Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Environmental pollution and industrialization on a global scale have drawn attention to the vital need for developing new hygienically friendly purification technologies. Existing wastewater treatment technologies demand high capital investment and operation & maintenance cost, and large area. Cost-effective treatment of pollutants requires the transformation of hazardous substances into benign forms and the subsequent development of effective risk management strategies from harmful effects of pollutants that are highly toxic, persistent, and difficult to treat. Application of nanotechnology that results in improved water treatment options might include removal of the finest contaminants from water (< 300 nm) and “smart materials” or “reactive surface coatings” with engineered specificity to a certain pollutant that destroy, transform or immobilize toxic compounds. Nanomaterials have been gaining increasing interest in the area of environmental remediation mainly due to their enhanced surface and also other specific changes in their physical, chemical and biological properties that develop due to size effects. Heterogeneous photocatalytic systems via metal oxide semiconductors like TiO2 and ZnO, are capable of operating effectively and efficiently for waste water treatment which has been discussed along with other nanotechnology routes that can be useful for water treatments. Multifunctional photocatalytic membranes using ZnO nanostructures are considered advantageous over freely suspended nanoparticles due to the ease of its removal from the purified water. A short discussion on the study of charge transfer mechanisms during photocatalytic reactions has also been included.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/2210681211202020090
2012-12-01
2025-09-18
Loading full text...

Full text loading...

/content/journals/nanoasi/10.2174/2210681211202020090
Loading

  • Article Type:
    Research Article
Keyword(s): Contamination; metal oxide; photocatalysis; purification
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test