Skip to content
2000
image of KRASG12D in Cancer: Structural Insights, Signaling Pathways, and Progress in Targeted Inhibitor Design

Abstract

This review provides an in-depth analysis of KRASG12D, one of the most prevalent oncogenic mutations found in pancreatic, colorectal, and lung cancers. Despite its historically regarded “undruggable” status, the success of KRASG12C inhibitors has spurred significant interest in targeting KRASG12D. The non-covalent inhibitor MRTX1133 has emerged as a key breakthrough, demonstrating potent anti-tumor efficacy the Switch II pocket, highlighting the potential of non-covalent strategies for KRASG12D inhibition. In addition, we explore other promising inhibitors such as BI-2852, KD2, TH-Z835, and KD-8, which leverage structural optimization and computer-aided drug design (CADD) to enhance selectivity and binding affinity. Innovative therapeutic approaches, including PROTAC-based SOS1 degraders ( ZZ151) and combination therapies ( MRTX1133 with pan-ERBB inhibitors), are being explored to overcome the challenges of drug resistance. Despite these advancements, issues of selectivity, chemical diversity, and overcoming adaptive resistance remain, necessitating ongoing multidisciplinary efforts to develop novel and effective KRASG12D-targeted therapies.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298391640250731025705
2025-08-22
2025-11-04
Loading full text...

Full text loading...

References

  1. Mrnjavac N. Martin W.F. GTP before ATP: The energy currency at the origin of genes. Biochim. Biophys. Acta Bioenerg. 2025 1866 1 149514 10.1016/j.bbabio.2024.149514 39326542
    [Google Scholar]
  2. Rojas A.M. Fuentes G. Rausell A. Valencia A. The Ras protein superfamily: Evolutionary tree and role of conserved amino acids. J. Cell Biol. 2012 196 2 189 201 10.1083/jcb.201103008 22270915
    [Google Scholar]
  3. Hofmann M.H. Gerlach D. Misale S. Petronczki M. Kraut N. Expanding the reach of precision oncology by drugging all KRAS mutants. Cancer Discov. 2022 12 4 924 937 10.1158/2159‑8290.CD‑21‑1331 35046095
    [Google Scholar]
  4. Timar J. Kashofer K. Molecular epidemiology and diagnostics of KRAS mutations in human cancer. Cancer Metastasis Rev. 2020 39 4 1029 1038 10.1007/s10555‑020‑09915‑5 32725342
    [Google Scholar]
  5. Johnson C.W. Reid D. Parker J.A. Salter S. Knihtila R. Kuzmic P. Mattos C. The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J. Biol. Chem. 2017 292 31 12981 12993 10.1074/jbc.M117.778886 28630043
    [Google Scholar]
  6. Prior I.A. Hood F.E. Hartley J.L. The frequency of ras mutations in cancer. Cancer Res. 2020 80 14 2969 2974 10.1158/0008‑5472.CAN‑19‑3682 32209560
    [Google Scholar]
  7. Liu P. Wang Y. Li X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm. Sin. B 2019 9 5 871 879 10.1016/j.apsb.2019.03.002 31649840
    [Google Scholar]
  8. Janes M.R. Zhang J. Li L.S. Hansen R. Peters U. Guo X. Chen Y. Babbar A. Firdaus S.J. Darjania L. Feng J. Chen J.H. Li S. Li S. Long Y.O. Thach C. Liu Y. Zarieh A. Ely T. Kucharski J.M. Kessler L.V. Wu T. Yu K. Wang Y. Yao Y. Deng X. Zarrinkar P.P. Brehmer D. Dhanak D. Lorenzi M.V. Hu-Lowe D. Patricelli M.P. Ren P. Liu Y. Targeting KRAS mutant cancers with a covalent G12C-Specific inhibitor. Cell 2018 172 3 578 589.e17 10.1016/j.cell.2018.01.006 29373830
    [Google Scholar]
  9. Fell J.B. Fischer J.P. Baer B.R. Ballard J. Blake J.F. Bouhana K. Brandhuber B.J. Briere D.M. Burgess L.E. Burkard M.R. Chiang H. Chicarelli M.J. Davidson K. Gaudino J.J. Hallin J. Hanson L. Hee K. Hicken E.J. Hinklin R.J. Marx M.A. Mejia M.J. Olson P. Savechenkov P. Sudhakar N. Tang T.P. Vigers G.P. Zecca H. Christensen J.G. Discovery of tetrahydropyridopyrimidines as irreversible covalent inhibitors of KRAS-G12C with in vivo activity. ACS Med. Chem. Lett. 2018 9 12 1230 1234 10.1021/acsmedchemlett.8b00382 30613331
    [Google Scholar]
  10. Canon J. Rex K. Saiki A.Y. Mohr C. Cooke K. Bagal D. Gaida K. Holt T. Knutson C.G. Koppada N. Lanman B.A. Werner J. Rapaport A.S. San Miguel T. Ortiz R. Osgood T. Sun J.R. Zhu X. McCarter J.D. Volak L.P. Houk B.E. Fakih M.G. O’Neil B.H. Price T.J. Falchook G.S. Desai J. Kuo J. Govindan R. Hong D.S. Ouyang W. Henary H. Arvedson T. Cee V.J. Lipford J.R. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 2019 575 7781 217 223 10.1038/s41586‑019‑1694‑1 31666701
    [Google Scholar]
  11. Fell J.B. Fischer J.P. Baer B.R. Blake J.F. Bouhana K. Briere D.M. Brown K.D. Burgess L.E. Burns A.C. Burkard M.R. Chiang H. Chicarelli M.J. Cook A.W. Gaudino J.J. Hallin J. Hanson L. Hartley D.P. Hicken E.J. Hingorani G.P. Hinklin R.J. Mejia M.J. Olson P. Otten J.N. Rhodes S.P. Rodriguez M.E. Savechenkov P. Smith D.J. Sudhakar N. Sullivan F.X. Tang T.P. Vigers G.P. Wollenberg L. Christensen J.G. Marx M.A. Identification of the clinical development candidate MRTX849, a covalent KRAS G12C inhibitor for the treatment of cancer. J. Med. Chem. 2020 63 13 6679 6693 10.1021/acs.jmedchem.9b02052 32250617
    [Google Scholar]
  12. Kessler D. Gmachl M. Mantoulidis A. Martin L.J. Zoephel A. Mayer M. Gollner A. Covini D. Fischer S. Gerstberger T. Gmaschitz T. Goodwin C. Greb P. Häring D. Hela W. Hoffmann J. Karolyi-Oezguer J. Knesl P. Kornigg S. Koegl M. Kousek R. Lamarre L. Moser F. Munico-Martinez S. Peinsipp C. Phan J. Rinnenthal J. Sai J. Salamon C. Scherbantin Y. Schipany K. Schnitzer R. Schrenk A. Sharps B. Siszler G. Sun Q. Waterson A. Wolkerstorfer B. Zeeb M. Pearson M. Fesik S.W. McConnell D.B. Drugging an undruggable pocket on KRAS. Proc. Natl. Acad. Sci. USA 2019 116 32 15823 15829 10.1073/pnas.1904529116 31332011
    [Google Scholar]
  13. Vasta J.D. Peacock D.M. Zheng Q. Walker J.A. Zhang Z. Zimprich C.A. Thomas M.R. Beck M.T. Binkowski B.F. Corona C.R. Robers M.B. Shokat K.M. KRAS is vulnerable to reversible switch-II pocket engagement in cells. Nat. Chem. Biol. 2022 18 6 596 604 10.1038/s41589‑022‑00985‑w 35314814
    [Google Scholar]
  14. Samatar A.A. Poulikakos P.I. Targeting RAS–ERK signalling in cancer: Promises and challenges. Nat. Rev. Drug Discov. 2014 13 12 928 942 10.1038/nrd4281 25435214
    [Google Scholar]
  15. Kinsey C.G. Camolotto S.A. Boespflug A.M. Guillen K.P. Foth M. Truong A. Schuman S.S. Shea J.E. Seipp M.T. Yap J.T. Burrell L.D. Lum D.H. Whisenant J.R. Gilcrease G.W. Cavalieri C.C. Rehbein K.M. Cutler S.L. Affolter K.E. Welm A.L. Welm B.E. Scaife C.L. Snyder E.L. McMahon M. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 2019 25 4 620 627 10.1038/s41591‑019‑0367‑9 30833748
    [Google Scholar]
  16. Lu S. Jang H. Muratcioglu S. Gursoy A. Keskin O. Nussinov R. Zhang J. Ras Conformational ensembles, allostery, and signaling. Chem. Rev. 2016 116 11 6607 6665 10.1021/acs.chemrev.5b00542 26815308
    [Google Scholar]
  17. Skoulidis F. Heymach J.V. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat. Rev. Cancer 2019 19 9 495 509 10.1038/s41568‑019‑0179‑8 31406302
    [Google Scholar]
  18. Mo S.P. Coulson J.M. Prior I.A. RAS variant signalling. Biochem. Soc. Trans. 2018 46 5 1325 1332 10.1042/BST20180173 30287508
    [Google Scholar]
  19. Karnoub A.E. Weinberg R.A. Ras oncogenes: Split personalities. Nat. Rev. Mol. Cell Biol. 2008 9 7 517 531 10.1038/nrm2438 18568040
    [Google Scholar]
  20. Moore A.R. Rosenberg S.C. McCormick F. Malek S. RAS-targeted therapies: Is the undruggable drugged? Nat. Rev. Drug Discov. 2020 19 8 533 552 10.1038/s41573‑020‑0068‑6 32528145
    [Google Scholar]
  21. Pantsar T. The current understanding of KRAS protein structure and dynamics. Comput. Struct. Biotechnol. J. 2020 18 189 198 10.1016/j.csbj.2019.12.004 31988705
    [Google Scholar]
  22. Simanshu D.K. Nissley D.V. McCormick F. RAS proteins and their regulators in human disease. Cell 2017 170 1 17 33 10.1016/j.cell.2017.06.009 28666118
    [Google Scholar]
  23. Bos J.L. Rehmann H. Wittinghofer A. GEFs and GAPs: critical nlms in the control of small G proteins. Cell 2007 129 5 865 877 10.1016/j.cell.2007.05.018 17540168
    [Google Scholar]
  24. Kazi A. Xiang S. Yang H. Chen L. Kennedy P. Ayaz M. Fletcher S. Cummings C. Lawrence H.R. Beato F. Kang Y. Kim M.P. Delitto A. Underwood P.W. Fleming J.B. Trevino J.G. Hamilton A.D. Sebti S.M. Dual farnesyl and geranylgeranyl transferase inhibitor thwarts mutant KRAS-driven patient-derived pancreatic tumors. Clin. Cancer Res. 2019 25 19 5984 5996 10.1158/1078‑0432.CCR‑18‑3399 31227505
    [Google Scholar]
  25. Hubbard S.R. Till J.H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 2000 69 1 373 398 10.1146/annurev.biochem.69.1.373 10966463
    [Google Scholar]
  26. Rude Voldborg B. Damstrup L. Spang-Thomsen M. Skovgaard Poulsen H. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann. Oncol. 1997 8 12 1197 1206 10.1023/A:1008209720526 9496384
    [Google Scholar]
  27. Xiong Y. Zeng J. Xia F. Cui Q. Deng X. Xu X. Conformations and binding pockets of hras and its GEF·HRas complexes in the GTP exchange process. J. Comput. Chem. 2022 43 13 906 916 10.1002/jcc.26846 35324017
    [Google Scholar]
  28. Huang L. Guo Z. Wang F. Fu L. KRAS mutation: From undruggable to druggable in cancer. Signal Transduct. Target. Ther. 2021 6 1 386 10.1038/s41392‑021‑00780‑4 34776511
    [Google Scholar]
  29. Liu X. Wang P. Zhang C. Ma Z. Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget 2017 8 30 50209 50220 10.18632/oncotarget.16854 28430586
    [Google Scholar]
  30. Ardito C.M. Grüner B.M. Takeuchi K.K. Lubeseder-Martellato C. Teichmann N. Mazur P.K. DelGiorno K.E. Carpenter E.S. Halbrook C.J. Hall J.C. Pal D. Briel T. Herner A. Trajkovic-Arsic M. Sipos B. Liou G.Y. Storz P. Murray N.R. Threadgill D.W. Sibilia M. Washington M.K. Wilson C.L. Schmid R.M. Raines E.W. Crawford H.C. Siveke J.T. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell 2012 22 3 304 317 10.1016/j.ccr.2012.07.024 22975374
    [Google Scholar]
  31. Pierre S. bats, A.S.; Coumoul, X. Understanding SOS (Son of Sevenless). Biochem. Pharmacol. 2011 82 9 1049 1056 10.1016/j.bcp.2011.07.072 21787760
    [Google Scholar]
  32. Yaeger R. Weiss J. Pelster M.S. Spira A.I. Barve M. Ou S.H.I. Leal T.A. Bekaii-Saab T.S. Paweletz C.P. Heavey G.A. Christensen J.G. Velastegui K. Kheoh T. Der-Torossian H. Klempner S.J. Adagrasib with or without Cetuximab in colorectal cancer with mutated KRAS G12C. N. Engl. J. Med. 2023 388 1 44 54 10.1056/NEJMoa2212419 36546659
    [Google Scholar]
  33. Guo Y-J. Pan W-W. Liu S-B. Shen Z-F. Xu Y. Hu L-L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020 19 3 1997 2007 32104259
    [Google Scholar]
  34. Martinelli E. Morgillo F. Troiani T. Ciardiello F. Cancer resistance to therapies against the EGFR-RAS-RAF pathway: The role of MEK. Cancer Treat. Rev. 2017 53 61 69 10.1016/j.ctrv.2016.12.001 28073102
    [Google Scholar]
  35. Barth L.A.G. Nebe M. Kalwa H. Velluva A. Kehr S. Kolbig F. Prabutzki P. Kiess W. Le Duc D. Garten A. Kirstein A.S. Phospholipid Scramblase 4 (PLSCR4) regulates adipocyte differentiation via PIP3-mediated AKT activation. Int. J. Mol. Sci. 2022 23 17 9787 10.3390/ijms23179787 36077184
    [Google Scholar]
  36. Yoshizawa R. Umeki N. Yanagawa M. Murata M. Sako Y. Single-molecule fluorescence imaging of RalGDS on cell surfaces during signal transduction from Ras to Ral. Biophys. Physicobiol. 2017 14 75 84 10.2142/biophysico.14.0_75 28744424
    [Google Scholar]
  37. Corrotte M. Tran Nyguyen A.P. Harlay M.L. Vitale N. Bader M.F. Grant N.J. Ral isoforms are implicated in Fc γ R-mediated phagocytosis: Activation of phospholipase D by RalA. J. Immunol. 2010 185 5 2942 2950 10.4049/jimmunol.0903138 20679536
    [Google Scholar]
  38. Strakhova R. Smith M.J. Profiling complex RAS-effector interactions using NMR spectroscopy. Methods Mol. Biol. 2024 2797 195 209 10.1007/978‑1‑0716‑3822‑4_14 38570461
    [Google Scholar]
  39. Ostrem J.M. Peters U. Sos M.L. Wells J.A. Shokat K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 2013 503 7477 548 551 10.1038/nature12796 24256730
    [Google Scholar]
  40. Hansen R. Peters U. Babbar A. Chen Y. Feng J. Janes M.R. Li L.S. Ren P. Liu Y. Zarrinkar P.P. The reactivity-driven biochemical mechanism of covalent KRASG12C inhibitors. Nat. Struct. Mol. Biol. 2018 25 6 454 462 10.1038/s41594‑018‑0061‑5 29760531
    [Google Scholar]
  41. Kitazawa M. Miyagawa Y. Koyama M. Nakamura S. Hondo N. Miyazaki S. Muranaka F. Tokumaru S. Yamamoto Y. Ehara T. Kuroiwa M. Tanaka H. Komatsu D. Takeoka M. Soejima Y. Drug sensitivity profile of minor KRAS mutations in colorectal cancer using mix culture assay: The effect of AMG 510, a novel KRAS G12C selective inhibitor, on colon cancer cells is markedly enhanced by the combined inhibition of MEK and BCL XL. Mol. Clin. Oncol. 2021 15 1 148 10.3892/mco.2021.2310 34094546
    [Google Scholar]
  42. Forster A.B. Abeywickrema P. Bunda J. Cox C.D. Cabalu T.D. Egbertson M. Fay J. Getty K. Hall D. Kornienko M. Lu J. Parthasarathy G. Reid J. Sharma S. Shipe W.D. Smith S.M. Soisson S. Stachel S.J. Su H.P. Wang D. Berger R. The identification of a novel lead class for phosphodiesterase 2 inhibition by fragment-based drug design. Bioorg. Med. Chem. Lett. 2017 27 23 5167 5171 10.1016/j.bmcl.2017.10.054 29113762
    [Google Scholar]
  43. Suresh L. Poornachandra Y. Kanakaraju S. Kumar G.C. Chandramouli G.V.P. One-pot three-component domino protocol for the synthesis of novel pyrano[2,3-d]pyrimidines as antimicrobial and anti-biofilm agents. Org. Biomol. Chem. 2015 13 26 7294 7306 10.1039/C5OB00693G 26054925
    [Google Scholar]
  44. Suresh L. Onkara P. Kumar P.S.V. Pydisetty Y. Chandramouli G.V.P. Ionic liquid-promoted multicomponent synthesis of fused tetrazolo[1,5-a]pyrimidines as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett. 2016 26 16 4007 4014 10.1016/j.bmcl.2016.06.086 27406797
    [Google Scholar]
  45. Suresh L. Kumar P.S.V. Chandramouli G.V.P. An efficient one-pot synthesis, characterization and antibacterial activity of novel chromeno-pyrimidine derivatives. J. Mol. Struct. 2017 1134 51 58 10.1016/j.molstruc.2016.12.030
    [Google Scholar]
  46. Hallin J. Engstrom L.D. Hargis L. Calinisan A. Aranda R. Briere D.M. Sudhakar N. Bowcut V. Baer B.R. Ballard J.A. Burkard M.R. Fell J.B. Fischer J.P. Vigers G.P. Xue Y. Gatto S. Fernandez-Banet J. Pavlicek A. Velastagui K. Chao R.C. Barton J. Pierobon M. Baldelli E. Patricoin E.F. Cassidy D.P. Marx M.A. Rybkin I.I. Johnson M.L. Ou S.H.I. Lito P. Papadopoulos K.P. Jänne P.A. Olson P. Christensen J.G. The KRASG12C inhibitor MRTX849 Provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 2020 10 1 54 71 10.1158/2159‑8290.CD‑19‑1167 31658955
    [Google Scholar]
  47. Yaeger R. Uboha N.V. Pelster M.S. Bekaii-Saab T.S. Barve M. Saltzman J. Sabari J.K. Peguero J.A. Paulson A.S. Jänne P.A. Cruz-Correa M. Anderes K. Velastegui K. Yan X. Der-Torossian H. Klempner S.J. Kopetz S.E. Efficacy and safety of adagrasib plus Cetuximab in patients with KRAS G12C-mutated metastatic colorectal cancer. Cancer Discov. 2024 14 6 982 993 10.1158/2159‑8290.CD‑24‑0217 38587856
    [Google Scholar]
  48. Peng X. Lee E. liang, J.; Colon, T.; Tran, F.; Choi, B.H.; Dai, W. KRas plays a negative role in regulating IDO1 expression. Transl. Oncol. 2025 51 102167 10.1016/j.tranon.2024.102167 39550890
    [Google Scholar]
  49. Zheng Q. Zhang Z. Guiley K.Z. Shokat K.M. Strain-release alkylation of Asp12 enables mutant selective targeting of K-Ras-G12D. Nat. Chem. Biol. 2024 20 9 1114 1122 10.1038/s41589‑024‑01565‑w 38443470
    [Google Scholar]
  50. Becker J.H. Metropulos A.E. Spaulding C. Marinelarena A.M. Shields M.A. Principe D.R. Pham T.D. Munshi H.G. Targeting BCL2 with Venetoclax enhances the efficacy of the KRAS G12D Inhibitor MRTX1133 in pancreatic cancer. Cancer Res. 2024 84 21 3629 3639 10.1158/0008‑5472.CAN‑23‑3574 39137400
    [Google Scholar]
  51. Chour A. Toffart A.C. Berton E. Duruisseaux M. Mechanisms of resistance to KRASG12C inhibitors in KRASG12C-mutated non-small cell lung cancer. Front. Oncol. 2024 14 1328728 10.3389/fonc.2024.1328728 39301544
    [Google Scholar]
  52. Lin Y. Ramelot T.A. Senyuz S. Gursoy A. Jang H. Nussinov R. Keskin O. Zheng Y. Tumor-derived RHOA mutants interact with effectors in the GDP-bound state. Nat. Commun. 2024 15 1 7176 10.1038/s41467‑024‑51445‑z 39169042
    [Google Scholar]
  53. Shi J.T. Hou S.J. Cheng L. Zhang H.J. Mu H.X. Wang Q.S. Wang Z. Chen S.W. Discovery of novel coumarin-based KRAS-G12C inhibitors from virtual screening and Rational structural optimization. Bioorg. Chem. 2024 148 107467 10.1016/j.bioorg.2024.107467 38772290
    [Google Scholar]
  54. Zhang Z. Gao R. Hu Q. Peacock H. Peacock D.M. Dai S. Shokat K.M. Suga H. GTP-State-selective cyclic peptide ligands of K-Ras(G12D) block its interaction with Raf. ACS Cent. Sci. 2020 6 10 1753 1761 10.1021/acscentsci.0c00514 33145412
    [Google Scholar]
  55. Cheng J. Zhou J. Kong L. Wang H. Zhang Y. Wang X. Liu G. Chu Q. Stabilized cyclic peptides as modulators of protein–protein interactions: Promising strategies and biological evaluation. RSC Med. Chem. 2023 14 12 2496 2508 10.1039/D3MD00487B 38107173
    [Google Scholar]
  56. Cui Y. Niu Y. Zhao T. Wang X. Wang D. Zhang Y. Microscopic mechanistic study of the penetration distributions for plasma reactive oxygen and nitrogen species based on sialic acid targeting on the cell membrane surface. Free Radic. Biol. Med. 2024 225 145 156 10.1016/j.freeradbiomed.2024.09.052 39362290
    [Google Scholar]
  57. Jakka S.R. Mugesh G. Emerging role of noncovalent interactions and disulfide bond formation in the cellular uptake of small molecules and proteins. Chem. Asian J. 2025 20 6 e202401734 10.1002/asia.202401734 39831847
    [Google Scholar]
  58. Shabanpour Y. Hajipour-Verdom B. Abdolmaleki P. Alipour M. Protein-free domains in native and ferroptosis-driven oxidized cell membranes: A molecular dynamics study of biophysical properties and doxorubicin uptake. Front. Mol. Biosci. 2024 11 1494257 10.3389/fmolb.2024.1494257 39611002
    [Google Scholar]
  59. Jänne P.A. Riely G.J. Gadgeel S.M. Heist R.S. Ou S.H.I. Pacheco J.M. Johnson M.L. Sabari J.K. Leventakos K. Yau E. Bazhenova L. Negrao M.V. Pennell N.A. Zhang J. Anderes K. Der-Torossian H. Kheoh T. Velastegui K. Yan X. Christensen J.G. Chao R.C. Spira A.I. Adagrasib in non–small-cell lung cancer harboring a KRAS G12C mutation. N. Engl. J. Med. 2022 387 2 120 131 10.1056/NEJMoa2204619 35658005
    [Google Scholar]
  60. Mausey N. Halford Z. Targeted therapies for previously “Undruggable” KRAS-mutated non–small cell lung cancer: A review of Sotorasib and Adagrasib. Ann. Pharmacother. 2024 58 6 622 635 10.1177/10600280231197459 37700573
    [Google Scholar]
  61. Warnecke B. Nagasaka M. Adagrasib in the treatment of KRAS p.G12C positive advanced NSCLC: Design, development and place in therapy. Drug Des. Devel. Ther. 2024 18 5673 5683 10.2147/DDDT.S466217 39654605
    [Google Scholar]
  62. Lin X. Kang K. Chen P. Zeng Z. Li G. Xiong W. Yi M. Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol. Cancer 2024 23 1 108 10.1186/s12943‑024‑02023‑w 38762484
    [Google Scholar]
  63. Mao Z. Xiao H. Shen P. Yang Y. Xue J. Yang Y. Shang Y. Zhang L. Li X. Zhang Y. Du Y. Chen C.C. Guo R.T. Zhang Y. KRAS(G12D) can be targeted by potent inhibitors via formation of salt bridge. Cell Discov. 2022 8 1 5 10.1038/s41421‑021‑00368‑w 35075146
    [Google Scholar]
  64. Li L. Liu J. Yang Z. Zhao H. Deng B. Ren Y. Mai R. Huang J. Chen J. Discovery of Thieno[2,3-d]pyrimidine-based KRAS G12D inhibitors as potential anticancer agents via combinatorial virtual screening. Eur. J. Med. Chem. 2022 233 114243 10.1016/j.ejmech.2022.114243 35276423
    [Google Scholar]
  65. Suresh L. Sagar Vijay Kumar P. Poornachandra Y. Ganesh Kumar C. Babu N.J. Chandramouli G.V.P. An expeditious four-component domino protocol for the synthesis of novel thiazolo[3,2-a]thiochromeno[4,3-d]pyrimidine derivatives as antibacterial and antibiofilm agents. Bioorg. Med. Chem. 2016 24 16 3808 3817 10.1016/j.bmc.2016.06.025 27344213
    [Google Scholar]
  66. Sagar Vijay Kumar P. Suresh L. Chandramouli G.V.P. Ionic liquid catalysed multicomponent synthesis, antifungal activity, docking studies and in silico ADMET properties of novel fused Chromeno-Pyrazolo-Phthalazine derivatives. J. Saudi Chem. Soc. 2017 21 3 306 314 10.1016/j.jscs.2015.08.001
    [Google Scholar]
  67. Wang X. Allen S. Blake J.F. Bowcut V. Briere D.M. Calinisan A. Dahlke J.R. Fell J.B. Fischer J.P. Gunn R.J. Hallin J. Laguer J. Lawson J.D. Medwid J. Newhouse B. Nguyen P. O’Leary J.M. Olson P. Pajk S. Rahbaek L. Rodriguez M. Smith C.R. Tang T.P. Thomas N.C. Vanderpool D. Vigers G.P. Christensen J.G. Marx M.A. Identification of MRTX1133, a noncovalent, potent, and selective KRAS G12D inhibitor. J. Med. Chem. 2022 65 4 3123 3133 10.1021/acs.jmedchem.1c01688 34889605
    [Google Scholar]
  68. Kargbo R.B. Innovative therapeutic approaches targeting k-ras: analysis of macrocyclic compounds, peptidomimetics, and pyridopyrimidine inhibitors. ACS Med. Chem. Lett. 2024 15 8 1196 1198 10.1021/acsmedchemlett.4c00328 39140043
    [Google Scholar]
  69. Ali H.M. Said M.A. Allam S. Abdel-Aziz H.A. Abou-Seri S.M. Exploring the antiproliferative and proapoptotic activities of new pyridopyrimidine derivatives and their analogs. Bioorg. Med. Chem. 2025 118 118053 10.1016/j.bmc.2024.118053 39746269
    [Google Scholar]
  70. Zardi P. Righino B. Pirolli D. Gramanzini M. Semeraro A. Galano-Frutos J.J. Königs A. Ðorđević L. Maggini M. Buttarelli M. Cappoli N. Romano V. De Donato M. Gallo D. Scambia G. De Rosa M.C. Design and synthesis of pyridopyrimidines targeting NEK6 kinase. Arch. Biochem. Biophys. 2025 768 110391 10.1016/j.abb.2025.110391 40090442
    [Google Scholar]
  71. Liang F. Kang Z. Sun X. Chen J. Duan X. He H. Cheng J. Inhibition mechanism of MRTX1133 on KRASG12D: A molecular dynamics simulation and Markov state model study. J. Comput. Aided Mol. Des. 2023 37 3 157 166 10.1007/s10822‑023‑00498‑1 36849761
    [Google Scholar]
  72. Kemp S.B. Cheng N. Markosyan N. Sor R. Kim I.K. Hallin J. Shoush J. Quinones L. Brown N.V. Bassett J.B. Joshi N. Yuan S. Smith M. Vostrejs W.P. Perez-Vale K.Z. Kahn B. Mo F. Donahue T.R. Radu C.G. Clendenin C. Christensen J.G. Vonderheide R.H. Stanger B.Z. Efficacy of a small-molecule inhibitor of KrasG12D in immunocompetent models of pancreatic cancer. Cancer Discov. 2023 13 2 298 311 10.1158/2159‑8290.CD‑22‑1066 36472553
    [Google Scholar]
  73. Kargbo R.B. Unveiling New KRAS G12D inhibitors: A promising approach for pancreatic cancer therapy. ACS Med. Chem. Lett. 2023 14 7 889 890 10.1021/acsmedchemlett.3c00222 37465312
    [Google Scholar]
  74. Kargbo R.B. Targeting the “Undruggable” driver protein, KRAS G12D, as potential therapy in prostate cancer. ACS Med. Chem. Lett. 2023 14 4 365 366 10.1021/acsmedchemlett.3c00076 37077403
    [Google Scholar]
  75. Kargbo R.B. Discovery of potent deuterated compounds as potential KRAS G12D inhibitors in cancer therapy. ACS Med. Chem. Lett. 2023 14 4 362 364 10.1021/acsmedchemlett.3c00075 37077379
    [Google Scholar]
  76. Kargbo R.B. Discovery of selective and potent KRAS G12D inhibitors as potential therapy in cancer. ACS Med. Chem. Lett. 2023 14 6 689 691 10.1021/acsmedchemlett.3c00167 37312844
    [Google Scholar]
  77. Ji X. Li Y. Kong X. Chen D. Lu J. Discovery of prodrug of MRTX1133 as an oral therapy for cancers with KRAS G12D mutation. ACS Omega 2023 8 7 7211 7221 10.1021/acsomega.3c00329 36844555
    [Google Scholar]
  78. Zhou C. Li C. Luo L. Li X. Jia K. He N. Mao S. Wang W. Shao C. Liu X. Huang K. Yu Y. Cai X. Chen Y. Dai Z. Li W. Yu J. Li J. Shen F. Wang Z. He F. Sun X. Mao R. Shi W. Zhang J. Jiang T. Zhang Z. Li F. Ren S. Anti-tumor efficacy of HRS-4642 and its potential combination with proteasome inhibition in KRAS G12D-mutant cancer. Cancer Cell 2024 42 7 1286 1300.e8 10.1016/j.ccell.2024.06.001 38942026
    [Google Scholar]
  79. Shen D. Zhang G. Weng X. Liu R. Liu Z. Sheng X. Zhang Y. Liu Y. Mu Y. Zhu Y. Sun E. Zhang J. Li F. Xia C. Ge J. Liu Z. Bu Z. Zhao D. A genome-wide CRISPR/Cas9 knockout screen identifies TMEM239 as an important host factor in facilitating African swine fever virus entry into early endosomes. PLoS Pathog. 2024 20 7 e1012256 10.1371/journal.ppat.1012256 39024394
    [Google Scholar]
  80. Touzeau C. Perrot A. Hulin C. Manier S. Macro M. Chretien M.L. Karlin L. Escoffre M. Jacquet C. Tiab M. Leleu X. Avet-Loiseau H. Jobert A. Planche L. Corre J. Moreau P. Daratumumab, carfilzomib, lenalidomide, and dexamethasone with tandem transplant for high-risk newly diagnosed myeloma. Blood 2024 143 20 2029 2036 10.1182/blood.2023023597 38394666
    [Google Scholar]
  81. Joseph A. Harel S. Mesnard L. Rafat C. Knapp S. Rumpler A. Philipponnet C. Barba C. Rebibou J.M. Buob D. Hertig A. Vargaftig J. Halimi J.M. Arnulf B. Bretaud A.S. Joly B. Grangé S. Coppo P. Carfilzomib-associated thrombotic microangiopathy: Clinical features and outcomes. Nephrol. Dial. Transplant. 2024 39 12 2067 2078 10.1093/ndt/gfae096 38658194
    [Google Scholar]
  82. Welsch M.E. Kaplan A. Chambers J.M. Stokes M.E. Bos P.H. Zask A. Zhang Y. Sanchez-Martin M. Badgley M.A. Huang C.S. Tran T.H. Akkiraju H. Brown L.M. Nandakumar R. Cremers S. Yang W.S. Tong L. Olive K.P. Ferrando A. Stockwell B.R. Multivalent small-molecule Pan-RAS inhibitors. Cell 2017 168 5 878 889.e29 10.1016/j.cell.2017.02.006 28235199
    [Google Scholar]
  83. Winiewska-Szajewska M. Poznański J. Differential scanning fluorimetry followed by microscale thermophoresis and/or isothermal titration calorimetry as an efficient tool for ligand screening. Biophys. Rev. 2025 17 1 199 223 10.1007/s12551‑025‑01280‑3 40060009
    [Google Scholar]
  84. Jagilinki B. Willis M. Mus F. Sharma R. Pellows L. Mulder D. Yang Z. Seefeldt L. King P. Dukovic G. Peters J. Microscale Thermophoresis (MST) as a tool to study binding interactions of oxygen-sensitive biohybrids. Bio Protoc. 2024 14 1350 e5041 10.21769/BioProtoc.5041 39131194
    [Google Scholar]
  85. Shang F. Ding B.Y. Niu J. Lu J.M. Xie X.C. Li C.Z. Zhang W. Pan D. Jiang R.X. Wang J.J. microRNA maintains nutrient homeostasis in the symbiont–host interaction. Proc. Natl. Acad. Sci. USA 2024 121 36 e2406925121 10.1073/pnas.2406925121 39196627
    [Google Scholar]
  86. Shang Z. Fan Y. Xi S. Zhang S. Shen W. Tao L. Xu C. Tan J. Fan M. Ma H. Lai Y. Sun D. Cheng H. Arenobufagin enhances T-cell anti-tumor immunity in colorectal cancer by modulating HSP90β accessibility. Phytomedicine 2024 128 155497 10.1016/j.phymed.2024.155497 38640855
    [Google Scholar]
  87. Wang Y. Zhang H. Li J. Niu M.M. Zhou Y. Qu Y. Discovery of potent and noncovalent KRASG12D inhibitors: Structure-based virtual screening and biological evaluation. Front. Pharmacol. 2022 13 1094887 10.3389/fphar.2022.1094887 36618907
    [Google Scholar]
  88. Kulkarni A.M. Kumar V. Parate S. Lee G. Yoon S. Lee K.W. Identification of new KRAS G12D inhibitors through computer-aided drug discovery methods. Int. J. Mol. Sci. 2022 23 3 1309 10.3390/ijms23031309 35163234
    [Google Scholar]
  89. Zhou Z. Zhou G. Zhou C. Fan Z. Cui R. Li Y. Li R. Gu Y. Li H. Ge Z. Cai X. Jiang B. Wang D. Zheng M. Xu T. Zhang S. Discovery of a potent, cooperative, and selective SOS1 PROTAC ZZ151 with in vivo antitumor efficacy in KRAS-mutant cancers. J. Med. Chem. 2023 66 6 4197 4214 10.1021/acs.jmedchem.3c00075 36897932
    [Google Scholar]
  90. Hofmann M.H. Gmachl M. Ramharter J. Savarese F. Gerlach D. Marszalek J.R. Sanderson M.P. Kessler D. Trapani F. Arnhof H. Rumpel K. Botesteanu D.A. Ettmayer P. Gerstberger T. Kofink C. Wunberg T. Zoephel A. Fu S.C. Teh J.L. Böttcher J. Pototschnig N. Schachinger F. Schipany K. Lieb S. Vellano C.P. O’Connell J.C. Mendes R.L. Moll J. Petronczki M. Heffernan T.P. Pearson M. McConnell D.B. Kraut N. BI-3406, a potent and selective sos1–kras interaction inhibitor, is effective in KRAS-Driven cancers through combined MEK inhibition. Cancer Discov. 2021 11 1 142 157 10.1158/2159‑8290.CD‑20‑0142 32816843
    [Google Scholar]
  91. Zhou C. Fan Z. Gu Y. Ge Z. Tao Z. Cui R. Li Y. Zhou G. Huo R. Gao M. Wang D. He W. Zheng M. Zhang S. Xu T. Design, synthesis, and biological evaluation of potent and selective PROTAC degraders of oncogenic KRAS G12D. J. Med. Chem. 2024 67 2 1147 1167 10.1021/acs.jmedchem.3c01622 38197882
    [Google Scholar]
  92. Kargbo R.B. Targeted degradation of KRAS G12D as potential therapy in cancer. ACS Med. Chem. Lett. 2023 14 5 537 538 10.1021/acsmedchemlett.3c00111 37197464
    [Google Scholar]
  93. Wan L. Lin K.T. Rahman M.A. Ishigami Y. Wang Z. Jensen M.A. Wilkinson J.E. Park Y. Tuveson D.A. Krainer A.R. Splicing factor SRSF1 promotes pancreatitis and KRASG12D-mediated pancrereatic canc. Cancer Discov. 2023 13 7 1678 1695 10.1158/2159‑8290.CD‑22‑1013 37098965
    [Google Scholar]
  94. Chen F. Hou W. Yu X. Wu J. Li Z. Xu J. Deng Z. Chen G. Liu B. Yin X. Yu W. Zhang L. Xu G. Ji H. Liang C. Wang Z. CBX4 deletion promotes tumorigenesis under KrasG12D background by inducing genomic instability. Signal Transduct. Target. Ther. 2023 8 1 343 10.1038/s41392‑023‑01623‑0 37696812
    [Google Scholar]
  95. Zhang R. Peng X. Du J.X. Boohaker R. Estevao I.L. Grajeda B.I. Cox M.B. Almeida I.C. Lu W. Oncogenic KRASG12D reprograms lipid metabolism by upregulating SLC25A1 to Drive Pancreatic Tumorigenesis. Cancer Res. 2023 83 22 3739 3752 10.1158/0008‑5472.CAN‑22‑2679 37695315
    [Google Scholar]
  96. Xiong H.J. Yu H.Q. Zhang J. Fang L. Wu D. Lin X.T. Xie C.M. Elevated FBXL6 activates both wild-type KRAS and mutant KRASG12D and drives HCC tumorigenesis via the ERK/mTOR/PRELID2/ROS axis in mice. Mil. Med. Res. 2023 10 1 68 10.1186/s40779‑023‑00501‑8 38124228
    [Google Scholar]
  97. Li Y. Wu D. Li H. Sun Y. Inactivation of Rbx1 E3 ligase suppresses Kras G12D ‐driven lung tumorigenesis. MedComm 2023 4 4 e332 10.1002/mco2.332 37470067
    [Google Scholar]
  98. Gulay K.C.M. Zhang X. Pantazopoulou V. Patel J. Esparza E. Pran Babu D.S. Ogawa S. Weitz J. Ng I. Mose E.S. Pu M. Engle D.D. Lowy A.M. Tiriac H. Dual inhibition of KRASG12D and Pan-ERBB is synergistic in pancreatic ductal adenocarcinoma. Cancer Res. 2023 83 18 3001 3012 10.1158/0008‑5472.CAN‑23‑1313 37378556
    [Google Scholar]
  99. McDaid W.J. Wilson L. Adderley H. Martinez-Lopez A. Baker M.J. Searle J. Ginn L. Budden T. Aldea M. Marinello A. Aredo J.V. Viros A. Besse B. Wakelee H.A. Blackhall F. Castillo-Lluva S. Lindsay C.R. Malliri A. The PI3K-AKT-mTOR axis persists as a therapeutic dependency in KRASG12D-driven non-small cell lung cancer. Mol. Cancer 2024 23 1 253 10.1186/s12943‑024‑02157‑x 39533328
    [Google Scholar]
  100. Kapustin A.N. Davey P. Longmire D. Matthews C. Linnane E. Rustogi N. Stavrou M. Devine P.W.A. Bond N.J. Hanson L. Sonzini S. Revenko A. MacLeod A.R. Ross S. Chiarparin E. Puri S. Antisense oligonucleotide activity in tumour cells is influenced by intracellular LBPA distribution and extracellular vesicle recycling. Commun. Biol. 2021 4 1 1241 10.1038/s42003‑021‑02772‑0 34725463
    [Google Scholar]
  101. Anthiya S. Öztürk S.C. Yanik H. Tavukcuoglu E. Şahin A. Datta D. Charisse K. Álvarez D.M. Loza M.I. Calvo A. Sulheim E. Loevenich S. Klinkenberg G. Schmid R. Manoharan M. Esendağlı G. Alonso M.J. Targeted siRNA lipid nanoparticles for the treatment of KRAS-mutant tumors. J. Control. Release 2023 357 67 83 10.1016/j.jconrel.2023.03.016 36921725
    [Google Scholar]
  102. Fu Z. Zhang X. Zhou X. Ur-Rehman U. Yu M. Liang H. Guo H. Guo X. Kong Y. Su Y. Ye Y. Hu X. Cheng W. Wu J. Wang Y. Gu Y. Lu S. Wu D. Zen K. Li J. Yan C. Zhang C.Y. Chen X. In vivo self-assembled small RNAs as a new generation of RNAi therapeutics. Cell Res. 2021 31 6 631 648 10.1038/s41422‑021‑00491‑z 33782530
    [Google Scholar]
  103. Zhao G. Ho W. Chu J. Xiong X. Hu B. Boakye-Yiadom K.O. Xu X. Zhang X.Q. Inhalable siRNA nanoparticles for enhanced tumor-targeting treatment of KRAS -mutant non-small-cell lung cancer. ACS Appl. Mater. Interfaces 2023 15 26 31273 31284 10.1021/acsami.3c05007 37354089
    [Google Scholar]
  104. Huang Y. Chen Y. Zhou S. Xie L. Liang K. Xu J. Zhang Q. Chen H. Wang D. Song Q. Jiang G. Mei N. Ma F. Lu H. Gao X. Chen J. Synthetically lethal biomimetic nutri-hijacker hitchhikes and reprograms KRAS mutation-driven metabolic addictions for pancreatic ductal adenocarcinoma treatment. ACS Nano 2023 17 14 14014 14031 10.1021/acsnano.3c04069 37428140
    [Google Scholar]
  105. Ghimessy A. Radeczky P. Laszlo V. Hegedus B. Renyi-Vamos F. Fillinger J. Klepetko W. Lang C. Dome B. Megyesfalvi Z. Current therapy of KRAS-mutant lung cancer. Cancer Metastasis Rev. 2020 39 4 1159 1177 10.1007/s10555‑020‑09903‑9 32548736
    [Google Scholar]
  106. Santofimia-Castaño P. Fraunhoffer N. Liu X. Bessone I.F. di Magliano M.P. Audebert S. Camoin L. Estaras M. Brenière M. Modesti M. Lomberk G. Urrutia R. Soubeyran P. Neira J.L. Iovanna J. Targeting NUPR1-dependent stress granules formation to induce synthetic lethality in KrasG12D-driven tumors. EMBO Mol. Med. 2024 16 3 475 505 10.1038/s44321‑024‑00032‑2 38360999
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298391640250731025705
Loading
/content/journals/mroc/10.2174/0118756298391640250731025705
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test