Skip to content
2000
Volume 9, Issue 2
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Background: Excess noise characteristics of Multiple Quantum Barrier (MQB) nanoscale avalanche photodiodes (APDs) based on Si~3C-SiC heterostructures have been studied in this part of the paper. The multiplication gain and Excess Noise Factor (ENF) of the MQB APDs have been calculated by varying the number of Quantum Barriers (QBs). Methods: The numerically calculated ENF values of MQB APDs have been compared with the ENF of Si flat conventional APDs of similar dimensions and it is observed that the use of QBs leads to significant reduction in ENF of the APDs under similar biasing and illumination conditions. Results: The enhanced ratio of hole to electron ionization rates in MQB structures as compared to the bulk Si APD structure has been found to be the primary cause of improvement in the noise performance of the MQB nano-APDs. Conclusion: Finally, the numerically calculated ENF of Si flat APD has been compared with the experimentally measured ENF of a commercially available Si APD and those are found to be in good agreement; this comparison validates the simulation methodology adopted by the authors in this paper.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/2210681208666180813123035
2019-06-01
2025-09-28
Loading full text...

Full text loading...

/content/journals/nanoasi/10.2174/2210681208666180813123035
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test