Skip to content
2000
image of Aluminium Triflate in Organic Synthesis

Abstract

Aluminium triflate, a relatively new addition to the family of metal triflates, showcases a distinctive reactivity profile that sets it apart from traditional Lewis acids such as aluminium chloride (AlCl), tin (IV) chloride (SnCl), and boron trifluoride (BF). Its unique properties make it an attractive candidate for various catalytic applications. Notably, aluminium triflate can be easily prepared and utilised at low catalyst loadings, enhancing its efficiency and cost-effectiveness. Furthermore, its recyclability contributes to sustainable practices, aligning perfectly with the principles of green chemistry. The solubility and stability of aluminium triflate in aqueous media further enhance its appeal, as these characteristics allow for more environmentally friendly reaction conditions. Compared to other catalytic systems, Al(OTf) exhibits consistently superior performance, particularly in terms of selectivity and turnover frequency. This superior reactivity makes it a powerful tool in organic synthesis, enabling chemists to achieve desired transformations with greater precision and efficiency. In this comprehensive review, we explore the significant advancements in the application of aluminium triflate as a catalyst in organic transformations from 1985 to 2024. We highlight key studies that demonstrate its versatility across various reaction types, including the formation of carbon-carbon and carbon-heteroatom bonds. This critical analysis of advancements in this field aims to provide insights into the future potential of aluminium triflate in organic synthesis and its role in advancing sustainable chemistry practices.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298393592250804144308
2025-08-28
2025-10-30
Loading full text...

Full text loading...

References

  1. Kobayashi S. Manabe K. Development of novel Lewis acid catalysts for selective organic reactions in aqueous media. Acc. Chem. Res. 2002 35 4 209 217 10.1021/ar000145a 11955049
    [Google Scholar]
  2. Falgoux D. Simoulin D. Pascal-Mousselard M. Process for the preparation of addition products of epoxides and hydroxylated compounds. US Patent 4543430A 1985
    [Google Scholar]
  3. Olah G.A. Farooq O. Farnia S.M.F. Olah J.A. Friedel-Crafts chemistry. 11. Boron, aluminum, and gallium tris(trifluoromethanesulfonate) (triflate): effective new Friedel-Crafts catalysts. J. Am. Chem. Soc. 1988 110 8 2560 2565 10.1021/ja00216a032
    [Google Scholar]
  4. Castellani C.B. Carugo O. Perotti A. Sacchi D. Invernizzi A.G. Vidari G. Rare earth trifluoromethanesulphonates as catalysts in some Meerwein—Ponndorf—Verley type reductions. J. Mol. Catal. 1993 85 1 65 74 10.1016/0304‑5102(93)87124‑Q
    [Google Scholar]
  5. Williams D.B.G. Cullen A. Al(OTf)(3)-mediated epoxide ring-opening reactions: Toward piperazine-derived physiologically active products. J. Org. Chem. 2009 74 24 9509 9512 10.1021/jo9020437 19916484
    [Google Scholar]
  6. Williams D.B.G. Lawton M. Metal triflates: On the question of Lewis versus Brønsted acidity in retinyl carbocation formation. J. Mol. Catal. Chem. 2010 317 1-2 68 71 10.1016/j.molcata.2009.10.023
    [Google Scholar]
  7. Williams D.B.G. Simelane S.B. Lawton M. Kinfe H.H. Efficient tetrahydropyranyl and tetrahydrofuranyl protection/deprotection of alcohols and phenols with Al(OTf)3 as catalyst. Tetrahedron 2010 66 25 4573 4576 10.1016/j.tet.2010.04.053
    [Google Scholar]
  8. Williams D.B.G. Sibiya M.S. van Heerden P.S. Efficient hydroalkoxylation of alkenes to generate octane-boosting ethers using recyclable metal triflates and highly active metal triflate/Brønsted acid-assisted catalysts. Fuel Process. Technol. 2012 94 1 75 79 10.1016/j.fuproc.2011.10.024
    [Google Scholar]
  9. Makume B.F. Bredenkamp T. Williams D.B.G. Substrate requirements for palladium–aluminium triflate co‐catalysed hydromethoxycarbonylation reactions of alkynes bearing oxygen atoms. ChemCatChem 2014 6 10 2801 2804 10.1002/cctc.201402525
    [Google Scholar]
  10. Williams D.B.G. Lawton M. Aluminium triflate: A remarkable Lewis acid catalyst for the ring opening of epoxides by alcohols. Org. Biomol. Chem. 2005 3 18 3269 3272 10.1039/b508924g 16132088
    [Google Scholar]
  11. Green M.J. Metal perfluorosulphonic acid polymer catatylst US Patent 4687755 1987
    [Google Scholar]
  12. Terblans Y.M. Huyser M. Young D.A. Green M.J. The synthesis of butene glycol ethers with aluminium triflate. Can. J. Chem. 2006 84 6 859 866 10.1139/v06‑086
    [Google Scholar]
  13. Terblans Y.M. Huyser J.J. Huyser M. Green M.J. Young D.A. Sibiya M.S. Aluminium triflate as catalyst for epoxide ring-opening and esterification reactions — Mechanistic aspects. Can. J. Chem. 2005 83 6-7 854 861 10.1139/v05‑098
    [Google Scholar]
  14. Cucciniello R. Ricciardi M. Vitiello R. Di Serio M. Proto A. Capacchione C. Synthesis of monoalkyl glyceryl ethers by ring opening of glycidol with alcohols in the presence of lewis acids. ChemSusChem 2016 9 23 3272 3275 10.1002/cssc.201600989 27880034
    [Google Scholar]
  15. Fringuelli F. Pizzo F. Tortoioli S. Vaccaro L. Solvent-free Al(OTf)3-catalyzed aminolysis of 1,2-epoxides by 2-picolylamine: A key step in the synthesis of ionic liquids. J. Org. Chem. 2004 69 22 7745 7747 10.1021/jo049335f 15498007
    [Google Scholar]
  16. Sutter M. Silva E.D. Duguet N. Raoul Y. Métay E. Lemaire M. Glycerol ether synthesis: A bench test for green chemistry concepts and technologies. Chem. Rev. 2015 115 16 8609 8651 10.1021/cr5004002 26196761
    [Google Scholar]
  17. Gu Y. Azzouzi A. Pouilloux Y. Jérôme F. Barrault J. Heterogeneously catalyzed etherification of glycerol: New pathways for transformation of glycerol to more valuable chemicals. Green Chem. 2008 10 2 164 167 10.1039/B715802E
    [Google Scholar]
  18. Gohain M. Jacobs J. Marais C. Al Bezuidenhoudt B.C.B. (OTf)3 catalysed friedel-crafts michael type addition of indoles to α,β-unsaturated Ketones with PEG-200 as recyclable solvent. Aust. J. Chem. 2013 66 12 1594 1599 10.1071/CH13254
    [Google Scholar]
  19. Boroujeni K.P. Polystyrene supported Al(OTf)3: An environmentally friendly heterogeneous catalyst for Friedel-crafts acylation of aromatic compounds. Bull. Korean Chem. Soc. 2010 31 11 3156 3158 10.5012/bkcs.2010.31.11.3156
    [Google Scholar]
  20. Parvanak-Boroujeni K. Parvanak K. Friedel-Crafts acylation of arenes with carboxylic acids using polystyrene-supported aluminum triflate. J. Serb. Chem. Soc. 2011 76 2 155 163 10.2298/JSC100215010P
    [Google Scholar]
  21. Gauni B. Mehariya K. Shah A. Duggirala S.M. Tetralone scaffolds and their potential therapeutic applications. Lett. Drug Des. Discov. 2021 18 3 222 238 10.2174/1570180817999201013165656
    [Google Scholar]
  22. Fillion E. Fishlock D. Wilsily A. Goll J.M. Meldrum’s acids as acylating agents in the catalytic intramolecular Friedel-Crafts reaction. J. Org. Chem. 2005 70 4 1316 1327 10.1021/jo0483724 15704966
    [Google Scholar]
  23. Kobayashi S. Komoto I. Remarkable effect of lithium salts in Friedel–Crafts acylation of 2-methoxynaphthalene catalyzed by metal triflates. Tetrahedron 2000 56 35 6463 6465 10.1016/S0040‑4020(00)00610‑4
    [Google Scholar]
  24. Chaturvedi A.K. Chaturvedi D. Ps-Al(OTf)3 Promoted efficient and novel synthesis of substituted N-aryl lactams. Chem. Biol. Interact. 2017 7 230 235
    [Google Scholar]
  25. Yurino T. Hachiya A. Suzuki K. Ohkuma T. Selective conversion of benzylic phosphates into diarylmethanes through Al(OTf) 3 ‐Catalyzed friedel–crafts‐type benzylation. Eur. J. Org. Chem. 2020 2020 15 2225 2232 10.1002/ejoc.202000077
    [Google Scholar]
  26. Gohain M. Marais C. Bezuidenhoudt B.C.B. Al(OTf)3: An efficient recyclable catalyst for direct nucleophilic substitution of the hydroxy group of propargylic alcohols with carbon- and heteroatom-centered nucleophiles to construct C–C, C–O, C–N and C–S bonds. Tetrahedron Lett. 2012 53 9 1048 1050 10.1016/j.tetlet.2011.12.060
    [Google Scholar]
  27. Gohain M. Marais C. Bezuidenhoudt B.C.B. An Al(OTf)3-catalyzed environmentally benign process for the propargylation of indoles. Tetrahedron Lett. 2012 53 35 4704 4707 10.1016/j.tetlet.2012.06.095
    [Google Scholar]
  28. Lu B. Luo Y. Liu L. Ye L. Wang Y. Zhang L. Umpolung reactivity of indole through gold catalysis. Angew. Chem. Int. Ed. 2011 50 36 8358 8362 10.1002/anie.201103014 21761530
    [Google Scholar]
  29. Ohshima T. Ipposhi J. Nakahara Y. Shibuya R. Mashima K. Aluminum triflate as a powerful catalyst for direct amination of alcohols, including electron‐withdrawing group‐substituted benzhydrols. Adv. Synth. Catal. 2012 354 13 2447 2452 10.1002/adsc.201200536
    [Google Scholar]
  30. Cullen A. Muller A.J. Williams D.B.G. Protecting group-free use of alcohols as carbon electrophiles in atom efficient aluminium triflate-catalysed dehydrative nucleophilic displacement reactions. RSC Advances 2017 7 67 42168 42171 10.1039/C7RA08784E
    [Google Scholar]
  31. Konshin V.V. Shcherbinin V.A. Lupanova I.A. Konshina D.N. Aluminum triflate—catalyzed adamantylation of N-Nucleophiles. Proceedings 2018 9 1 6
    [Google Scholar]
  32. Allali N. Mamane V. Al(OTf)3 as a new efficient catalyst for the direct nucleophilic substitution of ferrocenyl alcohol substrates. Convenient preparation of ferrocenyl-PEG compounds. Tetrahedron Lett. 2012 53 21 2604 2607 10.1016/j.tetlet.2012.03.042
    [Google Scholar]
  33. Payard P.A. Gu Q. Guo W. Wang Q. Corbet M. Michel C. Sautet P. Grimaud L. Wischert R. Pera-Titus M. Direct amination of alcohols catalyzed by aluminum triflate: An experimental and computational study. Chemistry 2018 24 53 14146 14153 10.1002/chem.201801492 29882367
    [Google Scholar]
  34. Gohain M. Lin S. Bezuidenhoudt B.C.B. AL(OTf)3-catalyzed SN2′ substitution of the β-hydroxy group in Morita–Baylis–Hillman adducts with indoles. Tetrahedron Lett. 2015 56 20 2579 2582 10.1016/j.tetlet.2015.03.131
    [Google Scholar]
  35. Zhong X. Li Y. Han F.S. Al-catalyzed facile construction of quaternary C-C bonds by the allylic substitution of tertiary alcohols: A concise and formal synthesis of (±)-mersicarpine. Chemistry 2012 18 32 9784 9788 10.1002/chem.201201344 22744831
    [Google Scholar]
  36. Sang R. Hu Y. Razzaq R. Jackstell R. Franke R. Beller M. State-of-the-art palladium-catalyzed alkoxycarbonylations. Org. Chem. Front. 2021 8 4 799 811 10.1039/D0QO01203C
    [Google Scholar]
  37. Williams D.B.G. Shaw M.L. Green M.J. Holzapfel C.W. Aluminum triflate as a highly active and efficient nonprotic cocatalyst in the palladium-catalyzed methoxycarbonylation reaction. Angew. Chem. Int. Ed. 2008 47 3 560 563 10.1002/anie.200702889 18041799
    [Google Scholar]
  38. Shuklov I.A. Dubrovina N.V. Schulze J. Tietz W. Kühlein K. Boerner A. Promoters for Pd-catalyzed methoxycarbonylation of vinyl acetate. ARKIVOC 2012 3 66 75
    [Google Scholar]
  39. Plessis M. Marais C. Bezuidenhoudt B.C.B. Palladium catalyzed hydroesterification of substituted alkenes under microwave conditions. ARKIVOC 2020 2020 3 40 48 10.24820/ark.5550190.p011.198
    [Google Scholar]
  40. Williams D.B.G. Bredenkamp T. Pd/Al(OTf) 3 catalyzed methoxycarbonylation: On the importance of counterions and the acid source. ChemCatChem 2012 4 2 206 208 10.1002/cctc.201100238
    [Google Scholar]
  41. du Plessis M. Marais C. Bezuidenhoudt B.C. Parameters influencing reactivity and regioselectivity in the methoxycarbonylation of arylalkenes. Synthesis 2016 48 557 565
    [Google Scholar]
  42. Zhu L. Liu L.J. Jiang Y.Y. Liu P. Fan X. Zhang Q. Zhao Y. Bi S. Mechanism and origin of ligand-controlled chemo-and regioselectivities in palladium-catalyzed methoxycarbonylation of alkynes. J. Org. Chem. 2020 85 11 7136 7151 10.1021/acs.joc.0c00533 32401024
    [Google Scholar]
  43. Holzapfel C. Bredenkamp T. An empirical study of phosphine ligands for the methoxycarbonylation of medium‐chain alkenes. ChemCatChem 2015 7 17 2598 2606 10.1002/cctc.201500464
    [Google Scholar]
  44. Akiri S.O. Ojwach S.O. Methoxycarbonylation of olefins catalysed by homogeneous palladium(II) complexes of (phenoxy)imine ligands bearing alkoxy silane groups. Inorg. Chim. Acta 2019 489 236 243 10.1016/j.ica.2019.02.025
    [Google Scholar]
  45. Williams D.B.G. Shaw M.L. Hughes T. Recyclable Pd(OAc)2/ligand/Al(OTf)3 catalyst for the homogeneous methoxycarbonylation and hydrocarboxylation reactions of phenylacetylene. Organometallics 2011 30 18 4968 4973 10.1021/om200603t
    [Google Scholar]
  46. Guo W.D. Liu L. Yang S.Q. Chen X.C. Lu Y. VO-Thanh, G.; Liu, Y. Synergetic Catalysis for One‐pot Bis‐alkoxycarbonylation of Terminal Alkynes over Pd/Xantphos−Al(OTf) 3 Bi‐functional Catalytic System. ChemCatChem 2020 12 5 1376 1384 10.1002/cctc.201901988
    [Google Scholar]
  47. Trost B.M. Rhee Y.H.A. Rh(I)-catalyzed cycloisomerization of homo- and bis-homopropargylic alcohols. J. Am. Chem. Soc. 2003 125 25 7482 7483 10.1021/ja0344258 12812465
    [Google Scholar]
  48. Mihailovic M.L. Petrovic Z. Teodorovic A. Konstantinovic S. Andrejevic V. Intramolecular cyclization of open‐chain unsaturated alcohols by means of Lewis acids. C R Acad. Sci. Paris 1989 308 29 32
    [Google Scholar]
  49. Coulombel L. Rajzmann M. Pons J.M. Olivero S. Duñach E. Aluminium(III) trifluoromethanesulfonate as an efficient catalyst for the intramolecular hydroalkoxylation of unactivated olefins: experimental and theoretical approaches. Chemistry 2006 12 24 6356 6365 10.1002/chem.200501478 16741907
    [Google Scholar]
  50. Coulombel L. Weïwer M. Duñach E. Aluminium triflate catalysed cyclisation of unsaturated alcohols: Novel synthesis of rose oxide and analogues. Eur. J. Org. Chem. 2009 2009 33 5788 5795 10.1002/ejoc.200900841
    [Google Scholar]
  51. Chaminade X. Coulombel L. Olivero S. Dunach E. Novel catalytic tandem isomerisation/cyclisation reaction of α‐methallyloxy carboxylic acids. Eur. J. Org. Chem. 2006 2006 16 3554 3557 10.1002/ejoc.200600300
    [Google Scholar]
  52. Chaminade X. Chiba S. Narasaka K. Dunach E. Aluminium triflate-catalysed regioselective cycloisomerisation of non-activated unsaturated oximes. Tetrahedron Lett. 2008 49 15 2384 2387 10.1016/j.tetlet.2008.02.070
    [Google Scholar]
  53. Wang J.J. Zhou A.X. Wang G.W. Yang S.D. An aluminum triflate‐catalyzed intramolecular reaction sequence toward concise construction of the tetrahydropyrido[1,2‐ a]indol‐6‐one skeleton. Adv. Synth. Catal. 2014 356 16 3356 3362 10.1002/adsc.201400391
    [Google Scholar]
  54. France S. Cavitt M. Aluminum (III)-catalyzed, formal homo-nazarov-type ring-opening cyclizations toward the synthesis of functionalized tetrahydroindolizines. Synthesis 2016 48 12 1910 1919 10.1055/s‑0035‑1561621
    [Google Scholar]
  55. Nagao Y. Jeong I.Y. Lee W.S. Ring enlargement reaction of 3-hydroxy-3-propargylisoindolin-1-ones: A new synthetic method for the 2-benzazepine-1,5-diones. Tetrahedron Lett. 1996 37 3 393 396 10.1016/0040‑4039(95)02184‑1
    [Google Scholar]
  56. Han J.Q. Zhang H.H. Xu P.F. Luo Y.C. Lewis acid and (hypo) iodite relay catalysis allows a strategy for the synthesis of polysubstituted azetidines and tetrahydroquinolines. Org. Lett. 2016 18 20 5212 5215 10.1021/acs.orglett.6b02430 27723357
    [Google Scholar]
  57. Aponte-Guzmán J. Phun L.H. Cavitt M.A. Taylor J.E. Davy J.C. France S. Catalytic, cascade ring‐opening benzannulations of 2,3‐Dihydrofuran O, O ‐ and N, O ‐Acetals. Chemistry 2016 22 30 10405 10409 10.1002/chem.201601954 27136896
    [Google Scholar]
  58. Yuan S. Guerra Faura G. Areheart H.E. Peulen N.E. France S. Lewis Acid-catalyzed 2,3-dihydrofuran acetal ring-opening benzannulations toward functionalized 1-hydroxycarbazoles. Molecules 2022 27 23 8344 8362 10.3390/molecules27238344 36500437
    [Google Scholar]
  59. Li J. Qin C. Yu Y. Fan H. Fu Y. Li H. Wang W. Lewis acid‐catalyzed C(sp3)–C(sp3) bond forming cyclization reactions for the synthesis of tetrahydroprotoberberine derivatives. Adv. Synth. Catal. 2017 359 13 2191 2195 10.1002/adsc.201601423
    [Google Scholar]
  60. Ponra S. Gohain M. Donka R. van Tonder J.H. Bezuidenhoudt B.C.B. Al(OTf)3-catalyzed one-pot synthesis of pyrrolo[3,2-d]pyrimidinedione derivatives. Tetrahedron Lett. 2018 59 30 2909 2912 10.1016/j.tetlet.2018.06.039
    [Google Scholar]
  61. Qi J. Sun C. Tian Y. Wang X. Li G. Xiao Q. Yin D. Highly efficient and versatile synthesis of lactams and N-heterocycles via Al(OTf)3-catalyzed cascade cyclization and ionic hydrogenation reactions. Org. Lett. 2014 16 1 190 192 10.1021/ol403173x 24313882
    [Google Scholar]
  62. Tian Y. Wang X. Xiao Q. Sun C. Yin D. Synthesis of dihydrobenzoheterocycles through Al(OTf)3-mediated cascade cyclization and ionic hydrogenation. J. Org. Chem. 2014 79 20 9678 9685 10.1021/jo501824z 25251644
    [Google Scholar]
  63. Liu T. Jia W. Xi Q. Chen Y. Wang X. Yin D. Diversity-oriented synthesis of heterocycles: Al(OTf)3-promoted cascade cyclization and ionic hydrogenation. J. Org. Chem. 2018 83 3 1387 1393 10.1021/acs.joc.7b02894 29300093
    [Google Scholar]
  64. Malykh A.G. Sadaie M.R. Piracetam and piracetam-like drugs: From basic science to novel clinical applications to CNS disorders. Drugs 2010 70 3 287 312 10.2165/11319230‑000000000‑00000 20166767
    [Google Scholar]
  65. Kamal A. Reddy K. Khan M.N. Shetty R. Ahmed S. Kumar K. Murty U. An efficient synthesis of quinoline derivatives: Bio-active studies. Lett. Drug Des. Discov. 2007 4 8 580 586 10.2174/157018007782794536
    [Google Scholar]
  66. O’Neil K.E. Kingree S.V. Minbiole K.P.C. A cyclopropane fragmentation approach to heterocycle assembly: A convergent synthesis of oxepanes. Org. Lett. 2005 7 3 515 517 10.1021/ol047426t 15673278
    [Google Scholar]
  67. Petasis N.A. Lu S.P. New stereocontrolled synthesis of substituted tetrahydrofurans from 1, 3-dioxolan-4-ones. J. Am. Chem. Soc. 1995 117 23 6394 6395 10.1021/ja00128a044
    [Google Scholar]
  68. Petasis N.A. Lu S.P. Stereocontrolled synthesis of substituted tetrahydropyrans from 1,3-dioxan-4-ones. Tetrahedron Lett. 1996 37 2 141 144 10.1016/0040‑4039(95)02114‑0
    [Google Scholar]
  69. Jarowicki K. Kocienski P. Protecting groups. J. Chem. Soc., Perkin Trans. 1 2001 18 18 2109 2135 10.1039/b103282h
    [Google Scholar]
  70. Zhao Y. Zhang Y. Wang C. Chen G. Jiang M. Role of protecting groups in synthesis and self-assembly of glycopolymers. Biomacromolecules 2017 18 2 568 575 10.1021/acs.biomac.6b01716 27992198
    [Google Scholar]
  71. Williams D.B.G. Lawton M.C. Highly atom efficient aluminium triflate catalysed acetal formation. Green Chem. 2008 10 9 914 917 10.1039/b805748f
    [Google Scholar]
  72. Firouzabadi H. Iranpoor N. Kohmareh G. Highly efficient and chemoselective thioacetalization of carbonyl compounds catalyzed with aluminum trifluromethanesulfonate. Synth. Commun. 2003 33 1 167 173 [Al(OTf)3 10.1081/SCC‑120015573
    [Google Scholar]
  73. Borujeni K.P. Massah A.R. Synthesis and application of polystyrene supported aluminium triflate as a new polymeric Lewis acid catalyst. React. Funct. Polym. 2006 66 10 1126 1131 10.1016/j.reactfunctpolym.2006.02.002
    [Google Scholar]
  74. Kamal A. Khan M.N.A. Reddy K.S. Srikanth Y.V.V. Al Krishnaji T. (OTf)3 as a highly efficient catalyst for the rapid acetylation of alcohols, phenols and thiophenols under solvent-free conditions. Tetrahedron Lett. 2007 48 22 3813 3818 10.1016/j.tetlet.2007.03.162
    [Google Scholar]
  75. Boroujeni K.P. Polystyrene-supported, Al(OTf) 3 -Catalyzed chemoselective synthesis of acylals from aldehydes. Synth. Commun. 2010 41 2 277 284 10.1080/00397910903537323
    [Google Scholar]
  76. Tayade K.N. Mishra M.K.M. Somani R.S. Synthesis of aluminium triflate-grafted MCM-41 as a water-tolerant acid catalyst for the ketalization of glycerol with acetone. Catal. Sci. Technol. 2015 5 4 2427 2440 10.1039/C4CY01396D
    [Google Scholar]
  77. Firouzabadi H. Iranpoor N. Sobhani S. Ghassamipour S. Aluminium triflate [Al(OTf)3] as a recyclable catalyst for the conversion of α-hydroxyphosphonates, alcohols and phenols to their corresponding O-silylated products with hexamethyldisilazane (HMDS). Synthesis 2005 2005 4 595 599 10.1055/s‑2005‑861789
    [Google Scholar]
  78. Wang J. Zhang Y. Lu Q. Xing D. Zhang R. Exploring carbohydrates for therapeutics: A review on future directions. Front. Pharmacol. 2021 12 756724 10.3389/fphar.2021.756724 34867374
    [Google Scholar]
  79. Cao X. Du X. Jiao H. An Q. Chen R. Fang P. Wang J. Yu B. Carbohydrate-based drugs launched during 2000−2021. Acta Pharm. Sin. B 2022 12 10 3783 3821 10.1016/j.apsb.2022.05.020 36213536
    [Google Scholar]
  80. Stensrud K. Hagberg E. Howard S. Rockafellow E.M. Process for acid dehydration of sugar alcohols US Patent 9630974 2017
    [Google Scholar]
  81. Rose M. Palkovits R. Isosorbide as a renewable platform chemical for versatile applications--quo vadis? ChemSusChem 2012 5 1 167 176 10.1002/cssc.201100580 22213713
    [Google Scholar]
  82. Marzag H. Zerhouni M. Tachallait H. Demange L. Robert G. Bougrin K. Auberger P. Benhida R. Modular synthesis of new C-aryl-nucleosides and their anti-CML activity. Bioorg. Med. Chem. Lett. 2018 28 10 1931 1936 10.1016/j.bmcl.2018.03.063 29655981
    [Google Scholar]
  83. Munyololo M. Gammon D.W. Mohrholz I. Extending the scope of the Ferrier reaction: Fragmentation-rearrangement reactions of selectively substituted 1,2-cyclopropanated glucose derivatives. Carbohydr. Res. 2012 351 49 55 10.1016/j.carres.2012.01.006 22341918
    [Google Scholar]
  84. Williams D.B.G. Simelane S.B. Kinfe H.H. Aluminium triflate catalysed O-glycosidation: Temperature-switched selective Ferrier rearrangement or direct addition with alcohols. Org. Biomol. Chem. 2012 10 29 5636 5642 10.1039/c2ob25540e 22733039
    [Google Scholar]
  85. Simelane S.B. Kinfe H.H. Muller A. Williams D.B.G. Aluminum triflate catalyzed tandem reactions of D-galactal: Toward chiral benzopyrans, chromenes, and chromans. Org. Lett. 2014 16 17 4543 4545 10.1021/ol502305j 25162834
    [Google Scholar]
  86. Dömling A. Ugi I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. 2000 39 18 3168 3210 10.1002/1521‑3773(20000915)39:18<3168:AID‑ANIE3168>3.0.CO;2‑U 11028061
    [Google Scholar]
  87. John S.E. Gulati S. Shankaraiah N. Recent advances in multi-component reactions and their mechanistic insights: A triennium review. Org. Chem. Front. 2021 8 15 4237 4287 10.1039/D0QO01480J
    [Google Scholar]
  88. Firouzabadi H. Iranpoor N. Sobhani S. Metal triflate-catalyzed one-pot synthesis of α-aminophosphonates from carbonyl compounds in the absence of solvent. Synthesis 2004 2004 16 2692 2696 10.1055/s‑2004‑831251
    [Google Scholar]
  89. Boroujeni K.P. Synthesis of α-aminophosphonates using polystyrene supported Al(OTf)3 as a heterogeneous catalyst. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2011 41 2 173 176 10.1080/15533174.2010.538029
    [Google Scholar]
  90. Sobhani S. Tashrifi Z. (OTf)3 as an efficient catalyst for one-pot synthesis of primary diethyl 1-aminophosphonates under solvent-free conditions. Synth. Commun. 2008 39 1 120 131 10.1080/00397910802369695
    [Google Scholar]
  91. Sobhani S. Tashrifi Z. One‐pot synthesis of primary 1‐aminophosphonates: Coupling reaction of carbonyl compounds, hexamethyldisilazane, and diethyl phosphite catalyzed by Al(OTf) 3. Heteroatom Chem. 2009 20 2 109 115 10.1002/hc.20517
    [Google Scholar]
  92. Wang X-C. Quan Z-J. Xu B. Zhong X. An Aluminum(III)-catalyzed thioamide–aldehyde–styrene condensation: Direct synthesis of allylic thioamide derivatives. Synlett 2016 27 15 2237 2240 10.1055/s‑0035‑1562507
    [Google Scholar]
  93. Wang T.L. Xu B. Lu S.H. Wang X.C. Quan Z.J. Direct allylation of aliphatic primary amines via Al(OTf) 3 -Catalyzed one-pot four-component reaction. ChemistrySelect 2017 2 31 10206 10209 10.1002/slct.201701555
    [Google Scholar]
  94. Sokamisa M.S. Nyondlo Y.M. Kinfe H.H. Aluminum triflate catalyzed Povarov reaction for the synthesis of pyranotetrahydroquinolines. ARKIVOC 2016 2016 3 313 324 10.3998/ark.5550190.p009.447
    [Google Scholar]
  95. Helou M. Miserque O. Brusson J.M. Carpentier J.F. Guillaume S.M. Metal triflates as highly stable and active catalysts for the “immortal” ring‐opening polymerization of trimethylene carbonate. ChemCatChem 2010 2 3 306 313 10.1002/cctc.200900279
    [Google Scholar]
  96. Olah G.A. Farooq O. Li C.X. Farnia M.A.M.F. Aklonis J.J. Cationic ring‐opening polymerization of tetrahydrofuran with boron, aluminum, and gallium tristriflate. J. Appl. Polym. Sci. 1992 45 8 1355 1360 10.1002/app.1992.070450805
    [Google Scholar]
  97. Kunioka M. Wang Y. Onozawa S. Poly (lactic acid) polymerized by aluminum triflate. Macromol. Symp. 2005 224 1 167 180 10.1002/masy.200550615
    [Google Scholar]
  98. Wang Y. Kunioka M. Ring‐opening polymerization of cyclic monomers with aluminum triflate. Macromol. Symp. 2005 224 1 193 206 10.1002/masy.200550617
    [Google Scholar]
  99. Kunioka M. Inuzuka Y. Ninomiya F. Funabashi M. Biobased contents of biodegradable poly(ε-caprolactone) composites polymerized and directly molded using aluminium triflate from caprolactone with cellulose and inorganic filler. Macromol. Biosci. 2006 6 7 517 523 10.1002/mabi.200600037 16832812
    [Google Scholar]
  100. Kricheldorf H.R. Yashiro T. Weidner S. Isomerization-free polycondensations of maleic anhydride with α, ω-alkanediols. Macromolecules 2009 42 17 6433 6439 10.1021/ma9009356
    [Google Scholar]
  101. Yashiro T. Kricheldorf H.R. Huijser S. Syntheses of polyesters from succinic anhydride and various diols catalyzed by metal triflates. Macromol. Chem. Phys. 2009 210 19 1607 1616 10.1002/macp.200900189
    [Google Scholar]
  102. Amer I. Young D.A. Chemically oxidative polymerization of aromatic diamines: The first use of aluminium-triflate as a co-catalyst. Polymer 2013 54 2 505 512 10.1016/j.polymer.2012.11.078
    [Google Scholar]
  103. Amer I. Young D.A. Vosloo H.C.M. Chemical oxidative polymerization of m-phenylenediamine and its derivatives using aluminium triflate as a co-catalyst. Eur. Polym. J. 2013 49 10 3251 3260 10.1016/j.eurpolymj.2013.06.031
    [Google Scholar]
  104. Amer I. Brandt S. Synthesis and characterization of Poly(p -phenylenediamine) and its derivatives using aluminium triflate as a co-catalyst. Cogent Eng. 2018 5 1 1499701 10.1080/23311916.2018.1499701
    [Google Scholar]
  105. Amer I. Young D.A. Vosloo H.C.M. Using aluminium triflate as a co‐catalyst for the polymerization of o ‐phenylenediamine and its derivatives. Polym. Int. 2014 63 7 1229 1237 10.1002/pi.4628
    [Google Scholar]
  106. Ning P. Yang G. Hu L. Sun J. Shi L. Zhou Y. Wang Z. Yang J. Recent advances in the valorization of plant biomass. Biotechnol. Biofuels 2021 14 1 102 10.1186/s13068‑021‑01949‑3 33892780
    [Google Scholar]
  107. Bodachivskyi I. Kuzhiumparambil U. Williams D.B.G. Acid‐catalyzed conversion of carbohydrates into value‐added small molecules in aqueous media and ionic liquids. ChemSusChem 2018 11 4 642 660 10.1002/cssc.201702016 29250912
    [Google Scholar]
  108. Tominaga K. Mori A. Fukushima Y. Shimada S. Sato K. Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose. Green Chem. 2011 13 4 810 812 10.1039/c0gc00715c
    [Google Scholar]
  109. Bodachivskyi I. Kuzhiumparambil U. Williams D.B.G. Metal triflates are tunable acidic catalysts for high yielding conversion of cellulosic biomass into ethyl levulinate. Fuel Process. Technol. 2019 195 106159 10.1016/j.fuproc.2019.106159
    [Google Scholar]
  110. Bodachivskyi I. Kuzhiumparambil U. Williams D.B.G. Understanding the role of the substrate and the metal triflate acidic catalyst in sugar platform biorefineries: A comprehensive systematic approach to catalytic transformations of (poly)carbohydrates in ethanol. Chem. Eng. J. 2020 399 125816 10.1016/j.cej.2020.125816
    [Google Scholar]
  111. Bodachivskyi I. Kuzhiumparambil U. Williams D.B.G. A systematic study of metal triflates in catalytic transformations of glucose in water and methanol: Identifying the interplay of Brønsted and Lewis acidity. ChemSusChem 2019 12 14 3263 3270 10.1002/cssc.201900292 30912243
    [Google Scholar]
  112. Kong K. Li D. Ma W. Zhou Q. Tang G. Hou Z. Aluminum(III) triflate-catalyzed selective oxidation of glycerol to formic acid with hydrogen peroxide. Chin. J. Catal. 2019 40 4 534 542 10.1016/S1872‑2067(19)63319‑X
    [Google Scholar]
  113. Huang X. Morales Gonzalez O.M. Zhu J. Korányi T.I. Boot M.D. Hensen E.J.M. Reductive fractionation of woody biomass into lignin monomers and cellulose by tandem metal triflate and Pd/C catalysis. Green Chem. 2017 19 1 175 187 10.1039/C6GC02962K
    [Google Scholar]
  114. Kobayashi S. Horibe M. Aluminum triflate-mediated aldol reactions. Stereoselective synthesis of both diastereomers including the α-Alkoxy-β-hydroxy-β-methyl Units. Synlett 1993 1993 11 855 857 10.1055/s‑1993‑22632
    [Google Scholar]
  115. Boroujeni K.P. Polystyrene supported Al(OTf) 3: A stable, efficient, selective, and reusable catalyst for sulfonylation of arenes with sulfonic acids. Bull. Korean Chem. Soc. 2010 31 7 1887 1890 10.5012/bkcs.2010.31.7.1887
    [Google Scholar]
  116. Yang Y. Diederich F. Valentine J.S. Lewis acidic catalysts for olefin epoxidation by iodosylbenzene. J. Am. Chem. Soc. 1991 113 19 7195 7205 10.1021/ja00019a016
    [Google Scholar]
  117. Bezuidenhoudt B. Pieterse T. Visser M. Marais C. Al(OTf)3: An efficient lewis acid additive for domino addition–elimination of grignard reagents to activated ketones. Synlett 2016 27 10 1541 1546 10.1055/s‑0035‑1561401
    [Google Scholar]
  118. Bach P. Albright A. Laali K.K. Influence of Lewis acid and solvent in the hydrosilylation of aldehydes and ketones with Et 3 SiH; Tris(pentafluorophenyl)borane B(C6F5)3 versus metal triflates [M(OTf) 3; M = Sc, Bi, Ga, and Al] – Mechanistic implications. Eur. J. Org. Chem. 2009 2009 12 1961 1966 10.1002/ejoc.200900066
    [Google Scholar]
  119. Kamal A. Khan M.N.A. Srinivasa Reddy K. Srikanth Y.V.V. Kaleem Ahmed S. Pranay Kumar K. Murthy U.S.N. An efficient synthesis of bis(indolyl)methanes and evaluation of their antimicrobial activities. J. Enzyme Inhib. Med. Chem. 2009 24 2 559 565 10.1080/14756360802292974 18951276
    [Google Scholar]
  120. Li Y. Topf C. Cui X. Junge K. Beller M. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters. Angew. Chem. Int. Ed. 2015 54 17 5196 5200 10.1002/anie.201500062 25728921
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298393592250804144308
Loading
/content/journals/mroc/10.2174/0118756298393592250804144308
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test