. ChenY. GaoJ. YanQ. Advances in graphene-based polymer composites with high thermal conductivity.Veruscrip Funct Nanomater2018211710.22261/OOSB06
    [Google Scholar]
  10. DineshT. KadirvelA. VincentA. Effect of silane modified e-glass fibre/iron(III)oxide reinforcements on UP blended epoxy resin hybrid composite.Silicon20191152487249810.1007/s12633‑018‑9886‑0
    [Google Scholar]
  11. SharmilaB.T.K. AntonyJ.V. JayakrishnanM.P. BeegumS.P.M. ThachilE.T. Mechanical, thermal and dielectric properties of hybrid composites of epoxy and reduced graphene oxide/iron oxide.Mater. Des.201690667510.1016/j.matdes.2015.10.055
    [Google Scholar]
  12. KhurramAA RakhaSA AliN ZhouP MunirA Effect of lowcontent carbon nanotubes on the dielectric and microwave absorption properties of graphite/polymer nanocomposites.J Appl Polym Sci201413120app.4089110.1002/app.40891
    [Google Scholar]
  13. NayakR.K. DashA. RayB.C. Effect of epoxy modifiers (Al2O3/SiO2/TiO2) on mechanical performance of epoxy/glass fiber hybrid composites.Proced Mater Sci201461359136410.1016/j.mspro.2014.07.115
    [Google Scholar]
  14. MuruganM.A. JayaseelanV. JayabalakrishnanD. Low velocity impact and mechanical behaviour of shot blasted sic wire-mesh and silane-treated aloevera/hemp/flax-reinforced SiC whisker modified epoxy resin composites.Silicon20201281847185610.1007/s12633‑019‑00297‑0
    [Google Scholar]
  15. ShanmugasundaramA. YuvarajaV.C. RameshG. Performance characterisation of silane-treated MWCNT/copper wire-mesh reinforced epoxy two-phase thermal interface composite material.Dig. J. Nanomater. Biostruct.2019142407417
    [Google Scholar]
  16. KarthigairajanM. NagarajanP.K. MalarvannanR.R. Effect of silane-treated rice husk derived biosilica on visco-elastic, thermal conductivity and hydrophobicity behavior of epoxy biocomposite coating for air-duct application.Silicon202113124421443010.1007/s12633‑020‑00772‑z
    [Google Scholar]
  17. DineshT. KadirvelA. HariharanP. Thermo-mechanical and wear behaviour of surface-treated pineapple woven fibre and nano-silica dispersed mahua oil toughened epoxy composite.Silicon202012122911292010.1007/s12633‑020‑00387‑4
    [Google Scholar]
  18. Ben SamuelJ. Julyes JaisinghS. SivakumarK. MayakannanA.V. ArunprakashV.R. Visco-elastic, thermal, antimicrobial and dielectric behaviour of areca fibre-reinforced nano-silica and neem oil-toughened epoxy resin bio composite.Silicon20211361703171210.1007/s12633‑020‑00569‑0
    [Google Scholar]
  19. TayC.H. MazlanN. SultanH.M.T. AbdanK. LeeC.H. Mechanical performance of hybrid glass/kenaf epoxy composite filled with organomodified nanoclay.J. Mater. Res. Technol.2021154415442610.1016/j.jmrt.2021.10.062
    [Google Scholar]
  20. VadivelS.K. GovindasamyP. Thermal analysis of acacia arabica and pencil cactus fiber hybrid polymer composites.Res. J. Chem. Environ.20202415255
    [Google Scholar]
  21. ChandN. FahimM. Tribology of natural fiber polymer composites.2nd edElsevier2020
    [Google Scholar]
  22. PenderK. YangL. Regenerating performance of glass fibre recycled from wind turbine blade.Compos., Part B Eng.202019810823010.1016/j.compositesb.2020.108230
    [Google Scholar]
  23. LiuJ. JiangM. WangY. WuG. WuZ. Tensile behaviors of ECR-glass and high strength glass fibers after NaOH treatment.Ceram. Int.20133989173917810.1016/j.ceramint.2013.05.018
    [Google Scholar]
  24. OuarhimW. ZariN. BouhfidR. Qaiss A el kacem. Mechanical performance of natural fibers–based thermosetting composites. Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites.Elsevier2019436010.1016/B978‑0‑08‑102292‑4.00003‑5
    [Google Scholar]
  25. SomanV. VishwakarmaK. PoddarM.K. Ultrasound assisted synthesis of polymer nanocomposites: A review.J. Polym. Res.2023301140610.1007/s10965‑023‑03786‑4
    [Google Scholar]
  26. SamirA. AshourF.H. HakimA.A.A. BassyouniM. Recent advances in biodegradable polymers for sustainable applications.NPJ Mater Degrad2022616810.1038/s41529‑022‑00277‑7
    [Google Scholar]
  27. MathewJ. KrishnanS. A review on transient thermal management of electronic devices.J. Electron. Packag.2021144101080110.1115/1.4050002
    [Google Scholar]
  28. SunZ. WongR. YuM. Nanocomposites for future electronics device Packaging: A fundamental study of interfacial connecting mechanisms and optimal conditions of silane coupling agents for Polydopamine-Graphene fillers in epoxy polymers.Chem. Eng. J.202243913562110.1016/j.cej.2022.135621
    [Google Scholar]
  29. MoumakwaL.N. SadiqM.A. OlakanmiO.E. BaderT. GessesseA. Sustainable surface modification of sorghum residue-based fiber reinforced polymer composites: Properties and adhesion mechanism.Cleaner Materials2023810018910.1016/j.clema.2023.100189
    [Google Scholar]
  30. AghdamH.M.K. AnsariR. Thermal conductivity of shape memory polymer nanocomposites containing carbon nanotubes: A micromechanical approach.Compos., Part B Eng.201916216717710.1016/j.compositesb.2018.11.003
    [Google Scholar]
  31. SenthilkumarN. KalaichelvanK. ElangovanK. Mechanical behaviour of aluminum particulate epoxy composite – experimental study and numerical simulation.Int J Mech Mater Eng201273214221
    [Google Scholar]
  32. BlumM. An Inquiry-Based Introduction to Engineering.Springer Nature2022
    [Google Scholar]
  33. El MagriA. VanaeiS. VaudreuilS. An overview on the influence of process parameters through the characteristic of 3D-printed PEEK and PEI parts.High Perform. Polym.202133886288010.1177/09540083211009961
    [Google Scholar]
  34. LeeD.K. YooJ. KimH. KangB.H. ParkS.H. Electrical and thermal properties of carbon nanotube polymer composites with various aspect ratios.Materials2022154135610.3390/ma15041356 35207898
    [Google Scholar]
  35. HsiehC.T. LeeC.E. ChenY.F. ChangJ.K. TengH. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets.Nanoscale2015744186631867010.1039/C5NR04993H 26498343
    [Google Scholar]
  36. YuS. HuangM. HaoR. Recent advances in thermally conductive polymer composites.High Perform. Polym.202234101081110110.1177/09540083221106058
    [Google Scholar]
  37. RamuS. SenthilkumarN. DeepanrajB. Mechanical characterization of copper-MWCNT epoxy matrix polymer composite.Mater. Today Proc.202310.1016/j.matpr.2023.03.073
    [Google Scholar]
  38. ZhuJ. DengY. ChenP. WangG. MinH. FangW. Prediction of long-term tensile properties of glass fiber reinforced composites under acid-base and salt environments.Polymers20221415303110.3390/polym14153031 35893995
    [Google Scholar]
  39. BiswasP.K. OmoleO. PetersonG. CumboE. AgarwalM. DalirH. Carbon and cellulose based nanofillers reinforcement to strengthen carbon fiber-epoxy composites: Processing, characterizations, and applications.Front. Mater.20239108999610.3389/fmats.2022.1089996
    [Google Scholar]
  40. LailaC.A. NarayananM. SindhuB.D. AlbyR.A. Mechanical properties of polymer matrix/glass fiber composites containing metal/hybrid nanoparticles-an overview.High Perform. Polym.202234885987010.1177/09540083221094964
    [Google Scholar]
  41. RamuS. SenthilkumarN. DeepanrajB. Mechanical characterization of E-glass fiber/aluminium powder filled with and without coconut fiber reinforced epoxy hybrid composite.Mater. Today Proc.202310.1016/j.matpr.2023.03.074
    [Google Scholar]
  42. BharadwajaK. RaoS.S. RaoB.T. PydiH.P. Evaluation of mechanical properties for epoxy resin in nano composite diffusion.Adv. Mater. Sci. Eng.202320231810.1155/2023/8598585
    [Google Scholar]
  43. KosedagE. EkiciR. YildizN. CaliskanU. Effect of SiC and graphene nanoparticles on the mechanical properties of carbon fiber‐reinforced epoxy composites.Polym. Compos.202344128578858810.1002/pc.27720
    [Google Scholar]
  44. MegahedM. MegahedA.A. AgwaM.A. The influence of incorporation of silica and carbon nanoparticles on the mechanical properties of hybrid glass fiber reinforced epoxy.J. Ind. Text.201949218119910.1177/1528083718775978
    [Google Scholar]
  45. TanahashiM. HirotaK. A silica/epoxy resin nanocomposite exhibiting high thermal stability and low thermal expansion based on the uniform dispersion of hydrophilic colloidal silica nanospheres.Polym. Polymer Compos.2023310967391123117147910.1177/09673911231171479
    [Google Scholar]
  46. VaddarL. ThattiB. ReddyB.R. Glass fiber-epoxy composites with carbon nanotube fillers for enhancing properties in structure modeling and analysis using artificial intelligence technique.ACS Omega2023826235282354410.1021/acsomega.3c01067 37426284
    [Google Scholar]
  47. KhanM. RahamathbabaS. MateenM.A. ShankarR.D.V. HussainM.M. Effect of NaOH treatment on mechanical strength of banana/epoxy laminates.Polym Renewab Resour2019101-3192610.1177/2041247919863626
    [Google Scholar]
  48. El-bakyM.A.A. AttiaM.A. The mechanical performance of the laminated aluminum-epoxy/glass fiber composites containing halloysite nanotubes: An experimental investigation.J. Ind. Text.202251S58690S8737S10.1177/1528083720960735
    [Google Scholar]
  49. ChenW. LinB. LiD. ZhangJ. CuiS. Progressive collapse performance of shear strengthened RC frames by nano CFRP.Nanotechnol. Rev.202211181182310.1515/ntrev‑2022‑0048
    [Google Scholar]
  50. PerryJ.I. WalleyS.M. Measuring the effect of strain rate on deformation and damage in fibre-reinforced composites: A review.J Dyn Behav Mater20228217821310.1007/s40870‑022‑00331‑0
    [Google Scholar]
  51. AlhazmiW.H. JazaaY. MousaS. Abd-ElhadyA.A. SallamH.E.M. Tribological and mechanical properties of epoxy reinforced by hybrid nanoparticles.Lat. Am. J. Solids Struct.2021183e36110.1590/1679‑78256384
    [Google Scholar]
  52. ShiS.C. TsaiX.N. PekS.S. Tribological behavior and energy dissipation of hybrid nanoparticle-reinforced HPMC composites during sliding wear.Surf. Coat. Tech.202038912561710.1016/j.surfcoat.2020.125617
    [Google Scholar]
  53. YadavR. SinghM. ShekhawatD. LeeS.Y. ParkS.J. The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: A review.Compos., Part A Appl. Sci. Manuf.202317510777510.1016/j.compositesa.2023.107775
    [Google Scholar]
  54. ChamasA. MoonH. ZhengJ. Degradation rates of plastics in the environment.ACS Sustain. Chem.& Eng.2020893494351110.1021/acssuschemeng.9b06635
    [Google Scholar]
  55. G. M.Fazley Elahee Thermal interface materials and methods for their preparation and use.United States; US8440312B22013
  56. Ching-TaiC Nien-TienC. Thermal interface material.United States; US20070131897A12008
  57. SoheilA. Composite materials containing carbon nanoparticles.United States; US20060155376A12010
/content/journals/nanotec/10.2174/0118722105296725240308094344
Loading
/content/journals/nanotec/10.2174/0118722105296725240308094344
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test