Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

A nano drug delivery system is an effective tool for drug delivery and controlled release, which is used for a variety of medical applications. In recent decades, nano drug delivery systems have been significantly developed with the emergence of new nanomaterials and nanotechnologies.

Objective

This article aimed to provide insight into the technological development of nano drug delivery systems through patent analysis.

Methods

3708 patent documents were used for patent analysis after retrieval from the Incopat patent database.

Results

The number of patents on nano drug delivery systems has shown a rapid growth trend in the past two decades. At present, China and the United States have obvious contributions to the number of patents. According to the patent data, the nanomaterials used in nano drug delivery system are mainly inorganic nanomaterials, lipid-based nanomaterials, and macromolecules. In recent years, the highly cited patents (≥14) for nano drug delivery systems mainly involve lipid-based nanomaterials, indicating that their technology is mature and widely used. The inorganic nanomaterials in drug delivery have received increasing attention, and the number of related patents has increased significantly after 2016. The number of highly cited patents in the United States is 250, which is much higher than in other countries.

Conclusion

Even after decades of development, nano drug delivery systems remain a hot topic for researchers. The significant increase in patents since 2016 can be attributed to the large number of new patents from China. However, according to the proportion of highly cited patents in total, China's patented technologies in nano drug delivery systems are not advanced enough compared to developed countries, including the United States, Canada, Germany, and France. In the future, research on emerging nanomaterials for nano drug delivery systems, such as inorganic nanomaterials, may focus on developing new materials and optimising their properties. The lipid-based and polymer-based nanomaterials can be continuously improved for the development of new nanomedicines.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105293359240626070342
2024-07-09
2025-10-09
Loading full text...

Full text loading...

References

  1. OliveiraO.N.Jr IostR.M. SiqueiraJ.R.Jr CrespilhoF.N. CaseliL. Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition.ACS Appl. Mater. Interfaces2014617147451476610.1021/am501505624968359
    [Google Scholar]
  2. HolzingerM. Le GoffA. CosnierS. Nanomaterials for biosensing applications: A review.Front Chem.201426310.3389/fchem.2014.0006325221775
    [Google Scholar]
  3. GolovinY.I. GribanovskyS.L. GolovinD.Y. KlyachkoN.L. MajougaA.G. MasterА.M. SokolskyM. KabanovA.V. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields.J. Control. Release2015219436010.1016/j.jconrel.2015.09.03826407671
    [Google Scholar]
  4. ZhaoY. BaiC. BrinkerC.J. ChiL. DawsonK.A. GogotsiY. HalasN.J. LeeS.T. LeeT. Liz-MarzánL. MillerJ.F. MitraS. NelA.E. NordlanderP. ParakW.J. RowanA. RogachA.L. RotelloV.M. TangB.Z. WeeA.T.S. WeissP.S. Nano as a rosetta stone: The global roles and opportunities for nanoscience and nanotechnology.ACS Nano20191310108531085510.1021/acsnano.9b0804231683413
    [Google Scholar]
  5. RotelloV. Advanced drug delivery reviews theme issue.Adv. Drug Deliv. Rev.20086011122510.1016/j.addr.2008.04.00318485521
    [Google Scholar]
  6. MontenegroJ.M. GrazuV. SukhanovaA. AgarwalS. de la FuenteJ.M. NabievI. GreinerA. ParakW.J. Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery.Adv. Drug Deliv. Rev.201365567768810.1016/j.addr.2012.12.00323280372
    [Google Scholar]
  7. LoarR.W. NoelC.V. TunuguntlaH. ColquittJ.L. PignatelliR.H. State of the art review: Chemotherapy-induced cardiotoxicity in children.Congenit. Heart Dis.201813151510.1111/chd.1256429226596
    [Google Scholar]
  8. BonifácioB.V. da SilvaP.B. RamosM.A.d.S. NegriK.M.S. BauabT.M. ChorilliM. Nanotechnology-based drug delivery systems and herbal medicines: A review.Int. J. Nanomed.20149115
    [Google Scholar]
  9. LeaderB. BacaQ.J. GolanD.E. Protein therapeutics: A summary and pharmacological classification.Nat. Rev. Drug Discov.200871213910.1038/nrd239918097458
    [Google Scholar]
  10. BorG. Mat AzmiI.D. YaghmurA. Nanomedicines for cancer therapy: Current status, challenges and future prospects.Ther. Deliv.201910211313210.4155/tde‑2018‑006230678550
    [Google Scholar]
  11. MarchalS. HorA.E. MillardM. GillonV. BezdetnayaL. Anticancer drug delivery: An update on clinically applied nanotherapeutics.Drugs201575141601161110.1007/s40265‑015‑0453‑326323338
    [Google Scholar]
  12. YangN.J. HinnerM.J. Site-specific protein labeling: Methods and protocols. GautierA. HinnerM.J. New York, NYSpringer New York2015295310.1007/978‑1‑4939‑2272‑7_3
    [Google Scholar]
  13. NguyenJ. SzokaF.C. Nucleic acid delivery: The missing pieces of the puzzle?Acc. Chem. Res.20124571153116210.1021/ar300016222428908
    [Google Scholar]
  14. NguyenJ. SteeleT.W.J. MerkelO. ReulR. KisselT. Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy.J. Control. Release2008132324325110.1016/j.jconrel.2008.06.01018619502
    [Google Scholar]
  15. SavjaniK.T. GajjarA.K. SavjaniJ.K. Drug solubility: Importance and enhancement techniques.ISRN Pharm.2012201211010.5402/2012/19572722830056
    [Google Scholar]
  16. KalepuS. NekkantiV. Insoluble drug delivery strategies: Review of recent advances and business prospects.Acta Pharm. Sin. B20155544245310.1016/j.apsb.2015.07.00326579474
    [Google Scholar]
  17. JeevanandamJ. ChanY.S. DanquahM.K. Nano-formulations of drugs: Recent developments, impact and challenges.Biochimie2016128-1299911210.1016/j.biochi.2016.07.00827436182
    [Google Scholar]
  18. SuH. WangY. LiuS. WangY. LiuQ. LiuG. ChenQ. Emerging transporter-targeted nanoparticulate drug delivery systems.Acta Pharm. Sin. B201991495810.1016/j.apsb.2018.10.00530766777
    [Google Scholar]
  19. SunJ. LuoC. WangY. HeZ. The holistic 3M modality of drug delivery nanosystems for cancer therapy.Nanoscale20135384585910.1039/c2nr32867d23292001
    [Google Scholar]
  20. RugraffE. A patent analysis of foreign direct innovative R&D activities in central eurpoe: the Czech case.Int. J. Innov. Manage.2017212175001310.1142/S136391961750013X
    [Google Scholar]
  21. SampaioP.G.V. GonzálezM.O.A. de VasconcelosR.M. dos SantosM.A.T. de ToledoJ.C. PereiraJ.P.P. Photovoltaic technologies: Mapping from patent analysis.Renew. Sustain. Energy Rev.20189321522410.1016/j.rser.2018.05.033
    [Google Scholar]
  22. LeuH.J. WuC.C. LinC.Y. Technology exploration and forecasting of biofuels and biohydrogen energy from patent analysis.Int. J. Hydrogen Energy20123720157191572510.1016/j.ijhydene.2012.04.143
    [Google Scholar]
  23. AbbasZ. YongL. LiY. WangR. Patent‐based trend analysis for advanced thermal energy storage technologies and their applications.Int. J. Energy Res.20204475093511610.1002/er.5148
    [Google Scholar]
  24. ZhengJ. ZhaoZ. ZhangX. ChenD. HuangM. International collaboration development in nanotechnology: A perspective of patent network analysis.Scientometrics201498168370210.1007/s11192‑013‑1081‑x
    [Google Scholar]
  25. LiB. DuanY. LuebkeD. MorrealeB. Advances in CO2 capture technology: A patent review.Appl. Energy20131021439144710.1016/j.apenergy.2012.09.009
    [Google Scholar]
  26. MahliaT.M.I. SyazmiZ.A.H.S. MofijurM. AbasA.E.P. BiladM.R. OngH.C. SilitongaA.S. Patent landscape review on biodiesel production: Technology updates.Renew. Sustain. Energy Rev.202011810952610.1016/j.rser.2019.109526
    [Google Scholar]
  27. SathishkumarP. LiZ. GovindanR. JayakumarR. WangC. Long GuF. Zinc oxide-quercetin nanocomposite as a smart nano-drug delivery system: Molecular-level interaction studies.Appl. Surf. Sci.202153614774110.1016/j.apsusc.2020.147741
    [Google Scholar]
  28. LuH. WangJ. WangT. ZhongJ. BaoY. HaoH. Recent progress on nanostructures for drug delivery applications.J. Nanomater.2016201611210.1155/2016/5762431
    [Google Scholar]
  29. SreedeviP. NairJ.B. JosephM.M. MuraliV.P. SureshC.H. VarmaR.L. MaitiK.K. Dynamic self-assembly of mannosylated-calix[4]arene into micelles for the delivery of hydrophobic drugs.J. Control. Release202133928429610.1016/j.jconrel.2021.09.03834610379
    [Google Scholar]
  30. Cuevas-FloresM.D. BartolomeiM. García-RevillaM.A. ColettiC. Interaction and reactivity of cisplatin physisorbed on graphene oxide nano-prototypes.Nanomaterials20201061074
    [Google Scholar]
  31. SongX. FuW. CheangU.K. Immunomodulation and delivery of macrophages using nano-smooth drug-loaded magnetic microrobots for dual targeting cancer therapy.iScience202225710450710.1016/j.isci.2022.10450735720266
    [Google Scholar]
  32. ZhuY. CheL. HeH. JiaY. ZhangJ. LiX. Highly efficient nanomedicines assembled via polymer–drug multiple interactions: Tissue-selective delivery carriers.J. Control. Release2011152231732410.1016/j.jconrel.2011.03.01321435364
    [Google Scholar]
  33. ChenY.B. QiaoT. WangY.Q. CuiY.L. WangQ.S. Hydrogen bond-enhanced nanogel delivery system for potential intranasal therapy of Parkinson’s disease.Mater. Des.202221911074110.1016/j.matdes.2022.110741
    [Google Scholar]
  34. HuoS. ZhaoP. ShiZ. ZouM. YangX. WarszawikE. LoznikM. GöstlR. HerrmannA. Mechanochemical bond scission for the activation of drugs.Nat. Chem.202113213113910.1038/s41557‑020‑00624‑833514936
    [Google Scholar]
  35. JiY. ZhuR. ShenY. TanQ. ChenJ. Comparison of loading and unloading of different small drugs on graphene and its oxide.J. Mol. Liq.202134111745410.1016/j.molliq.2021.117454
    [Google Scholar]
  36. YangD. GaoS. FangY. LinX. JinX. WangX. KeL. ShiK. The π-π stacking-guided supramolecular self-assembly of nanomedicine for effective delivery of antineoplastic therapies.Nanomedicine201813243159317710.2217/nnm‑2018‑028830411997
    [Google Scholar]
  37. WangH. ChenJ. XuC. ShiL. TayierM. ZhouJ. ZhangJ. WuJ. YeZ. FangT. HanW. Cancer nanomedicines stabilized by π-π stacking between heterodimeric prodrugs enable exceptionally high drug loading capacity and safer delivery of drug combinations.Theranostics20177153638365210.7150/thno.2002829109766
    [Google Scholar]
  38. ZhouZ. PiaoY. HaoL. WangG. ZhouZ. ShenY. Acidity-responsive shell-sheddable camptothecin-based nanofibers for carrier-free cancer drug delivery.Nanoscale20191134159071591610.1039/C9NR03872H31414111
    [Google Scholar]
  39. HouM. GaoY.E. ShiX. BaiS. MaX. LiB. XiaoB. XueP. KangY. XuZ. Methotrexate-based amphiphilic prodrug nanoaggregates for co-administration of multiple therapeutics and synergistic cancer therapy.Acta Biomater.20187722823910.1016/j.actbio.2018.07.01430006314
    [Google Scholar]
  40. YooJ.W. DoshiN. MitragotriS. Endocytosis and intracellular distribution of PLGA particles in endothelial cells: Effect of particle geometry.Macromol. Rapid Commun.201031214214810.1002/marc.20090059221590886
    [Google Scholar]
  41. PanX. LeeR.J. Tumour-selective drug delivery via folate receptor-targeted liposomes.Expert Opin. Drug Deliv.20041171710.1517/17425247.1.1.716296717
    [Google Scholar]
  42. RajS. KhuranaS. ChoudhariR. KesariK.K. KamalM.A. GargN. RuokolainenJ. DasB.C. KumarD. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy.Semin. Cancer Biol.20216916617710.1016/j.semcancer.2019.11.00231715247
    [Google Scholar]
  43. HuQ. LiH. WangL. GuH. FanC. Nanotechnology-EnabledD.N.A. DNA nanotechnology-enabled drug delivery systems.Chem. Rev.2019119106459650610.1021/acs.chemrev.7b0066329465222
    [Google Scholar]
  44. GazitY. BaishJ.W. SafabakhshN. LeunigM. BaxterL.T. JainR.K. Fractal characteristics of tumor vascular architecture during tumor growth and regression.Microcirculation19974439540210.3109/107396897091468039431507
    [Google Scholar]
  45. AzarmiS. RoaW.H. LöbenbergR. Targeted delivery of nanoparticles for the treatment of lung diseases.Adv. Drug Deliv. Rev.200860886387510.1016/j.addr.2007.11.00618308418
    [Google Scholar]
  46. PolachK.J. MatarM. RiceJ. SlobodkinG. SparksJ. CongoR. Rea-RamseyA. McClureD. BrunhoeberE. KrampertM. SchusterA. Jahn-HofmannK. JohnM. VornlocherH.P. FewellJ.G. AnwerK. GeickA. Delivery of siRNA to the mouse lung via a functionalized lipopolyamine.Mol. Ther.20122019110010.1038/mt.2011.21021988874
    [Google Scholar]
  47. EichlerA.F. ChungE. KodackD.P. LoefflerJ.S. FukumuraD. JainR.K. The biology of brain metastases—translation to new therapies.Nat. Rev. Clin. Oncol.20118634435610.1038/nrclinonc.2011.5821487419
    [Google Scholar]
  48. VeisehO. SunC. FangC. BhattaraiN. GunnJ. KievitF. DuK. PullarB. LeeD. EllenbogenR.G. OlsonJ. ZhangM. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier.Cancer Res.200969156200620710.1158/0008‑5472.CAN‑09‑115719638572
    [Google Scholar]
  49. CalvoP. GouritinB. ChacunH. DesmaëleD. D’AngeloJ. NoelJ.P. GeorginD. FattalE. AndreuxJ.P. CouvreurP. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery.Pharm. Res.20011881157116610.1023/A:101093112774511587488
    [Google Scholar]
  50. BarefordL. SwaanP. Endocytic mechanisms for targeted drug delivery.Adv. Drug Deliv. Rev.200759874875810.1016/j.addr.2007.06.00817659804
    [Google Scholar]
  51. OhN. ParkJ.-H. Endocytosis and exocytosis of nanoparticles in mammalian cells.J. Nanomedicine201495163
    [Google Scholar]
  52. LeeD.S. QianH. TayC.Y. LeongD.T. Cellular processing and destinies of artificial DNA nanostructures.Chem. Soc. Rev.201645154199422510.1039/C5CS00700C27119124
    [Google Scholar]
  53. FernándezA. VendrellM. Smart fluorescent probes for imaging macrophage activity.Chem. Soc. Rev.20164551182119610.1039/C5CS00567A26752349
    [Google Scholar]
  54. PengY. ChenL. YeS. KangY. LiuJ. ZengS. YuL. Research and development of drug delivery systems based on drug transporter and nano-formulation.Asian J. Pharmac. Sci.202015222023610.1016/j.ajps.2020.02.00432373201
    [Google Scholar]
  55. ZhangJ. ZhanP. TianH. Recent updates in the polysaccharides-based Nano-biocarriers for drugs delivery and its application in diseases treatment: A review.Int. J. Biol. Macromol.202118211512810.1016/j.ijbiomac.2021.04.00933836188
    [Google Scholar]
  56. BanerjeeA. BerezhkovskiiA. NossalR. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis.Phys. Biol.201613101600510.1088/1478‑3975/13/1/01600526871680
    [Google Scholar]
  57. NabiI.R. LeP.U. Caveolae/raft-dependent endocytosis.J. Cell Biol.2003161467367710.1083/jcb.20030202812771123
    [Google Scholar]
  58. PetersP.J. MironovA.Jr PeretzD. van DonselaarE. LeclercE. ErpelS. DeArmondS.J. BurtonD.R. WilliamsonR.A. VeyM. PrusinerS.B. Trafficking of prion proteins through a caveolae-mediated endosomal pathway.J. Cell Biol.2003162470371710.1083/jcb.20030414012925711
    [Google Scholar]
  59. PartonR.G. SimonsK. The multiple faces of caveolae.Nat. Rev. Mol. Cell Biol.20078318519410.1038/nrm212217318224
    [Google Scholar]
  60. AnselmoA.C. MitragotriS. Nanoparticles in the clinic: An update.Bioeng. Transl. Med.201943e1014310.1002/btm2.1014331572799
    [Google Scholar]
  61. AnselmoA.C. MitragotriS. Nanoparticles in the clinic: An update post COVID ‐19 vaccines.Bioeng. Transl. Med.202163e1024610.1002/btm2.1024634514159
    [Google Scholar]
  62. AngelovaA. GaramusV.M. AngelovB. TianZ. LiY. ZouA. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents.Adv. Colloid Interface Sci.201724933134510.1016/j.cis.2017.04.00628477868
    [Google Scholar]
  63. SalviV.R. PawarP. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier.J. Drug Deliv. Sci. Technol.20195125526710.1016/j.jddst.2019.02.017
    [Google Scholar]
  64. JungH.N. LeeS.Y. LeeS. YounH. ImH.J. Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of in vivo imaging.Theranostics202212177509753110.7150/thno.7725936438494
    [Google Scholar]
  65. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int J Nanomed20151097599910.2147/IJN.S68861
    [Google Scholar]
  66. BarenholzY.C. Doxil® : The first FDA-approved nano-drug: Lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.02022484195
    [Google Scholar]
  67. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  68. RahmanM. BegS. VermaA. KazmiI. PatelD.K. AnwarF. Al AbbasiF.A. KumarV. therapeutic applications of liposomal based drug delivery and drug targeting for immune linked inflammatory maladies: A contemporary view point.Curr. Drug Targets201718131558157128413980
    [Google Scholar]
  69. CaoY. DongX. ChenX. Polymer-modified liposomes for drug delivery: From fundamentals to applications.Pharmaceutics2022144778
    [Google Scholar]
  70. LiM. DuC. GuoN. TengY. MengX. SunH. LiS. YuP. GalonsH. Composition design and medical application of liposomes.Eur. J. Med. Chem.201916464065310.1016/j.ejmech.2019.01.00730640028
    [Google Scholar]
  71. PopowskiK.D. MoattiA. ScullG. SilkstoneD. LutzH. López de Juan AbadB. GeorgeA. BelcherE. ZhuD. MeiX. ChengX. CisloM. GhodsiA. CaiY. HuangK. LiJ. BrownA.C. GreenbaumA. DinhP.U.C. ChengK. Inhalable dry powder mRNA vaccines based on extracellular vesicles.Matter2022592960297410.1016/j.matt.2022.06.01235847197
    [Google Scholar]
  72. SongJ.W. LiuY.S. GuoY.R. ZhongW.X. GuoY.P. GuoL. Nano–liposomes double loaded with curcumin and tetrandrine: Preparation, characterization, hepatotoxicity and anti–tumor effects.Int. J. Mol. Sci.20222312685810.3390/ijms2312685835743311
    [Google Scholar]
  73. KimM. LeeJ.S. KimW. LeeJ.H. JunB.H. KimK.S. KimD.E. Aptamer-conjugated nano-liposome for immunogenic chemotherapy with reversal of immunosuppression.J. Control. Release202234889391010.1016/j.jconrel.2022.06.03935760233
    [Google Scholar]
  74. Jaquilin P JR. OluwafemiO.S. ThomasS. OyedejiA.O. Recent advances in drug delivery nanocarriers incorporated in temperature-sensitive Pluronic F-127 : A critical review.J. Drug Deliv. Sci. Technol.20227210339010.1016/j.jddst.2022.103390
    [Google Scholar]
  75. TehraniM.H.H. SoltaniM. Moradi KashkooliF. MahmoudiM. RaahemifarK. Computational modeling of combination of magnetic hyperthermia and temperature-sensitive liposome for controlled drug release in solid tumor.Pharmaceutics202214135
    [Google Scholar]
  76. JacobS. NairA.B. ShahJ. GuptaS. BodduS.H.S. SreeharshaN. JosephA. ShinuP. MorsyM.A. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy & mdash; An overview on recent advances.Pharmaceutics2022143533
    [Google Scholar]
  77. MoK. KimA. ChoeS. ShinM. YoonH. Overview of solid lipid nanoparticles in breast cancer therapy.Pharmaceutics20231582065
    [Google Scholar]
  78. Syed AzharS.N. AshariS.E. ZainuddinN. HassanM. Nanostructured lipid carriers-hydrogels system for drug delivery: Nanohybrid technology perspective.Molecules2022271289
    [Google Scholar]
  79. MusielakE. Feliczak-GuzikA. NowakI. Optimization of the conditions of solid lipid nanoparticles (SLN) Synthesis.Molecules20222772202
    [Google Scholar]
  80. IzzaN. WatanabeN. OkamotoY. SugaK. WibisonoY. KajimuraN. MitsuokaK. UmakoshiH. Dependence of the core–shell structure on the lipid composition of nanostructured lipid carriers: Implications for drug carrier design.ACS Appl. Nano Mater.2022579958996910.1021/acsanm.2c02214
    [Google Scholar]
  81. ElsewedyH.S. ShehataT.M. SolimanW.E. Shea butter potentiates the anti-bacterial activity of fusidic acid incorporated into solid lipid nanoparticle.Polymers202214122436
    [Google Scholar]
  82. CholakovaD. GlushkovaD. TcholakovaS. DenkovN. Nanopore and nanoparticle formation with lipids undergoing polymorphic phase transitions.ACS Nano20201478594860410.1021/acsnano.0c0294632608967
    [Google Scholar]
  83. Aguilera-GarridoA. ArranzE. Gálvez-RuizM.J. MarchalJ.A. Galisteo-GonzálezF. GiblinL. Solid lipid nanoparticles to improve bioaccessibility and permeability of orally administered maslinic acid.Drug Deliv.20222911971198210.1080/10717544.2022.208693735762633
    [Google Scholar]
  84. GanesanP. RamalingamP. KarthivashanG. KoY.T. ChoiD.-K. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases.Int J Nanomedicine2018131569158310.2147/IJN.S155593
    [Google Scholar]
  85. DasS. ChaudhuryA. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery.AAPS PharmSciTech2011121627610.1208/s12249‑010‑9563‑021174180
    [Google Scholar]
  86. AlamT. PanditJ. VohoraD. AqilM. AliA. SultanaY. Optimization of nanostructured lipid carriers of lamotrigine for brain delivery: in vitro characterization and in vivo efficacy in epilepsy.Expert Opin. Drug Deliv.201512218119410.1517/17425247.2014.94541625164097
    [Google Scholar]
  87. AgrawalM. SarafS. SarafS. DubeyS.K. PuriA. PatelR.J. Ajazuddin RavichandiranV. MurtyU.S. AlexanderA. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting.J. Control. Release202032137241510.1016/j.jconrel.2020.02.02032061621
    [Google Scholar]
  88. KhosaA. ReddiS. SahaR.N. Nanostructured lipid carriers for site-specific drug delivery.Biomed. Pharmacother.201810359861310.1016/j.biopha.2018.04.05529677547
    [Google Scholar]
  89. AkashM.S.H. RehmanK. Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives.J. Control. Release201520912013810.1016/j.jconrel.2015.04.03225921088
    [Google Scholar]
  90. ZarrintajP. RamseyJ.D. SamadiA. AtoufiZ. YazdiM.K. GanjaliM.R. AmirabadL.M. ZangeneE. FarokhiM. FormelaK. SaebM.R. MozafariM. ThomasS. Poloxamer: A versatile tri-block copolymer for biomedical applications.Acta Biomater.2020110376710.1016/j.actbio.2020.04.02832417265
    [Google Scholar]
  91. BohorquezM. KochC. TrygstadT. PanditN. A study of the temperature-dependent micellization of pluronic F127.J. Colloid Interface Sci.19992161344010.1006/jcis.1999.627310395759
    [Google Scholar]
  92. XianS. WebberM.J. Temperature-responsive supramolecular hydrogels.J. Mater. Chem. B Mater. Biol. Med.20208409197921110.1039/D0TB01814G32924052
    [Google Scholar]
  93. ElstadN.L. FowersK.D. OncoGel (ReGel/paclitaxel) : Clinical applications for a novel paclitaxel delivery system.Adv. Drug Deliv. Rev.2009611078579410.1016/j.addr.2009.04.01019422870
    [Google Scholar]
  94. SungY.K. KimS.W. Recent advances in polymeric drug delivery systems.Biomater. Res.20202411210.1186/s40824‑020‑00190‑732537239
    [Google Scholar]
  95. DhullA. YuC. WilmothA.H. ChenM. SharmaA. YiuS. Dendrimers in corneal drug delivery: Recent developments and translational opportunities.Pharmaceutics20231561591
    [Google Scholar]
  96. ShibaH. HiroseT. FuY. MichigamiM. FujiiI. NakaseI. MatsumotoA. KojimaC. Cell-association of carboxy-terminal dendrimers with different bound numbers of phenylalanine and their application to drug delivery.In: Pharmaceutics2023153888
    [Google Scholar]
  97. FataniW.K. AleanizyF.S. AlqahtaniF.Y. AlanaziM.M. AldossariA.A. ShakeelF. HaqN. AbdelhadyH. AlkahtaniH.M. AlsarraI.A. Erlotinib-loaded dendrimer nanocomposites as a targeted lung cancer chemotherapy.Molecules20232893974
    [Google Scholar]
  98. XuT. XuX. LiuD. ChangD. LiS. SunY. XieJ. JuS. Visual investigation of tumor‐promoting fibronectin potentiated by obesity in pancreatic ductal adenocarcinoma using an MR/NIRF dual‐modality dendrimer nanoprobe.Adv. Healthc. Mater.20231225230078710.1002/adhm.20230078737057680
    [Google Scholar]
  99. Palmerston MendesL. PanJ. TorchilinV.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy.Molecules20172291401
    [Google Scholar]
  100. WangJ. HeH. CooperR.C. GuiQ. YangH. Drug-conjugated dendrimer hydrogel enables sustained drug release via a self-cleaving mechanism.Mol. Pharm.20191651874188010.1021/acs.molpharmaceut.8b0120730974947
    [Google Scholar]
  101. ChenW. LiuP. Dendritic polyurethane-based prodrug as unimolecular micelles for precise ultrasound-activated localized drug delivery.Mater. Today Chem.20222410081910.1016/j.mtchem.2022.100819
    [Google Scholar]
  102. CaiH. TanP. ChenX. KopytynskiM. PanD. ZhengX. GuL. GongQ. TianX. GuZ. ZhangH. ChenR. LuoK. Stimuli‐sensitive linear–dendritic block copolymer–drug prodrug as a nanoplatform for tumor combination therapy.Adv. Mater.2022348210804910.1002/adma.20210804934875724
    [Google Scholar]
  103. GaoX. YuanC. TanE. LiZ. ChengY. XiaoJ. RongG. Dual-responsive bioconjugates bearing a bifunctional adaptor for robust cytosolic peptide delivery.J. Control. Release202335567568410.1016/j.jconrel.2023.02.01436791993
    [Google Scholar]
  104. WangY. SongW. BaoL. WeiJ. QianY. BiY. Enzyme and pH dual responsive linear-dendritic block copolymer micelles based on a phenylalanyl–lysine motif and peripherally ketal-functionalized dendron as potential drug carriers.RSC Advances20231332220792208710.1039/D3RA03790H37483668
    [Google Scholar]
  105. SantosJ.L. PanditaD. RodriguesJ. PêgoA.P. GranjaP.L. BalianG. TomásH. Receptor-mediated gene delivery using PAMAM dendrimers conjugated with peptides recognized by mesenchymal stem cells.Mol. Pharm.20107376377410.1021/mp900287720230026
    [Google Scholar]
  106. EichmanJ.D. BielinskaA.U. Kukowska-LatalloJ.F. BakerJ.R.Jr The use of PAMAM dendrimers in the efficient transfer of genetic material into cells.Pharm. Sci. Technol. Today20003723224510.1016/S1461‑5347(00)00273‑X10884679
    [Google Scholar]
  107. OledzkaE. PaśnikK. DomańskaI. Zielińska-PisklakM. PiotrowskaU. SobczakM. SzeleszczukŁ. LaskowskaA. Poly(amidoamine) dendrimer/camptothecin complex: From synthesis to in vitro cancer cell line studies.Molecules202328162696
    [Google Scholar]
  108. HoganK.J. PerezM.R. MikosA.G. Extracellular matrix component-derived nanoparticles for drug delivery and tissue engineering.J. Control. Release202336088891210.1016/j.jconrel.2023.07.03437482344
    [Google Scholar]
  109. XiaX.X. WangM. LinY. XuQ. KaplanD.L. Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery.Biomacromolecules201415390891410.1021/bm401759424527851
    [Google Scholar]
  110. MezaM. GreenerY. HuntR. PerryB. RevallS. BarbeeW. MurgoJ.P. CheirifJ. Myocardial contrast echocardiography: Reliable, safe, and efficacious myocardial perfusion assessment after intravenous injections of a new echocardiographic contrast agent.Am. Heart J.1996132487188110.1016/S0002‑8703(96)90324‑58831379
    [Google Scholar]
  111. Moreno-AspitiaA. PerezE.A. Nanoparticle albumin-bound paclitaxel (ABI-007): A newer taxane alternative in breast cancer.Future Oncol.20051675576210.2217/14796694.1.6.75516556053
    [Google Scholar]
  112. MaedaH. WuJ. SawaT. MatsumuraY. HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review.J. Control. Release2000651-227128410.1016/S0168‑3659(99)00248‑510699287
    [Google Scholar]
  113. HassaninI.A. ElzoghbyA.O. Self-assembled non-covalent protein-drug nanoparticles: an emerging delivery platform for anti-cancer drugs.Expert Opin. Drug Deliv.202017101437145810.1080/17425247.2020.181371332820954
    [Google Scholar]
  114. DaneshN. Navaee SedighiZ. BeigoliS. Sharifi-RadA. SaberiM.R. ChamaniJ. Determining the binding site and binding affinity of estradiol to human serum albumin and holo-transferrin: fluorescence spectroscopic, isothermal titration calorimetry and molecular modeling approaches.J. Biomol. Struct. Dyn.20183671747176310.1080/07391102.2017.133346028573922
    [Google Scholar]
  115. ElzoghbyA.O. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research.J. Control. Release201317231075109110.1016/j.jconrel.2013.09.01924096021
    [Google Scholar]
  116. SabraS.A. ElzoghbyA.O. SheweitaS.A. HarounM. HelmyM.W. EldemellawyM.A. XiaY. GoodaleD. AllanA.L. RohaniS. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer.Eur. J. Pharm. Biopharm.201812815616910.1016/j.ejpb.2018.04.02329689288
    [Google Scholar]
  117. LiW.M. LiuD.M. ChenS.Y. Amphiphilically-modified gelatin nanoparticles: Self-assembly behavior, controlled biodegradability, and rapid cellular uptake for intracellular drug delivery.J. Mater. Chem.20112133123811238810.1039/c1jm10188a
    [Google Scholar]
  118. HuG. ZhangH. ZhangL. RuanS. HeQ. GaoH. Integrin-mediated active tumor targeting and tumor microenvironment response dendrimer-gelatin nanoparticles for drug delivery and tumor treatment.Int. J. Pharm.201549621057106810.1016/j.ijpharm.2015.11.02526598487
    [Google Scholar]
  119. ZhaoY.Z. LiX. LuC.T. XuY.Y. LvH.F. DaiD.D. ZhangL. SunC.Z. YangW. LiX.K. ZhaoY.P. FuH.X. CaiL. LinM. ChenL.J. ZhangM. Experiment on the feasibility of using modified gelatin nanoparticles as insulin pulmonary administration system for diabetes therapy.Acta Diabetol.201249431532510.1007/s00592‑011‑0356‑z22124766
    [Google Scholar]
  120. MadkhaliO. MekhailG. WettigS.D. Modified gelatin nanoparticles for gene delivery.Int. J. Pharm.201955422423410.1016/j.ijpharm.2018.11.00130408531
    [Google Scholar]
  121. ArunA. MalrautuP. LahaA. LuoH. RamakrishnaS. Collagen nanoparticles in drug delivery systems and tissue engineering.Appl. Sci2021112311369
    [Google Scholar]
  122. LvH. GaoN. ZhouQ. WangY. LingG. ZhangP. Collagen‐based dissolving microneedles with flexible pedestals: A transdermal delivery system for both anti‐aging and skin diseases.Adv. Healthc. Mater.20231221220329510.1002/adhm.20220329537029522
    [Google Scholar]
  123. ZouY. ZhouC. LiZ. HanX. TongL. LiuT. XiongL. BaiL. LiangJ. FanY. ZhangX. SunY. Hydrophobic tetracycline immobilized in fibrous hyaluronan regulates adhesive collagen-based hydrogel stability for infected wound healing.Small20231945e230341410.1002/smll.202303414
    [Google Scholar]
  124. Ziaei AmiriF. PashandiZ. LotfibakhshaieshN. Mirzaei-ParsaM.J. GhanbariH. Faridi-MajidiR. Cell attachment effects of collagen nanoparticles on crosslinked electrospun nanofibers.Int. J. Artif. Organs202144319920710.1177/039139882094773732807005
    [Google Scholar]
  125. SubrahmanyamN. YathavanB. KesslerJ. YuS.M. GhandehariH. HPMA copolymer-collagen hybridizing peptide conjugates targeted to breast tumor extracellular matrix.J. Control. Release202335327828810.1016/j.jconrel.2022.10.01736244509
    [Google Scholar]
  126. GarnerA.L. Nucleosides, nucleotides and nucleic acids as therapeutics: A virtual special issue.ACS Pharmacol. Transl. Sci.2021461714171510.1021/acsptsci.1c0023134927005
    [Google Scholar]
  127. AsakiyaC. ZhuL. YuhanJ. ZhuL. HuangK. XuW. Current progress of miRNA-derivative nucleotide drugs: modifications, delivery systems, applications.Expert Opin. Drug Deliv.202219443545010.1080/17425247.2022.206383535387533
    [Google Scholar]
  128. YuD. ZhangN. LiuS. HuW. NieJ.J. ZhangK. YuB. WangZ.G. XuF.J. Self-assembled nucleotide/saccharide-tethering polycation-based nanoparticle for targeted tumor therapy.ACS Materials Letters20202555055610.1021/acsmaterialslett.0c00089
    [Google Scholar]
  129. ZhangQ. JiangQ. LiN. DaiL. LiuQ. SongL. WangJ. LiY. TianJ. DingB. DuY. DNA origami as an in vivo drug delivery vehicle for cancer therapy.ACS Nano2014876633664310.1021/nn502058j24963790
    [Google Scholar]
  130. ChenY.F. HsuM.W. SuY.C. ChangH.M. ChangC.H. JanJ.S. Naturally derived DNA nanogels as pH- and glutathione-triggered anticancer drug carriers.Mater. Sci. Eng. C202011411102510.1016/j.msec.2020.11102532994007
    [Google Scholar]
  131. LeeH. Lytton-JeanA.K.R. ChenY. LoveK.T. ParkA.I. KaragiannisE.D. SehgalA. QuerbesW. ZurenkoC.S. JayaramanM. PengC.G. CharisseK. BorodovskyA. ManoharanM. DonahoeJ.S. TrueloveJ. NahrendorfM. LangerR. AndersonD.G. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery.Nat. Nanotechnol.20127638939310.1038/nnano.2012.7322659608
    [Google Scholar]
  132. BrodinJ.D. SprangersA.J. McMillanJ.R. MirkinC.A. DNA-mediated cellular delivery of functional enzymes.J. Am. Chem. Soc.201513747148381484110.1021/jacs.5b0971126587747
    [Google Scholar]
  133. TianT. ZhangT. ShiS. GaoY. CaiX. LinY. A dynamic DNA tetrahedron framework for active targeting.Nat. Protoc.20231841028105510.1038/s41596‑022‑00791‑736670289
    [Google Scholar]
  134. ZhuJ. YangY. MaW. WangY. ChenL. XiongH. YinC. HeZ. FuW. XuR. LinY. Antiepilepticus effects of tetrahedral framework nucleic acid via inhibition of gliosis-induced downregulation of glutamine synthetase and increased ampar internalization in the postsynaptic membrane.Nano Lett.20222262381239010.1021/acs.nanolett.2c0002535266400
    [Google Scholar]
  135. LiS. LiuY. ZhangT. LinS. ShiS. HeJ. XieY. CaiX. TianT. LinY. A tetrahedral framework DNA‐based bioswitchable miRNA inhibitor delivery system: Application to skin anti‐aging.Adv. Mater.20223446220428710.1002/adma.20220428735901292
    [Google Scholar]
  136. YanJ. ZhangN. ZhangZ. ZhuW. LiB. LiL. PuY. HeB. Redox-responsive polyethyleneimine/tetrahedron DNA/doxorubicin nanocomplexes for deep cell/tissue penetration to overcome multidrug resistance.J. Control. Release2021329364910.1016/j.jconrel.2020.11.05033259850
    [Google Scholar]
  137. HeF. WenN. XiaoD. YanJ. XiongH. CaiS. LiuZ. LiuY. Aptamer-based targeted drug delivery systems: Current potential and challenges.Curr. Med. Chem.202027132189221910.2174/092986732566618100814283130295183
    [Google Scholar]
  138. ChenW. GlackinC.A. HorwitzM.A. ZinkJ.I. Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery.Acc. Chem. Res.20195261531154210.1021/acs.accounts.9b0011631082188
    [Google Scholar]
  139. HaiL. JiaX. HeD. ZhangA. WangT. ChengH. HeX. WangK. DNA-functionalized hollow mesoporous silica nanoparticles with dual cargo loading for near-infrared-responsive synergistic chemo-photothermal treatment of cancer cells.ACS Appl. Nano Mater.2018173486349710.1021/acsanm.8b00657
    [Google Scholar]
  140. LiZ. BarnesJ.C. BosoyA. StoddartJ.F. ZinkJ.I. Mesoporous silica nanoparticles in biomedical applications.Chem. Soc. Rev.20124172590260510.1039/c1cs15246g22216418
    [Google Scholar]
  141. YangP. GaiS. LinJ. Functionalized mesoporous silica materials for controlled drug delivery.Chem. Soc. Rev.20124193679369810.1039/c2cs15308d22441299
    [Google Scholar]
  142. Affonso de OliveiraJ.F. SchefferF.R. LandisR.F. Teixeira NetoÉ. RotelloV.M. CardosoM.B. Dual functionalization of nanoparticles for generating corona-free and noncytotoxic silica nanoparticles.ACS Appl. Mater. Interfaces20181049419174192310.1021/acsami.8b1235130426737
    [Google Scholar]
  143. YuanQ. ZhangY. ChenT. LuD. ZhaoZ. ZhangX. LiZ. YanC.H. TanW. Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid.ACS Nano2012676337634410.1021/nn301836522670595
    [Google Scholar]
  144. TarnD. FerrisD.P. BarnesJ.C. AmbrogioM.W. StoddartJ.F. ZinkJ.I. A reversible light-operated nanovalve on mesoporous silica nanoparticles.Nanoscale2014663335334310.1039/c3nr06049g24519642
    [Google Scholar]
  145. ChenX. ChengY. PanQ. WuL. HaoX. BaoZ. LiX. YangM. LuoQ. LiH. Chiral nanosilica drug delivery systems stereoselectively interacted with the intestinal mucosa to improve the oral adsorption of insoluble drugs.ACS Nano20231743705372210.1021/acsnano.2c1081836787639
    [Google Scholar]
  146. DongS. FengZ. MaR. ZhangT. JiangJ. LiY. ZhangY. LiS. LiuX. LiuX. MengH. Engineered design of a mesoporous silica nanoparticle-based nanocarrier for efficient mRNA delivery in Vivo.Nano Lett.20232362137214710.1021/acs.nanolett.2c0448636881967
    [Google Scholar]
  147. Garrido-CanoI. Adam-ArtiguesA. LameirinhasA. BlandezJ.F. Candela-NogueraV. LluchA. BermejoB. SancenónF. CejalvoJ.M. Martínez-MáñezR. ErolesP. Delivery of miR-200c-3p using tumor-targeted mesoporous silica nanoparticles for breast cancer therapy.ACS Appl. Mater. Interfaces20231532383233833410.1021/acsami.3c0754137549382
    [Google Scholar]
  148. DasP. PujalsS. AliL.M.A. Gary-BoboM. AlbertazziL. DurandJ.O. Super-resolution imaging of antibody-conjugated biodegradable periodic mesoporous organosilica nanoparticles for targeted chemotherapy of prostate cancer.Nanoscale20231528120081202410.1039/D3NR01571H37403617
    [Google Scholar]
  149. ShinH. KangS. WonC. MinD.H. Enhanced local delivery of engineered IL-2 mRNA by porous silica nanoparticles to promote effective antitumor immunity.ACS Nano20231717175541756710.1021/acsnano.3c0673337643221
    [Google Scholar]
  150. MohananS. SathishC.I. RamadassK. LiangM. VinuA. Design and synthesis of cabazitaxel loaded core-shell mesoporous silica nanoparticles with different morphologies for prostate cancer therapy.Small202329e230326910.1002/smll.202303269
    [Google Scholar]
  151. MunirM.U. SalmanS. JavedI. BukhariS.N.A. AhmadN. ShadN.A. AzizF. Nano-hydroxyapatite as a delivery system: overview and advancements.Artif. Cells Nanomed. Biotechnol.202149171772710.1080/21691401.2021.201678534907839
    [Google Scholar]
  152. LutherD.C. HuangR. JeonT. ZhangX. LeeY.W. NagarajH. RotelloV.M. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles.Adv. Drug Deliv. Rev.202015618821310.1016/j.addr.2020.06.02032610061
    [Google Scholar]
  153. DulM. NikolicT. StefanidouM. McAteerM.A. WilliamsP. MousJ. RoepB.O. KochbaE. LevinY. PeakmanM. WongF.S. DayanC.M. TatovicD. CoulmanS.A. BirchallJ.C. Conjugation of a peptide autoantigen to gold nanoparticles for intradermally administered antigen specific immunotherapy.Int. J. Pharm.201956230331210.1016/j.ijpharm.2019.03.04130910633
    [Google Scholar]
  154. ObaidatI. IssaB. HaikY. Magnetic properties of magnetic nanoparticles for efficient hyperthermia.Nanomaterials201551638910.3390/nano501006328347000
    [Google Scholar]
  155. UmairM. JavedI. RehmanM. MadniA. JaveedA. GhafoorA. AshrafM. Nanotoxicity of inert materials: The case of gold, silver and iron.J. Pharm. Pharm. Sci.201619216118010.18433/J3102127518167
    [Google Scholar]
  156. ColangeloE. ComengeJ. ParamelleD. VolkM. ChenQ. LévyR. Characterizing self-assembled monolayers on gold nanoparticles.Bioconjug. Chem.2017281112210.1021/acs.bioconjchem.6b0058728095686
    [Google Scholar]
  157. LiX. ZhangS. ChenY. WangS. XuQ. XuJ. Designing anisotropic inorganic nanocapsules via self-assembly of polymer-like ultrathin Au nanowires.Nanoscale20221428100601006610.1039/D2NR01749K35791869
    [Google Scholar]
  158. DuoY. ChenZ. LiK. YangY. WangH. HuJ. LuoG. Targeted delivery of novel Au(I)-based AIEgen via inactivated cancer cells for trimodal chemo-radio-immunotherapy and vaccination against advanced tumor.Nano Today20235110192010.1016/j.nantod.2023.101920
    [Google Scholar]
  159. ScalettiF. HardieJ. LeeY.W. LutherD.C. RayM. RotelloV.M. Protein delivery into cells using inorganic nanoparticle–protein supramolecular assemblies.Chem. Soc. Rev.201847103421343210.1039/C8CS00008E29537040
    [Google Scholar]
  160. LiX. LiY. YuC. BaoH. ChengS. HuangJ. ZhangZ. ROS-responsive janus au/mesoporous silica core/shell nanoparticles for drug delivery and long-term CT imaging tracking of MSCs in pulmonary fibrosis treatment.ACS Nano20231776387639910.1021/acsnano.2c1111236946383
    [Google Scholar]
  161. ZhangX. LiuW. WangH. ZhaoX. ZhangZ. NienhausG.U. ShangL. SuZ. Self-assembled thermosensitive luminescent nanoparticles with peptide-Au conjugates for cellular imaging and drug delivery.Chin. Chem. Lett.202031385986410.1016/j.cclet.2019.06.032
    [Google Scholar]
  162. HuangC.C. LiuT.M. Controlled Au–polymer nanostructures for multiphoton imaging, prodrug delivery, and chemo–photothermal therapy platforms.ACS Appl. Mater. Interfaces2015745252592526910.1021/acsami.5b0711026501876
    [Google Scholar]
  163. YuS. ZhouY. SunY. WuS. XuT. ChangY.C. BiS. JiangL.P. ZhuJ.J. Endogenous mRNA Triggered DNA‐Au nanomachine for in situ imaging and targeted multimodal synergistic cancer therapy.Angew. Chem. Int. Ed.202160115948595810.1002/anie.20201280133289255
    [Google Scholar]
  164. SunZ. ZhangW. YeZ. YuanL. FuM. LiuX. LiangH. HanH. NIR-II-triggered doxorubicin release for orthotopic bladder cancer chemo-photothermal therapy.Nanoscale20221448179291793910.1039/D2NR04200B36325926
    [Google Scholar]
  165. TaoW. ChengX. SunD. GuoY. WangN. RuanJ. HuY. ZhaoM. ZhaoT. FengH. FanL. LuC. MaY. DuanJ. ZhaoM. Synthesis of multi-branched Au nanocomposites with distinct plasmon resonance in NIR-II window and controlled CRISPR-Cas9 delivery for synergistic gene-photothermal therapy.Biomaterials202228712162110.1016/j.biomaterials.2022.12162135704964
    [Google Scholar]
  166. GaoJ. QinH. WangF. LiuL. TianH. WangH. WangS. OuJ. YeY. PengF. TuY. Hyperthermia-triggered biomimetic bubble nanomachines.Nat. Commun.2023141486710.1038/s41467‑023‑40474‑937567901
    [Google Scholar]
  167. HaiX. JiM. YuK. TianT. CuiZ. BiS. ZhangX. Acid-responsive DNA-Au nanomachine with active/passive dual-targeting capacity for combinational cancer therapy.Materials Today Nano20232310035510.1016/j.mtnano.2023.100355
    [Google Scholar]
  168. QiuY. WuZ. ChenY. LiaoJ. ZhangQ. WangQ. DuanY. GongK. ChenS. WangL. FanP. DuanY. WangW. DongY. Nano ultrasound contrast agent for synergistic chemo‐photothermal therapy and enhanced immunotherapy against liver cancer and metastasis.Adv. Sci.20231021230087810.1002/advs.20230087837162268
    [Google Scholar]
  169. ZhangG. ZhanM. ZhangC. WangZ. SunH. TaoY. ShiQ. HeM. WangH. RodriguesJ. ShenM. ShiX. Redox‐responsive dendrimer nanogels enable ultrasound‐enhanced chemoimmunotherapy of pancreatic cancer via endoplasmic reticulum stress amplification and macrophage polarization.Adv. Sci.20231024230175910.1002/advs.20230175937350493
    [Google Scholar]
  170. PartainB.D. UnniM. RinaldiC. AllenK.D. The clearance and biodistribution of magnetic composite nanoparticles in healthy and osteoarthritic rat knees.J. Control. Release202032125927110.1016/j.jconrel.2020.01.05232004585
    [Google Scholar]
  171. GuoS. LiD. ZhangL. LiJ. WangE. Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery.Biomaterials200930101881188910.1016/j.biomaterials.2008.12.04219135248
    [Google Scholar]
  172. El-SherbinyI.M. El-SayedM. RedaA. Magnetic nanoheterostructures: diagnostic, imaging and treatment. SharmaS.K. JavedY. ChamSpringer International Publishing202022324110.1007/978‑3‑030‑39923‑8_6
    [Google Scholar]
  173. AbenojarE.C. WickramasingheS. Bas-ConcepcionJ. SamiaA.C.S. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles.Prog. Nat. Sci.201626544044810.1016/j.pnsc.2016.09.004
    [Google Scholar]
  174. CourtK.A. HatakeyamaH. WuS.Y. LingegowdaM.S. Rodríguez-AguayoC. López-BeresteinG. Ju-SeogL. RinaldiC. JuanE.J. SoodA.K. Torres-LugoM. HSP70 inhibition synergistically enhances the effects of magnetic fluid hyperthermia in ovarian cancer.Mol. Cancer Ther.201716596697610.1158/1535‑7163.MCT‑16‑051928223424
    [Google Scholar]
  175. SoleymaniM. KhalighfardS. KhodayariS. KhodayariH. KalhoriM.R. HadjighassemM.R. ShaterabadiZ. AlizadehA.M. Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells.Sci. Rep.2020101169510.1038/s41598‑020‑58605‑332015364
    [Google Scholar]
  176. MéridaF. RinaldiC. JuanE.J. Torres-LugoM. In vitro ultrasonic potentiation of 2-phenylethynesulfonamide/magnetic fluid hyperthermia combination treatments for ovarian cancer.Int. J. Nanomedicine202015419432
    [Google Scholar]
  177. AnsariA.A. ParchurA.K. ChenG. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies.Coord. Chem. Rev.202245721442310.1016/j.ccr.2022.214423
    [Google Scholar]
  178. LeeG. ParkY.I. Lanthanide-doped upconversion nanocarriers for drug and gene delivery.Nanomaterials201887511
    [Google Scholar]
  179. TranV.A. Thuan LeV. DoanV.D. VoG.N.L. Utilization of functionalized metal–organic framework nanoparticle as targeted drug delivery system for cancer therapy.In: Pharmaceutics2023153931
    [Google Scholar]
  180. PremanN.K. BarkiR.R. VijayanA. SanjeevaS.G. JohnsonR.P. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review.Eur. J. Pharm. Biopharm.202015712115310.1016/j.ejpb.2020.10.00933091554
    [Google Scholar]
  181. AhmedE.M. Hydrogel: Preparation, characterization, and applications: A review.J. Adv. Res.20156210512110.1016/j.jare.2013.07.00625750745
    [Google Scholar]
  182. YinY. HuB. YuanX. CaiL. GaoH. YangQ. Nanogel: A versatile nano-delivery system for biomedical applications.In: Pharmaceutics2020123290
    [Google Scholar]
  183. KuaiR. LiD. ChenY.E. MoonJ.J. SchwendemanA. High-density lipoproteins: Nature’s multifunctional nanoparticles.ACS Nano20161033015304110.1021/acsnano.5b0752226889958
    [Google Scholar]
  184. JiangC. QiZ. TangY. JiaH. LiZ. ZhangW. LiuJ. Rational design of lovastatin-loaded spherical reconstituted high density lipoprotein for efficient and safe anti-atherosclerotic therapy.Mol. Pharm.20191673284329110.1021/acs.molpharmaceut.9b0044531117743
    [Google Scholar]
  185. ChenD. YuH. SunK. LiuW. WangH. Dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery.Drug Deliv.201421425826410.3109/10717544.2013.83871724102086
    [Google Scholar]
  186. FuT. ShenJ. MengY. WangJ. WangS. ZhangY. WangT. ZhangX. Automatic detoxification medicine delivery by thermo-sensitive poly(ethylene glycol)-based nanogels.Polymers2022148892
    [Google Scholar]
  187. WitkowskiA. CartaS. LuR. YokoyamaS. RubartelliA. CavigiolioG. Oxidation of methionine residues in human apolipoprotein A-I generates a potent pro-inflammatory molecule.J. Biol. Chem.2019294103634364610.1074/jbc.RA118.00566330635405
    [Google Scholar]
  188. Monroy-IglesiasM.J. RussellB. CrawleyD. AllenN.E. TravisR.C. Perez-CornagoA. Van HemelrijckM. BeckmannK. Metabolic syndrome biomarkers and prostate cancer risk in the UK Biobank.Int. J. Cancer2021148482583410.1002/ijc.3325533405276
    [Google Scholar]
  189. LiY. MacielD. RodriguesJ. ShiX. TomásH. Biodegradable polymer nanogels for drug/nucleic acid delivery.Chem. Rev.2015115168564860810.1021/cr500131f26259712
    [Google Scholar]
  190. ZhangH. ZhaiY. WangJ. ZhaiG. New progress and prospects: The application of nanogel in drug delivery.Mater. Sci. Eng. C20166056056810.1016/j.msec.2015.11.04126706564
    [Google Scholar]
  191. Ackun-FarmmerM.A. OverbyC.T. HawsB.E. ChoeR. BenoitD.S.W. Biomaterials for orthopedic diagnostics and theranostics.Curr. Opin. Biomed. Eng.20211910030810.1016/j.cobme.2021.10030834458652
    [Google Scholar]
  192. ThangN.H. ChienT.B. CuongD.X. Polymer-based hydrogels applied in drug delivery: An overview.In: Gels202397523
    [Google Scholar]
  193. CampeaM.A. LoftsA. XuF. YeganehM. KostashukM. HoareT. Disulfide-cross-linked nanogel-based nanoassemblies for chemotherapeutic drug delivery.ACS Appl. Mater. Interfaces20231521253242533810.1021/acsami.3c0257537192117
    [Google Scholar]
  194. SharmaP. BaisoyaD. ChauhanD. MishraD. SharmaM. ChandraA. Recent progress, therapeutic concepts and pharmaceutical challenges of dendrimer based drug delivery system.J. Pharm. Negat. Results2023202368656873
    [Google Scholar]
  195. LiuC. GuoX. RuanC. HuH. JiangB.P. LiangH. ShenX.C. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy.Acta Biomater.20199628129410.1016/j.actbio.2019.07.02431319202
    [Google Scholar]
  196. OmidianH. ChowdhuryS.D. Advancements and applications of injectable hydrogel composites in biomedical research and therapy.Gels202397533
    [Google Scholar]
  197. HaftkaJ.J.H. ScherpenisseP. OetterG. HodgesG. EadsforthC.V. KotthoffM. HermensJ.L.M. Critical micelle concentration values for different surfactants measured with solid‐phase microextraction fibers.Environ. Toxicol. Chem.20163592173218110.1002/etc.339726873883
    [Google Scholar]
  198. ChengF.R. SuT. CaoJ. LuoX.L. LiL. PuY. HeB. Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an “on demand” drug release system.J. Mater. Chem. B Mater. Biol. Med.20186152258227310.1039/C8TB00132D32254566
    [Google Scholar]
  199. DobrovolskaiaM.A. Dendrimers effects on the immune system: Insights into toxicity and therapeutic utility.Curr. Pharm. Des.201723213134314128294045
    [Google Scholar]
  200. ShenJ. LiJ. YuP. DuG. Research status and hotspots of anticancer natural products based on the patent literature and scientific articles.Front. Pharmacol.20221390323910.3389/fphar.2022.90323935784720
    [Google Scholar]
  201. HeX.J. DongY.B. ZhenZ. WuY.Y. JiangG.R. MengX. MaS. Weighted meta paths and networking embedding for patent technology trade recommendations among subjects.In: Knowl.-Based Syst2019184104899
    [Google Scholar]
  202. LiY. ZhangY. LeeC.C. LiJ. Structural characteristics and determinants of an international green technological collaboration network.J. Clean. Prod.202132412925810.1016/j.jclepro.2021.129258
    [Google Scholar]
  203. The Issuance of the National Drug Safety Twelfth Five-Year Plan 2012 No. 5.2012Available from: http://www.gov.cn/zwgk/2012-02/13/content_2065197.htm
  204. The 14th Five-Year Plan for the Development of Pharmaceutical Industry.Available from: https://www.gov.cn/zhengce/2022-02/01/content_5671569.html
  205. ChenF.C. China: The next pharmacy of the world?Trends Pharmacol. Sci.2018391084384810.1016/j.tips.2018.07.00430098798
    [Google Scholar]
  206. QiuL. ChenZ.Y. LuD.Y. HuH. WangY.T. Public funding and private investment for R&D: a survey in China’s pharmaceutical industry.Health Res. Policy Syst.20141212710.1186/1478‑4505‑12‑2724925505
    [Google Scholar]
  207. GautamA. PanX. The changing model of big pharma: Impact of key trends.Drug Discov. Today201621337938410.1016/j.drudis.2015.10.00226477304
    [Google Scholar]
  208. MahaseE. COVID-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows.BMJ20202020m447110.1136/bmj.m4471
    [Google Scholar]
  209. LaboutaH.I. LangerR. CullisP.R. MerkelO.M. PrausnitzM.R. GomaaY. NogueiraS.S. KumeriaT. Role of drug delivery technologies in the success of COVID-19 vaccines: A perspective.Drug Deliv. Transl. Res.202212112581258810.1007/s13346‑022‑01146‑135290656
    [Google Scholar]
  210. WangF. PorterM. KonstantopoulosA. ZhangP. CuiH. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy.J. Control. Release201726710011810.1016/j.jconrel.2017.09.02628958854
    [Google Scholar]
  211. NiJ. ZhaoJ. UngC.O.L. HuY. HuH. WangY. Obstacles and opportunities in Chinese pharmaceutical innovation.Global. Health20171312110.1186/s12992‑017‑0244‑628340579
    [Google Scholar]
  212. KerryE.B. MarkC. EdwardH. EllalahewageS.K. Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents.US Patent 20210087135A12021.
  213. BenenatoK. E. CornebiseM. HennessyE. MckenzieA. Headgroup lipid compounds and compositions for intracellular delivery of therapeutic agents.World Patent 2021055849A12021.
  214. BenenatoK. E. BiswasS. CornebiseM. HennessyE. KumarasingheE. S. Carbonate containing lipid compounds and compositions for intracellular delivery of therapeutic agents.World Patent 2021055835A12021.
  215. TamY. K. LinP. JiaC. SempleS. BarbosaC. J. Improved lipid nanoparticles for delivery of nucleic acids.World Patent 2021030701A12021.
  216. DingY. ZhangH. ChenJ. ZhouJ. Biomimetic dopamine polymerization drug-loading nanometer transmitting and releasing system and preparation method thereof.CN Patent 112121029A2020.
  217. ZhouX. XueW. GuH. LiuQ. YuS. Near-infrared light response nanoparticle and controlled release system.CN Patent 111671914A2020.
  218. HopeM. MuiB. LinJ. BarbosaC. ThomasD.M. AnsellS. DuX. Lipid nanoparticle formulations.US Patent 20200121809A12020.
  219. CaiL. ZhangS. LiangR. ChenH. LiuL. HeH. Biomimetic drug-loaded nanoparticles targeting brain tumor and preparation method and application thereof.CN Patent 110859826A2020.
  220. JermyB.R. RavinayagamV. Curcumin-based magnetic nanostructured system for dual response of imaging and therapeutics.US Patent 20200038525A12020.
  221. BenenatoK. HogeS. MartiniP. McfadyenI. PresnyakV. KumarasingheE. Polynucleotides Encoding Lipoprotein Lipase for the Treatment of Hyperlipidemia.US Patent 20190390181A12019.
  222. DimitrovS. HuangE. Delivery of DNA.World Patent 2019226650A12019.
  223. BraderM. Stabilized formulations of lipid nanoparticles.US Patent 20190336452A12019.
  224. LiuH. WangJ. GuD. YangW. HuJ. TangW. Preparation and application of medicine-carrying polydopamine/dendrimer-gold nanoparticles.CN Patent 110384806A2019.
  225. BenenatoK. HogeS. McfadyenI. PresnyakV. MartiniP. KumarasingheE. Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis.US Patent 20190298658A12019.
  226. MartiniP. HogeS. BenenatoK. PresnyakV. McfadyenI. KumarasingheE. RachlinE. SabnisS. Polynucleotides encoding acyl-coa dehydrogenase, very long-chain for the treatment of very long-chain acyl-coa dehydrogenase deficiency.US Patent 20190298657A12019.
  227. MartiniP. HogeS. BenenatoK. PresnyakV. McfadyenI. KumarasingheE. RachlinE. SabnisS. Polynucleotides encoding galactose-1-phosphate uridylyltransferase for the treatment of galactosemia type 1.US Patent 20190300906A12019.
  228. BenenatoK. HogeS. MartiniP. McfadyenI. PresnyakV. AnD. KumarasingheE. Polynucleotides encoding jagged1 for the treatment of alagille syndrome.US Patent 20190275170A12019.
  229. MarkovicS. NevalaW. Paclitaxel-albumin-binding agent compositions and methods for using and making the same.US Patent 20190184032A12019.
  230. MartiniP. HogeS. BenenatoK. PresnyakV. McfadyenI. KumarasingheE. CaoJ. LinG. SabnisS. Polynucleotides encoding citrin for the treatment of citrullinemia type 2.US Patent 20190175517A12019.
  231. SunJ. HeZ. WangZ. SunM. Chemotherapeutic drug-photosensitizer co-assembled nanoparticles and construction thereof.CN Patent 109718207A2019.
  232. XinH. XuJ. WangX YinH CaoX. Functional platelet bionic intelligent carrier and application thereof in anti-ischemic cerebral apoplexy.CN Patent 109364263A2019.
  233. RoizmanK. Topical delivery of therapeutic agents using cell-penetrating peptides for the treatment of age-related macular degeneration and other eye diseases.US Patent 20190015521A12019.
  234. TichoB. ErisN.B. XiaZ. DousisA. PicciottoS. PresnyakV. HogeS. McfadyenI. BenenatoK. KumarasingheE. Polynucleotides encoding relaxin.US Patent 20180371047A12018.
  235. RandallM. TahirM. Systems and methods of delivery of bioactive agents using bacterial toxin-derived transport sequences.US Patent 20180353610A12018.
  236. MaK. WiesnerB. Functionalized nanoparticles and methods of making and using same.Wold Patent 2018213851A12018.
  237. ZhangL. FengT. Sodium nitroprusside-conjugated medicine-carrying prussian blue analogue nano-photothermal therapeutic agent and preparation method thereof.CN Patent 108785673A2018.
  238. ZhuD. ZhangL. WuS QinY. ZhangL. Cationic phospholipid-polymer hybridized nanoparticle vaccine adjuvant of common-carrier antigen, MPLA (Monophosphoryl Lipid A) and IMQ (Imiquimod) as well as preparation method and application thereof.CN Patent 108743939A2018.
  239. LuanY. ZhangH. Preparation method and application of metal organic framework drug carrier system based on cytosine arabinoside micromolecule prodrug.CN Patent 108619511A2018.
  240. GanL. YongT. YangX. ZhangX. BieN. Exosome-encapsulated nano drug-loading system for tumor treatment and preparation thereof.CN Patent 108543074A2018.
  241. AnsellS. BarbosaC. ConwayA. DuX. HopeM. HolmesM. LeeG. LinP. MaddenT. MuiB. Delivery of target specific nucleases.US Patent 20180185516A12018.
  242. JohnsonK. LathropR. YangM. MaulhardtH. FrankeR. Delivery of drug nanoparticles and methods of use thereof.US Patent 20180177739A12018.
  243. ShenB. XuX. ZuoX. Polypeptide for promoting apoptosis of breast cancer cells by targeted uptake of siRNA.CN Patent 108117585A2018.
  244. DerosaF. HeartleinM. KarveS. Ice-based lipid nanoparticle formulation for delivery of mRNA.US Patent 20180125989A12018.
  245. MoonJ. KuaiR. SchwendemanA. NamJ. Compositions and methods for delivery of biomacromolecule agents.US Patent 20180078625A12018.
  246. GaoY. LinX. KeL. ZhangY. LeiG. LiD. FangY. ChenH. Aptamer-modified targeted drug delivery nanoparticles as well as preparation method and application thereof.CN Patent 107753946A2018.
/content/journals/nanotec/10.2174/0118722105293359240626070342
Loading
/content/journals/nanotec/10.2174/0118722105293359240626070342
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test