Skip to content
2000
image of Pyrazole and its Derivatives: Chemistry and Biological Importance

Abstract

Currently, the main focus of research is to develop disease treatment strategies that are both more safe and more effective. Nitrogen-containing 5-membered heterocyclic pyrazole is a unique scaffold in pharmaceutical development. Because of its remarkable diversity in biological activities, pyrazole and its derivatives have become a prominent scaffold that has attracted the interest of medicinal chemistry researchers. Researchers have developed pyrazole as a multipurpose lead compound for effective pharmacological activities. They have demonstrated a wide range of biological and pharmacological activities, including antidiabetic, antiparkinsonian, antitumor, analgesic, anti-inflammatory, antimicrobial, antitubercular, antileishmanial activity, and neuroprotective properties. Many scientists have improved and developed new structural alternatives as a result of this logical variation in the physiological reaction pattern and much more effective pharmacological interventions. This review presents a detailed overview of the literature work reported by researchers on pyrazoles and reports recent efforts made on this moiety. This has been followed by an in-depth analysis of the pyrazole concerning its medicinal significance. This follow-up may help medicinal chemists generate new leads possessing pyrazole nuclei with high efficacy. It is crucial for earlier research and projects that aim to investigate the diverse activities of compounds linked to pyrazole and its derivatives in the near future. This overview summarizes the introduction, design, and biological activity of pyrazole derivatives as antimicrobial, anticancer, antiviral, antitubercular and antimalarial agents.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298380223250710210504
2025-08-04
2025-10-24
Loading full text...

Full text loading...

References

  1. Secrieru A. O’Neill P.M. Cristiano M.L.S. Revisiting the structure and chemistry of 3(5)-substituted pyrazoles. Molecules 2019 25 1 42 10.3390/molecules25010042 31877672
    [Google Scholar]
  2. Singh G. Chemistry and pharmacological activities of pyrazole and pyrazole derivatives: A review. Int. J. Pharm. Sci. Rev. Res. 2020 65 1 201 214 10.47583/ijpsrr.2020.v65i01.030
    [Google Scholar]
  3. Castillo J.C. Portilla J. Recent advances in the synthesis of new pyrazole derivatives. In: Targets in Heterocyclic Systems. Italian Society of Chemistry 2019 Vol. 22 194
    [Google Scholar]
  4. Heravi M.M. Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances 2020 10 72 44247 44311 10.1039/D0RA09198G 35557843
    [Google Scholar]
  5. Ebenezer O. Jordaan M.A. Carena G. Bono T. Shapi M. Tuszynski J.A. An overview of the biological evaluation of selected nitrogen-containing heterocycle medicinal chemistry compounds. Int. J. Mol. Sci. 2022 23 15 8117 10.3390/ijms23158117 35897691
    [Google Scholar]
  6. Lee A. Berotralstat: First approval. Drugs 2021 81 3 405 409 10.1007/s40265‑021‑01475‑4 33646555
    [Google Scholar]
  7. Mathis A. Sale M. Cornpropst M. Sheridan W.P. Ma S.C. Population pharmacokinetic modeling and simulations of berotralstat for prophylactic treatment of attacks of hereditary angioedema. Clin. Transl. Sci. 2022 15 4 1027 1035 10.1111/cts.13233 35212456
    [Google Scholar]
  8. Kotian P.L. Wu M. Vadlakonda S. Chintareddy V. Lu P. Juarez L. Kellogg-Yelder D. Chen X. Muppa S. Chambers-Wilson R. Davis Parker C. Williams J. Polach K.J. Zhang W. Raman K. Babu Y.S. Berotralstat (BCX7353): Structure-guided design of a potent, selective, and oral plasma kallikrein inhibitor to prevent attacks of hereditary angioedema (HAE). J. Med. Chem. 2021 64 17 12453 12468 10.1021/acs.jmedchem.1c00511 34436898
    [Google Scholar]
  9. Badawy S.I.F. Gray D.B. Zhao F. Sun D. Schuster A.E. Hussain M.A. Formulation of solid dosage forms to overcome gastric pH interaction of the factor Xa inhibitor, BMS-561389. Pharm. Res. 2006 23 5 989 996 10.1007/s11095‑006‑9899‑z 16715389
    [Google Scholar]
  10. Hilden L. Pommier C. Badawy S. Friedman E. NIR chemical imaging to guide/support BMS-561389 tablet formulation development. Int. J. Pharm. 2007 S0378517307009696 10.1016/j.ijpharm.2007.11.032 18182257
    [Google Scholar]
  11. Tomasoni D. Adamo M. Anker M.S. von Haehling S. Coats A.J.S. Metra M. Heart failure in the last year: Progress and perspective. ESC Heart Fail. 2020 7 6 3505 3530 10.1002/ehf2.13124 33277825
    [Google Scholar]
  12. Ma R. Li Z. Di X. Guo D. Ji J. Wang S. Spectroscopic methodologies and molecular docking studies on the interaction of the soluble guanylate cyclase stimulator riociguat with human serum albumin. Biosci. Trends 2018 12 4 369 374 10.5582/bst.2018.01081 30101825
    [Google Scholar]
  13. Bastos D.A. Antonarakis E.S. Darolutamide for castration-resistant prostate cancer. OncoTargets Ther. 2019 12 8769 8777 10.2147/OTT.S197244 31695432
    [Google Scholar]
  14. Crawford E.D. Stanton W. Mandair D. Darolutamide: An evidenced-based review of its efficacy and safety in the treatment of prostate cancer. Cancer Manag. Res. 2020 12 5667 5676 10.2147/CMAR.S227583 32765070
    [Google Scholar]
  15. Ostojic A. Vrhovac R. Verstovsek S. Ruxolitinib: A new JAK1/2 inhibitor that offers promising options for treatment of myelofibrosis. Future Oncol. 2011 7 9 1035 1043 10.2217/fon.11.81 21919691
    [Google Scholar]
  16. Hong Y.L. Hossler P.A. Calhoun D.H. Meshnick S.R. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs. Antimicrob. Agents Chemother. 1995 39 8 1756 1763 10.1128/AAC.39.8.1756 7486915
    [Google Scholar]
  17. Zamora I. Afzelius L. Cruciani G. Predicting drug metabolism: A site of metabolism prediction tool applied to the cytochrome P450 2C9. J. Med. Chem. 2003 46 12 2313 2324 10.1021/jm021104i 12773036
    [Google Scholar]
  18. Pamplona F.A. Prediger R.D.S. Pandolfo P. Takahashi R.N. The cannabinoid receptor agonist WIN 55,212-2 facilitates the extinction of contextual fear memory and spatial memory in rats. Psychopharmacology 2006 188 4 641 649 10.1007/s00213‑006‑0514‑0 16947018
    [Google Scholar]
  19. Zhang B. Li J. Yang X. Wu L. Zhang J. Yang Y. Zhao Y. Zhang L. Yang X. Yang X. Cheng X. Liu Z. Jiang B. Jiang H. Guddat L.W. Yang H. Rao Z. Crystal structures of membrane transporter MmpL3, an Anti-TB drug target. Cell 2019 176 3 636 648.e13 10.1016/j.cell.2019.01.003 30682372
    [Google Scholar]
  20. Dong L. Yuan C. Orlando B.J. Malkowski M.G. Smith W.L. Fatty acid binding to the allosteric subunit of cyclooxygenase-2 relieves a tonic inhibition of the catalytic subunit. J. Biol. Chem. 2016 291 49 25641 25655 10.1074/jbc.M116.757310 27756840
    [Google Scholar]
  21. Gersdorff M. Personal results trial of classification and standardization in clinical impedancemetry (author’s transl). Ann. Otolaryngol. Chir. Cervicofac. 1977 94 10-11 599 616 921157
    [Google Scholar]
  22. Ali Mohamed H. Ammar Y.A. Elhagali A.M. G.; A Eyada, H.; S Aboul-Magd, D.; Ragab, A. In vitro antimicrobial evaluation, single-point resistance study, and radiosterilization of novel pyrazole incorporating Thiazol-4-one/Thiophene derivatives as dual DNA Gyrase and DHFR inhibitors against MDR pathogens. ACS Omega 2022 7 6 4970 4990 10.1021/acsomega.1c05801 35187315
    [Google Scholar]
  23. Saleh I. Raj K.C.H. Roy S. Abugazleh M.K. Ali H. Gilmore D. Alam M.A. Design, synthesis, and antibacterial activity of N -(trifluoromethyl)phenyl substituted pyrazole derivatives. RSC Medicinal Chemistry 2021 12 10 1690 1697 10.1039/D1MD00230A 34778770
    [Google Scholar]
  24. Alam M. Antibacterial pyrazoles: Tackling resistant bacteria. Future Med. Chem. 2022 14 5 343 362 10.4155/fmc‑2021‑0275 35050719
    [Google Scholar]
  25. Arzine A. Abchir O. Chalkha M. Chebbac K. Rhazi Y. Barghady N. Yamari IEL Moussaoui A. Nakkabi A. Akhazzane M. Bakhouch M. Chtita S.EL Yazidi M. Design, synthesis, in-vitro, in-silico and DFT studies of novel functionalized isoxazoles as antibacterial and antioxidant agents. Comput. Biol. Chem. 2024 108 107993 10.1016/j.compbiolchem.2023.107993 38071761
    [Google Scholar]
  26. Baaiu B.S. Saleh N.M. Alshref Aldirsi A.F. Abdel-Aziem A. Synthesis of new coumarin derivatives and assessment of their antimicrobial efficacy. Future Med. Chem. 2025 17 1 9 18 10.1080/17568919.2024.2437974 39665641
    [Google Scholar]
  27. Surendra Kumar R. Arif I.A. Ahamed A. Idhayadhulla A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci. 2016 23 5 614 620 10.1016/j.sjbs.2015.07.005 27579011
    [Google Scholar]
  28. Liu J.J. Sun J. Fang Y.B. Yang Y.A. Jiao R.H. Zhu H.L. Synthesis, and antibacterial activity of novel 4,5-dihydro-1H-pyrazole derivatives as DNA gyrase inhibitors. Org. Biomol. Chem. 2014 12 6 998 1008 10.1039/c3ob41953c 24382549
    [Google Scholar]
  29. Ibrahim S.A. Fayed E.A. Rizk H.F. Desouky S.E. Ragab A. Hydrazonoyl bromide precursors as DHFR inhibitors for the synthesis of bis-thiazolyl pyrazole derivatives; antimicrobial activities, antibiofilm, and drug combination studies against MRSA. Bioorg. Chem. 2021 116 105339 10.1016/j.bioorg.2021.105339 34530234
    [Google Scholar]
  30. Adardour M. Ait Lahcen M. Oubahmane M. Ettahiri W. Hdoufane I. Bouamama H. Alanazi M.M. Cherqaoui D. Taleb M. Garcia E.Z. Baouid A. Design, synthesis, molecular modeling and biological evaluation of novel pyrazole benzimidazolone derivatives as potent antioxidants. Pharmaceuticals 2023 16 12 1648 10.3390/ph16121648 38139775
    [Google Scholar]
  31. Yan R. Huang X. Deng X. Song M. Synthesis and activity evaluation of some pyrazole-pyrazoline derivatives as dual anti-inflammatory and antimicrobial agents. Polycycl. Aromat. Compd. 2022 42 8 5006 5019 10.1080/10406638.2021.1919156
    [Google Scholar]
  32. B’Bhatt H.; Sharma, S. Synthesis and antimicrobial activity of pyrazole nucleus containing 2-thioxothiazolidin-4-one derivatives. Arab. J. Chem. 2017 10 S1590 S1596 10.1016/j.arabjc.2013.05.029
    [Google Scholar]
  33. Ebenezer O. Awolade P. Koorbanally N. Singh P. New library of pyrazole-imidazo[1,2‐α]pyridine molecular conjugates: Synthesis, antibacterial activity and molecular docking studies. Chem. Biol. Drug Des. 2020 95 1 162 173 10.1111/cbdd.13632 31580533
    [Google Scholar]
  34. Zhang T.Y. Zheng C.J. Wu J. Sun L.P. Piao H.R. Synthesis of novel dihydrotriazine derivatives bearing 1,3-diaryl pyrazole moieties as potential antibacterial agents. Bioorg. Med. Chem. Lett. 2019 29 9 1079 1084 10.1016/j.bmcl.2019.02.033 30842033
    [Google Scholar]
  35. Dofe V.S. Sarkate A.P. Shaikh Z.M. Gill C.H. Ultrasound-assisted synthesis and antimicrobial activity of tetrazole-based pyrazole and pyrimidine derivatives. Heterocycl. Commun. 2018 24 1 59 65 10.1515/hc‑2017‑0067
    [Google Scholar]
  36. Yu L.G. Ni T.F. Gao W. He Y. Wang Y.Y. Cui H.W. Yang C.G. Qiu W.W. The synthesis and antibacterial activity of pyrazole-fused tricyclic diterpene derivatives. Eur. J. Med. Chem. 2015 90 10 20 10.1016/j.ejmech.2014.11.015 25461307
    [Google Scholar]
  37. Ningaiah S. Bhadraiah U.K. Doddaramappa S.D. Keshavamurthy S. Javarasetty C. Novel pyrazole integrated 1,3,4-oxadiazoles: Synthesis, characterization and antimicrobial evaluation. Bioorg. Med. Chem. Lett. 2014 24 1 245 248 10.1016/j.bmcl.2013.11.029 24316123
    [Google Scholar]
  38. Adeniji O.O. Ojemaye M.O. Okoh A.I. Antibacterial activity of metallic nanoparticles against multidrug-resistant pathogens isolated from environmental samples: Nanoparticles/antibiotic combination therapy and cytotoxicity study. ACS Appl. Bio Mater. 2022 5 10 4814 4826 10.1021/acsabm.2c00527 36153972
    [Google Scholar]
  39. Akbar I. Mullaivendhan J. Ahamed A. Aljawdah H.M. Vitex Negundo -Fe 3 O 4 -CuO green nanocatalyst (VN -Fe 3 O 4 -CuO): Synthesis of pyrazolo[3,4- c]pyrazole derivatives via the cyclization of isoniazid with pyrazole and their antimicrobial activity, cytotoxicity, and molecular docking studies. RSC Advances 2024 14 1 677 688 10.1039/D3RA06771H 38173593
    [Google Scholar]
  40. Dweedar H. Mahrous H. Sorour N. Abd El Ghany K. Abdel Aziz H. Synthesis, molecular docking studies and adme properties of some new pyrazolo[1,5-a]pyrimidines as antimicrobial, and anticancer agents. Egypt. J. Chem. 2023 67 6 307 316 10.21608/ejchem.2023.246672.8840
    [Google Scholar]
  41. Andrews J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2002 49 6 1049 1049 10.1093/jac/dkf083 12039902
    [Google Scholar]
  42. Loganathan V. Ahamed A. Akbar I. Gerbu D.G. Alodaini H.A. Manilal A. Cu(II)-catalyzed synthesis of Pyrazolo[3,4- b]pyridine derivatives and their potential antibacterial and cytotoxic activities with molecular docking, DFT calculation, and SwissADME analysis. ACS Omega 2025 10 1 1643 1656 10.1021/acsomega.4c09524 39829459
    [Google Scholar]
  43. Berk B. Kaynar G. Ertaş M. Biltekin S.N. Molecular modelling and compound activity of the Escherichia coli and Staphylococcus aureus DNA Gyrase B ATPase site. Acta. Pharm. Sci. 2017 55 1 97
    [Google Scholar]
  44. Alzahrani A.Y. Ammar Y.A. Salem M.A. Abu-Elghait M. Ragab A. Design, synthesis, molecular modeling, and antimicrobial potential of novel 3‐[(1 H ‐pyrazol‐3‐yl)imino]indolin‐2‐one derivatives as DNA gyrase inhibitors. Arch. Pharm. 2022 355 1 2100266 10.1002/ardp.202100266 34747519
    [Google Scholar]
  45. Davenport E.K. Call D.R. Beyenal H. Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms. Antimicrob. Agents Chemother. 2014 58 8 4755 4761 10.1128/AAC.03071‑14 24913166
    [Google Scholar]
  46. Ran F. Liu Y. Zhang D. Liu M. Zhao G. Discovery of novel pyrazole derivatives as potential anticancer agents in MCL. Bioorg. Med. Chem. Lett. 2019 29 9 1060 1064 10.1016/j.bmcl.2019.03.005 30857748
    [Google Scholar]
  47. Wang F Yang H He B Jia Y Meng S Zhang C. ChemInform abstract: A novel domino approach for synthesis of indolyl tetrahydropyrano[ 4,3‐c]pyrazole derivatives as anticancer agents. ChemInform 2016 47 52 chin.201652279 10.1002/chin.201652279
    [Google Scholar]
  48. Reddy T.S. Kulhari H. Reddy V.G. Bansal V. Kamal A. Shukla R. Design, synthesis and biological evaluation of 1,3-diphenyl-1 H -pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. Eur. J. Med. Chem. 2015 101 790 805 10.1016/j.ejmech.2015.07.031 26231080
    [Google Scholar]
  49. Cui Y.J. Tang L.Q. Zhang C.M. Liu Z.P. Synthesis of novel pyrazole derivatives and their tumor cell growth inhibitory activity. Molecules 2019 24 2 279 10.3390/molecules24020279 30642134
    [Google Scholar]
  50. Mohammed E.Z. Mahmoud W.R. George R.F. Hassan G.S. Omar F.A. Georgey H.H. Synthesis, in vitro anticancer activity and in silico studies of certain pyrazole-based derivatives as potential inhibitors of cyclin dependent kinases (CDKs). Bioorg. Chem. 2021 116 105347 10.1016/j.bioorg.2021.105347 34555628
    [Google Scholar]
  51. Saleh N.M. El-Gazzar M.G. Aly H.M. Othman R.A. Novel anticancer fused pyrazole derivatives as EGFR and VEGFR-2 dual TK inhibitors. Front Chem. 2020 7 917 10.3389/fchem.2019.00917 32039146
    [Google Scholar]
  52. Fayed E.A. Eissa S.I. Bayoumi A.H. Gohar N.A. Mehany A.B.M. Ammar Y.A. Design, synthesis, cytotoxicity and molecular modeling studies of some novel fluorinated pyrazole-based heterocycles as anticancer and apoptosis-inducing agents. Mol. Divers. 2019 23 1 165 181 10.1007/s11030‑018‑9865‑9 30099687
    [Google Scholar]
  53. Ismail M.F. El-sayed A.A. Synthesis and in-vitro antioxidant and antitumor evaluation of novel pyrazole-based heterocycles. J. Indian Chem. Soc. 2019 16 5 921 937 10.1007/s13738‑018‑1566‑x
    [Google Scholar]
  54. Kamel M.G. Sroor F.M. Hanafy M.K.H. Mahrous K.F. Hassaneen H.M. Design, synthesis and potent anti-pancreatic cancer activity of new pyrazole derivatives bearing chalcone, thiazole and thiadiazole moieties: Gene expression, DNA fragmentation, cell cycle arrest and SAR. RSC Advances 2024 14 37 26954 26970 10.1039/D4RA03005B 39193301
    [Google Scholar]
  55. Rana M. Hungyo H. Parashar P. Ahmad S. Mehandi R. Tandon V. Raza K. Assiri M.A. Ali T.E. El-Bahy Z.M. Rahisuddin. Design, synthesis, X-ray crystal structures, anticancer, DNA binding, and molecular modelling studies of pyrazole-pyrazoline hybrid derivatives. RSC Advances 2023 13 38 26766 26779 10.1039/D3RA04873J 37681049
    [Google Scholar]
  56. Liu D.C. Gao M.J. Huo Q. Ma T. Wang Y. Wu C.Z. Design, synthesis, and apoptosis-promoting effect evaluation of novel pyrazole with benzo[ d]thiazole derivatives containing aminoguanidine units. J. Enzyme Inhib. Med. Chem. 2019 34 1 829 837 10.1080/14756366.2019.1591391 30915869
    [Google Scholar]
  57. Kumar G.D. Siva B. Vadlamudi S. Bathula S.R. Dutta H. Babu S.K. Design, synthesis, and biological evaluation of pyrazole-linked aloe emodin derivatives as potential anticancer agents. RSC Medicinal Chemistry 2021 12 5 791 796 10.1039/D0MD00315H 34124677
    [Google Scholar]
  58. Kurban B. Sağlık B.N. Osmaniye D. Levent S. Özkay Y. Kaplancıklı Z.A. Synthesis and anticancer activities of pyrazole-thiadiazole-based EGFR inhibitors. ACS Omega 2023 8 34 31500 31509 10.1021/acsomega.3c04635 37663500
    [Google Scholar]
  59. Fayed E.A. Gohar N.A. Bayoumi A.H. Ammar Y.A. Novel fluorinated pyrazole-based heterocycles scaffold: Cytotoxicity, in silico studies and molecular modelling targeting double mutant EGFR L858R/T790M as antiproliferative and apoptotic agents. Med. Chem. Res. 2023 32 2 369 388 10.1007/s00044‑022‑03004‑8
    [Google Scholar]
  60. Elhady H.A. El-Sayed R. Al-nathali H.S. Design, synthesis and evaluation of anticancer activity of novel 2-thioxoimidazolidin-4-one derivatives bearing pyrazole, triazole and benzoxazole moieties. Chem. Cent. J. 2018 12 1 51 10.1186/s13065‑018‑0418‑1 29740713
    [Google Scholar]
  61. Raghu M.S. Pradeep Kumar C.B. Prashanth M.K. Yogesh Kumar K. Prathibha B.S. Kanthimathi G. Alissa S.A. Alghulikah H.A. Osman S.M. Novel 1,3,5-triazine-based pyrazole derivatives as potential antitumor agents and EFGR kinase inhibitors: Synthesis, cytotoxicity, DNA binding, molecular docking and DFT studies. New J. Chem. 2021 45 31 13909 13924 10.1039/D1NJ02419A
    [Google Scholar]
  62. Zhou S. Xu L. Cao M. Wang Z. Xiao D. Xu S. Deng J. Hu X. He C. Tao T. Wang W. Guan A. Yang X. Anticancer properties of novel pyrazole‐containing biguanide derivatives with activating the adenosine monophosphate‐activated protein kinase signaling pathway. Arch. Pharm. 2019 352 9 1900075 10.1002/ardp.201900075 31339189
    [Google Scholar]
  63. Philoppes J.N. Khedr M.A. Hassan M.H.A. Kamel G. Lamie P.F. New pyrazolopyrimidine derivatives with anticancer activity: Design, synthesis, PIM-1 inhibition, molecular docking study and molecular dynamics. Bioorg. Chem. 2020 100 103944 10.1016/j.bioorg.2020.103944 32450389
    [Google Scholar]
  64. Nassiri M. Salehzadeh J. Mohajeri S. Synthesis, biological evaluation, molecular docking, and DFT calculation of novel 4-(1H-indol-3-yl)-3-methyl-1-phenyl-1H-furo[2,3-c]pyrazole derivatives. Res. Chem. 2025 14 102074 10.1016/j.rechem.2025.102074
    [Google Scholar]
  65. Lovitt C.J. Shelper T.B. Avery V.M. Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer 2018 18 1 41 10.1186/s12885‑017‑3953‑6 29304770
    [Google Scholar]
  66. Yasser N. Sroor F.M. El-Shorbagy H.M. Eissa S.M. Hassaneen H.M. Abdelhamid I.A. Synthesis, anticancer evaluation of novel hybrid pyrazole-based chalcones, molecular docking, DNA fragmentation, and gene expression: In vitro studies. RSC Advances 2024 14 30 21859 21873 10.1039/D4RA03375B 38984258
    [Google Scholar]
  67. Niu Y. Xu J. Sun T. Cyclin-dependent kinases 4/6 inhibitors in breast cancer: Current status, resistance, and combination strategies. J. Cancer 2019 10 22 5504 5517 10.7150/jca.32628 31632494
    [Google Scholar]
  68. Shafei Y.A.E. Sabour R. Mahfouz N.M. Elzahabi H.S.A. Synthesis, biological assessment, and docking study of new pyrazolo[1,5-a]pyrimidine derivatives with potential anticancer activity. Azhar Int. J. Pharm. Med. Sci. 2025 5 1 288 296 10.21608/aijpms.2024.294539.1271
    [Google Scholar]
  69. Shi J.B. Tang W.J. qi, X.B.; Li, R.; Liu, X.H. Novel pyrazole-5-carboxamide and pyrazole-pyrimidine derivatives: Synthesis and anticancer activity. Eur. J. Med. Chem. 2015 90 889 896 10.1016/j.ejmech.2014.12.013 25554922
    [Google Scholar]
  70. Sadanandam K. Pinnoju P. Manasa S.K. Sarasija M. Synthesis, anticancer activity and molecular docking study of (E)-4-(3,4- Dichlorophenyl)-2-(1,3-Diphenyl-1H-Pyrazol-4-yl)methylene)-3,4- Dihydronaphthalen-1(2H)-One derivatives. Chem. Biol. Lett 2024 11 1 656 10.62110/sciencein.cbl.2024.v11.656
    [Google Scholar]
  71. Salem M.G. Nafie M.S. Elzamek A.A. Elshihawy H.A. Sofan M.A. Negm E. Design, synthesis, and biological investigations of new pyrazole derivatives as VEGFR2/CDK-2 inhibitors targeting liver cancer. BMC Chem. 2024 18 1 208 10.1186/s13065‑024‑01314‑z 39449145
    [Google Scholar]
  72. Hisham M. Youssif B.G.M. Osman E.E.A. Hayallah A.M. Abdel-Aziz M. Synthesis and biological evaluation of novel xanthine derivatives as potential apoptotic antitumor agents. Eur. J. Med. Chem. 2019 176 117 128 10.1016/j.ejmech.2019.05.015 31108261
    [Google Scholar]
  73. Chuang H. Huang L.C.S. Kapoor M. Liao Y.J. Yang C.L. Chang C.C. Wu C-Y. Hwu J.R. Huang T-J. Hsu M-H. Design and synthesis of pyridine-pyrazole-sulfonate derivatives as potential anti-HBV agents. MedChemComm 2016 7 5 832 836 10.1039/C6MD00008H
    [Google Scholar]
  74. Yang G. Zheng H. Shao W. Liu L. Wu Z. Study of the in vivo antiviral activity against TMV treated with novel 1-(t-butyl)-5-amino-4-pyrazole derivatives containing a 1,3,4-oxadiazole sulfide moiety. Pestic. Biochem. Physiol. 2021 171 104740 10.1016/j.pestbp.2020.104740 33357562
    [Google Scholar]
  75. Wu Z. Yang W. Hou S. Xie D. Yang J. Liu L. Yang S. In vivo antiviral activity and disassembly mechanism of novel 1-phenyl-5-amine-4-pyrazole thioether derivatives against Tobacco mosaic virus. Pestic. Biochem. Physiol. 2021 173 104771 10.1016/j.pestbp.2021.104771 33771249
    [Google Scholar]
  76. Meng F.J. Sun T. Dong W.Z. Li M.H. Tuo Z.Z. Discovery of novel pyrazole derivatives as potent neuraminidase inhibitors against influenza H1N1 virus. Arch. Pharm. 2016 349 3 168 174 10.1002/ardp.201500342 26797880
    [Google Scholar]
  77. Jia H. Bai F. Liu N. Liang X. Zhan P. Ma C. Jiang X. Liu X. Design, synthesis and evaluation of pyrazole derivatives as non-nucleoside hepatitis B virus inhibitors. Eur. J. Med. Chem. 2016 123 202 210 10.1016/j.ejmech.2016.07.048 27484509
    [Google Scholar]
  78. Lv X.H. Ren Z.L. Li D.D. Ruan B.F. Li Q.S. Chu M.J. Ai C-Y. Liu D-H. Mo K. Cao H-Q. Discovery of novel double pyrazole Schiff base derivatives as anti-tobacco mosaic virus (TMV) agents. Chin. Chem. Lett. 2017 28 2 377 382 10.1016/j.cclet.2016.10.029
    [Google Scholar]
  79. Liu G.N. Luo R.H. Zhou Y. Zhang X.J. Li J. Yang L.M. Zheng Y.T. Liu H. Synthesis and anti-HIV-1 activity evaluation for novel 3a,6a-Dihydro-1H-pyrrolo[3,4-c]pyrazole-4,6-dione derivatives. Molecules 2016 21 9 1198 10.3390/molecules21091198 27617994
    [Google Scholar]
  80. Yang Z. Li P. Gan X. Novel Pyrazole-Hydrazone derivatives containing an isoxazole moiety: Design, synthesis, and antiviral activity. Molecules 2018 23 7 1798 10.3390/molecules23071798 30037021
    [Google Scholar]
  81. Messore A. Corona A. Madia V.N. Saccoliti F. Tudino V. De Leo A. Scipione L. De Vita D. Amendola G. Di Maro S. Novellino E. Cosconati S. Métifiot M. Andreola M.L. Valenti P. Esposito F. Grandi N. Tramontano E. Costi R. Di Santo R. Pyrrolyl pyrazoles as non-diketo acid inhibitors of the HIV-1 Ribonuclease H function of reverse transcriptase. ACS Med. Chem. Lett. 2020 11 5 798 805 10.1021/acsmedchemlett.9b00617 32435387
    [Google Scholar]
  82. Yang Z.B. Li P. He Y.J. Design, synthesis, and bioactivity evaluation of novel isoxazole-amide derivatives containing an acylhydrazone moiety as new active antiviral agents. Molecules 2019 24 20 3766 10.3390/molecules24203766 31635044
    [Google Scholar]
  83. Takate S.J. Shinde A.D. Karale B.K. Akolkar H. Nawale L. Sarkar D. Mhaske P.C. Thiazolyl-pyrazole derivatives as potential antimycobacterial agents. Bioorg. Med. Chem. Lett. 2019 29 10 1199 1202 10.1016/j.bmcl.2019.03.020 30910461
    [Google Scholar]
  84. Nayak N. Ramprasad J. Dalimba U. Synthesis and antitubercular and antibacterial activity of some active fluorine containing quinoline-pyrazole hybrid derivatives. J. Fluor. Chem. 2016 183 59 68 10.1016/j.jfluchem.2016.01.011
    [Google Scholar]
  85. Pawar D.C. Gaikwad S.V. Kamble S.S. Gavhane P.D. Gaikwad M.V. Dawane B.S. Design synthesis docking and biological study of pyrazole-35-diamine derivatives with potent antitubercular activity. Chem. Methodol 2022 6 9 10.22034/chemm.2022.343572.1538
    [Google Scholar]
  86. Nayak N. Ramprasad J. Dalimba U. Yogeeswari P. Sriram D. Kumar H.S.S. Peethambar S.K. Achur R. Synthesis of new pyrazole-triazole hybrids by click reaction using a green solvent and evaluation of their antitubercular and antibacterial activity. Res. Chem. Intermed. 2016 42 4 3721 3741 10.1007/s11164‑015‑2241‑9
    [Google Scholar]
  87. Poce G. Consalvi S. Venditti G. Alfonso S. Desideri N. Fernandez-Menendez R. Bates R.H. Ballell L. Barros Aguirre D. Rullas J. De Logu A. Gardner M. Ioerger T.R. Rubin E.J. Biava M. Novel pyrazole-containing compounds active against Mycobacterium tuberculosis. ACS Med. Chem. Lett. 2019 10 10 1423 1429 10.1021/acsmedchemlett.9b00204 31620228
    [Google Scholar]
  88. Desai N. Monapara J. Design, synthesis and antitubercular activity of Pyrazole and Benzo[d]imidazole clubbed Dihydroimidazo[1,2-a]pyrimidinones. Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem. 2023 62 11 1154
    [Google Scholar]
  89. Alshabani L.A. Kumar A. Willcocks S.J. Srithiran G. Bhakta S. Estrada D.F. Simons C. Synthesis, biological evaluation and computational studies of pyrazole derivatives as Mycobacterium tuberculosis CYP121A1 inhibitors. RSC Medicinal Chemistry 2022 13 11 1350 1360 10.1039/D2MD00155A 36426236
    [Google Scholar]
  90. Zala M. Vora J. Khedkar V.M Almalki A.H Tivari S. Jatvada R. Development of novel sulfonamide-based pyrazole-clubbed pyrazoline derivatives: Synthesis, biological evaluation, and molecular docking study. ACS Omega 2025 10 7 7120 7130 10.1021/acsomega.4c10198
    [Google Scholar]
  91. Holas O. Ondrejcek P. Dolezal M. Mycobacterium tuberculosis enoyl-acyl carrier protein reductase inhibitors as potential antituberculotics: Development in the past decade. J. Enzyme Inhib. Med. Chem. 2015 30 4 629 648 10.3109/14756366.2014.959512 25383419
    [Google Scholar]
  92. Bekhit A.A. Saudi M.N. Hassan A.M.M. Fahmy S.M. Ibrahim T.M. Ghareeb D. El-Seidy A.M. Nasralla S.N. Bekhit A.E.D.A. Synthesis, in silico experiments and biological evaluation of 1,3,4-trisubstituted pyrazole derivatives as antimalarial agents. Eur. J. Med. Chem. 2019 163 353 366 10.1016/j.ejmech.2018.11.067 30530172
    [Google Scholar]
  93. Choudhary D. Rani I. Monga J. Goyal R. Husain A. Garg P. Khokra S.L. Pyrazole based furanone hybrids as novel antimalarial: A combined experimental, pharmacological and computational study. Cent. Nerv. Syst. Agents Med. Chem. 2022 22 1 39 56 10.2174/1871524922666220301121811 35232355
    [Google Scholar]
  94. Berhe H.G. Birhan Y.S. Beshay B.Y. Habib H.J. Hymete A. Bekhit A.A. Synthesis, antileishmanial, antimalarial evaluation and molecular docking study of some hydrazine-coupled pyrazole derivatives. BMC Chem. 2024 18 1 9 10.1186/s13065‑023‑01111‑0 38191485
    [Google Scholar]
  95. Bekhit A.A. Novel dual acting antimalarial antileishmanial agents derived from pyrazole moiety. Biointerface Res. Appl. Chem. 2021 12 5 6225 6233 10.33263/BRIAC125.62256233
    [Google Scholar]
  96. Aggarwal S. Paliwal D. Kaushik D. Gupta G.K. Kumar A. Pyrazole schiff base hybrids as anti-malarial agents: Synthesis, in vitro screening and computational study. Comb. Chem. High Throughput Screen. 2018 21 3 194 203 10.2174/1386207321666180213092911 29436997
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298380223250710210504
Loading
/content/journals/mroc/10.2174/0118756298380223250710210504
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: antiviral ; pyrazole derivatives ; anticancer ; antimicrobial ; Pyrazole ; antituberculosis ; antimalarial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test