Skip to content
2000
Volume 5, Issue 2
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

The vanadium redox flow battery (VRB) has received considerable attention due to potential for large-scale energy storage systems suitable for a wide range of renewable energy applications. The key constituent of VRB is an ion exchange membrane that separates two electrolyte solutions, while allowing the conduction of ions. This review summarizes efforts in developing nanostructured membranes with reduced vanadium ion permeability and improved proton conductivity in order to achieve high performance and long life of VRB systems. An overview of the VRB systems and membrane requirements is first introduced. Recent studies on a broad range of nanostructured membranes are then presented, focusing on their properties and performance of VRB employing them. Nafion hybrid membranes containing various nanofillers are discussed mainly in terms of their proton permselectivity. As alternatives to Nafion membrane, nanostructured membranes based on sulfonated hydrocarbon polymers and nonionic materials are also reviewed. The discussion will cover organic-inorganic nanocomposite, amphoteric membranes, and nanofiltration membranes.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/2210681205666150903213628
2015-08-01
2025-11-05
Loading full text...

Full text loading...

/content/journals/nanoasi/10.2174/2210681205666150903213628
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test