Skip to content
2000
image of Advances in Ru-based Organic Frameworks: Complex Organo-Ruthenium Structures in Medicinal Chemistry over the Last Decades

Abstract

Ruthenium and its complexes, or its nano form, are presently gaining a great deal of attention as essential reagents involved in lead discovery within the fields of medicinal, pharmacological, and biological chemistry. Similarly, as compared to systems made entirely of metal, nanoparticles have distinct and superior properties. As a powerful catalytic agent, ruthenium has several applications due to its inherent characteristics in both metallic and elemental forms. Arguably, ruthenium is the most important of the noble metals. From a variety of pharmacological perspectives, this review compiles the research on ruthenium and its complexes, highlighting their diversity and their potential beneficial effects in nanotechnology.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298344606241227044401
2025-01-17
2025-09-13
Loading full text...

Full text loading...

References

  1. Hughes J.P. Rees S. Kalindjian S.B. Philpott K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011 162 6 1239 1249 10.1111/j.1476‑5381.2010.01127.x 21091654
    [Google Scholar]
  2. Wainwright C.L. Teixeira M.M. Adelson D.L. Braga F.C. Buenz E.J. Campana P.R.V. David B. Glaser K.B. Lee H.Y. Howes M-J.R. Izzo A.A. Maffia P. Mayer A.M.S. Mazars C. Newman D.J. Lughadha N.E. Pádua R.M. Pimenta A.M.C. Parra J.A.A. Qu Z. Shen H. Spedding M. Wolfender J-L. Future directions for the discovery of natural product-derived immunomodulating drugs: An IUPHAR positional review. Pharmacol. Res. 2022 177 106076 10.1016/j.phrs.2022.106076
    [Google Scholar]
  3. Bayda S. Adeel M. Tuccinardi T. Cordani M. Rizzolio F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2019 25 1 112 10.3390/molecules25010112 31892180
    [Google Scholar]
  4. Mobeen H. Safdar M. Fatima A. Afzal S. Zaman H. Mehdi Z. Emerging applications of nanotechnology in context to immunology: A comprehensive review. Front. Bioeng. Biotechnol. 2022 10 1024871 10.3389/fbioe.2022.1024871 36619389
    [Google Scholar]
  5. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Torres R.M.P. Torres A.L.S. Torres D.L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  6. Khan Y. Sadia H. Shah A.S.Z. Khan M.N. Shah A.A. Ullah N. Ullah M.F. Bibi H. Bafakeeh O.T. Khedher N.B. Eldin S.M. Fadhl B.M. Khan M.I. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts 2022 12 11 1386 10.3390/catal12111386
    [Google Scholar]
  7. Chandrakala V. Aruna V. Angajala G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emerg. Mat. 2022 5 6 1593 1615 10.1007/s42247‑021‑00335‑x
    [Google Scholar]
  8. Afzal O. Altamimi A.S.A. Nadeem M.S. Alzarea S.I. Almalki W.H. Tariq A. Mubeen B. Murtaza B.N. Iftikhar S. Riaz N. Kazmi I. Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials (Basel) 2022 12 24 4494 10.3390/nano12244494 36558344
    [Google Scholar]
  9. Yusuf A. Almotairy A.R.Z. Henidi H. Alshehri O.Y. Aldughaim M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers (Basel) 2023 15 7 1596 10.3390/polym15071596 37050210
    [Google Scholar]
  10. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  11. Veerakumar P. Sangili A. Chen S-M. Karuppusamy N. Sustainable synthesis of ruthenium–palladium-based nanonet assembly for efficient reduction of 4-nitrophenol and nitrofurantoin. ACS Appl. Nano Mater. 2023 6 21 19740 19755 10.1021/acsanm.3c03352
    [Google Scholar]
  12. Gaurav T. Mukhtiar A. Faiz U. Synthesis, thermoelectric and energy storage performance of transition metal oxides composites. Coord. Chem. Rev. 2023 498 215470 10.1021/acsanm.3c03352
    [Google Scholar]
  13. Polanski J. Lach D. Kapkowski M. Bartczak P. Siudyga T. Smolinski A. Ru and Ni—privileged metal combination for environmental nanocatalysis. Catalysts 2020 10 9 992 10.3390/catal10090992
    [Google Scholar]
  14. Khan I. Saeed K. Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019 12 7 908 931 10.1016/j.arabjc.2017.05.011
    [Google Scholar]
  15. Murthy S.K. Nanoparticles in modern medicine: State of the art and future challenges. Int. J. Nanomedicine 2007 2 2 129 141 10.1016/j.arabjc.2017.05.011 17722542
    [Google Scholar]
  16. Behzadi S. Serpooshan V. Tao W. Hamaly M.A. Alkawareek M.Y. Dreaden E.C. Brown D. Alkilany A.M. Farokhzad O.C. Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017 46 14 4218 4244 10.1039/C6CS00636A 28585944
    [Google Scholar]
  17. Hafeez J. Bilal M. Rasool N. Hafeez U. Shah A.A.S. Imran S. Zakaria A.Z. Synthesis of ruthenium complexes and their catalytic applications: A review. Arab. J. Chem. 2022 15 11 104165 10.1016/j.arabjc.2022.104165
    [Google Scholar]
  18. Lee S.Y. Kim C.Y. Nam T.G. Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Des. Devel. Ther. 2020 14 5375 5392 10.2147/DDDT.S275007 33299303
    [Google Scholar]
  19. Khan H.Y. Maurya S.K. Siddique H.R. Yousuf S. Arjmand F. New tailored RNA-targeted organometallic drug candidates against Huh7 (Liver) and Du145 (Prostate) cancer cell lines. ACS Omega 2020 5 25 15218 15228 10.1021/acsomega.0c01206 32637795
    [Google Scholar]
  20. Munteanu A.C. Uivarosi V. Ruthenium complexes in the fight against pathogenic microorganisms. An extensive review. Pharmaceutics 2021 13 6 874 10.3390/pharmaceutics13060874 34199283
    [Google Scholar]
  21. Claudel M. Schwarte J.V. Fromm K.M. New antimicrobial strategies based on metal complexes. Chemistry 2020 2 4 849 899 10.3390/chemistry2040056
    [Google Scholar]
  22. James P. Matshwele O. Daphne M. Melvin L. Lebogang J. David N. Antibacterial activity of 2‐picolyl‐polypyridyl‐based ruthenium (II/III) complexes on non‐drug‐resistant and drug‐resistant bacteria. Bioinorg. Chem. Appl. 2021 2021 1 5563209 10.1155/2021/5563209
    [Google Scholar]
  23. Li F. Feterl M. Warner J.M. Keene F.R. Collins J.G. Dinuclear polypyridylruthenium(II) complexes: Flow cytometry studies of their accumulation in bacteria and the effect on the bacterial membrane. J. Antimicrob. Chemother. 2013 68 12 2825 2833 10.1093/jac/dkt279 23873648
    [Google Scholar]
  24. Liao X. Liu L. Tan Y. Jiang G. Fang H. Xiong Y. Duan X. Jiang G. Wang J. Dalton T. Synthesis of ruthenium complexes functionalized with benzothiophene and their antibacterial activity against Staphylococcus aureus. Dalton Trans. 2021 50 16 5607 5616 10.1039/D0DT04258G 33908929
    [Google Scholar]
  25. Krishnamoorthy M. Hakobyan S. Ramstedt M. Gautrot J.E. Surface-initiated polymer brushes in the biomedical field: Applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem. Rev. 2014 114 21 10976 11026 10.1021/cr500252u 25353708
    [Google Scholar]
  26. Li J. Wang G. Zhu H. Zhang M. Zheng X. Di Z. Liu X. Wang X. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci. Rep. 2014 4 1 4359 10.1038/srep04359 24619247
    [Google Scholar]
  27. Abdullayev E. Sakakibara K. Okamoto K. Wei W. Ariga K. Lvov Y. Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. ACS Appl. Mater. Interfaces 2011 3 10 4040 4046 10.1021/am200896d 21905653
    [Google Scholar]
  28. AlBalawi A.N. Elmetwalli A. Baraka D.M. Alnagar H.A. Alamri E.S. Hassan M.G. Chemical constituents, antioxidant potential, and antimicrobial efficacy of Pimpinella anisum extracts against multidrug-resistant bacteria. Microorganisms 2023 11 4 1024 10.3390/microorganisms11041024 37110449
    [Google Scholar]
  29. Lapasam A. Dkhar L. Joshi N. Poluri K.M. Kollipara M.R. Antimicrobial selectivity of ruthenium, rhodium, and iridium half sandwich complexes containing phenyl hydrazone Schiff base ligands towards B. thuringiensis and P. aeruginosa bacteria. Inorg. Chim. Acta 2019 484 255 263 10.1016/j.ica.2018.09.067
    [Google Scholar]
  30. Sun D. Zhang W. Lv M. Yang E. Zhao Q. Wang W. Sun D. Zhang W. Lv M. Yang E.Q. Zhao W. Wang W. Antibacterial activity of ruthenium(II) polypyridyl complex manipulated by membrane permeability and cell morphology. Bioorg. Med. Chem. Lett. 2015 25 10 2068 2073 10.1016/j.bmcl.2015.03.090 25881824
    [Google Scholar]
  31. Atakilt A. Tizazu H. Synthesis and assessment of antibacterial activities of ruthenium (III) mixed ligand complexes containing 1, 10‐phenanthroline and guanide. Bioinorg. Chem. Appl. 2016 2016 1 3607924 10.1155/2016/3607924
    [Google Scholar]
  32. Kumari M. Lu R.M. Li M.C. Huang J.L. Hsu F.F. Ko S.H. Ke F.Y. Su S.C. Liang K.H. Yuan J.P.Y. Chiang H.L. Sun C.P. Lee I.J. Li W.S. Hsieh H.P. Tao M.H. Wu H.C. A critical overview of current progress for COVID-19: Development of vaccines, antiviral drugs, and therapeutic antibodies. J. Biomed. Sci. 2022 29 1 68 10.1186/s12929‑022‑00852‑9 36096815
    [Google Scholar]
  33. Butler C.C. Hobbs F.D.R. Gbinigie O.A. Rahman N.M. Hayward G. Richards D.B. Dorward J. Lowe D.M. Standing J.F. Breuer J. Khoo S. Petrou S. Hood K. Tam N.V.J.S. Patel M.G. Saville B.R. Marion J. Ogburn E. Allen J. Rutter H. Francis N. Thomas N.P.B. Evans P. Dobson M. Madden T.A. Holmes J. Harris V. Png M.E. Lown M. Hecke V.O. Detry M.A. Saunders C.T. Fitzgerald M. Berry N.S. Mwandigha L. Galal U. Mort S. Jani B.D. Hart N.D. Ahmed H. Butler D. McKenna M. Chalk J. Lavallee L. Hadley E. Cureton L. Benysek M. Andersson M. Coates M. Barrett S. Bateman C. Davies J.C. Wood R.I. Ustianowski A. Stevens C.A. Yu L.M. Little P. Agyeman A.A. Ahmed T. Allcock D. Martinez B.A. Benedict O.E. Bird N. Brennan L. Brown J. Burns G. Butler M. Cheng Z. Danson R. de Kare-Silver N. Dhasmana D. Dickson J. Engamba S. Fisher S. Fox R. Frost E. Gaunt R. Ghosh S. Gilkar I. Goodman A. Granier S. Howell A. Hussain I. Hutchinson S. Imlach M. Irving G. Jacobsen N. Kennard J. Khan U. Knox K. Krasucki C. Law T. Lee R. Lester N. Lewis D. Lunn J. Mackintosh C.I. Mathukia M. Moore P. Morton S. Murphy D. Nally R. Ndukauba C. Ogundapo O. Okeke H. Patel A. Patel K. Penfold R. Poonian S. Popoola O. Pora A. Prasad V. Prasad R. Razzaq O. Richardson S. Royal S. Safa A. Sehdev S. Sevenoaks T. Shah D. Sheikh A. Short V. Sidhu B.S. Singh I. Soni Y. Thalasselis C. Wilson P. Wingfield D. Wong M. Woodall M.N.J. Wooding N. Woods S. Yong J. Yongblah F. Zafar A. Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): An open-label, platform-adaptive randomised controlled trial. Lancet 2023 401 10373 281 293 10.1016/S0140‑6736(22)02597‑1 36566761
    [Google Scholar]
  34. Janković N. Milović E. Jovanović J.Đ. Marković Z. Vraneš M. Stanojković T. Matić I. Crnogorac M.Đ. Klisurić O. Cvetinov M. Bukhari A.S.N. A new class of half-sandwich ruthenium complexes containing Biginelli hybrids: Anticancer and anti-SARS-CoV-2 activities. Chem. Biol. Interact. 2022 363 110025 10.1016/j.cbi.2022.110025 35752294
    [Google Scholar]
  35. Trondl R.P. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. ChemInform 2014 45 36 10.1002/chin.201436281
    [Google Scholar]
  36. Małecka M. Skoczyńska A. Goodman D.M. Hartinger C.G. Budzisz E. Biological properties of ruthenium(II)/(III) complexes with flavonoids as ligands. Coord. Chem. Rev. 2021 436 213849 10.1016/j.ccr.2021.213849
    [Google Scholar]
  37. Singh A.K. Saxena G. Sahabjada A. Arshad M. Synthesis, characterization and biological evaluation of ruthenium flavanol complexes against breast cancer. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017 180 97 104 10.1016/j.saa.2017.02.056
    [Google Scholar]
  38. Dwyer F.P. Gyarfas E.C. Rogers W.P. Koch J.H. Biological activity of complex ions. Nature 1952 170 4318 190 191 10.1038/170190a0 12982853
    [Google Scholar]
  39. Kilah N.L. Meggers E. Sixty years young: The diverse biological activities of metal polypyridyl complexes pioneered by Francis P. Dwyer. Aust. J. Chem. 2012 65 9 1325 1332 10.1071/CH12275
    [Google Scholar]
  40. Allardyce C.S. Dyson P.J. Ruthenium in medicine: Current clinical uses and future prospects. Platin. Met. Rev. 2001 45 2 62 69 10.1595/003214001X4526269
    [Google Scholar]
  41. Karaoun N. Renfrew A.K. A luminescent ruthenium(II) complex for light-triggered drug release and live cell imaging. Chem. Commun. (Camb.) 2015 51 74 14038 14041 10.1039/C5CC05172J 26248575
    [Google Scholar]
  42. Joshi T. Pierroz V. Mari C. Gemperle L. Ferrari S. Gasser G. A bis(dipyridophenazine)(2‐(2‐pyridyl)pyrimidine‐4‐carboxylic acid)ruthenium(II) complex with anticancer action upon photodeprotection. Angew. Chem. Int. Ed. 2014 53 11 2960 2963 10.1002/anie.201309576 24500767
    [Google Scholar]
  43. Grisi F. Costabile C. Gallo E. Mariconda A. Tedesco C. Longo P. Ruthenium-based complexes bearing saturated chiral N-heterocyclic carbene ligands: Dynamic behavior and catalysis. Organometallics 2008 27 18 4649 4656 10.1021/om800459y
    [Google Scholar]
  44. Perfetto A. Costabile C. Longo P. Grisi F. Ruthenium olefin metathesis catalysts with frozen NHC ligand conformations. Organometallics 2014 33 11 2747 2759 10.1021/om5001452
    [Google Scholar]
  45. Jalal M. Hammouti B. Touzani R. Aouniti A. Ozdemir I. Metal-NHC heterocycle complexes in catalysis and biological applications: Systematic review. Mater. Today Proc. 2020 31 S122 S129 10.1016/j.matpr.2020.06.398 32837919
    [Google Scholar]
  46. Ott I. Metal N-heterocyclic carbene complexes in medicinal chemistry. Adv. Inorg. Chem. 2020 75 121 148 10.1016/bs.adioch.2019.10.008
    [Google Scholar]
  47. Patil A. Hoagland P. Patil A. Bugarin A. N-heterocyclic carbene-metal complexes as bio-organometallic antimicrobial and anticancer drugs, an update (2015-2020). Future Med. Chem. 2020 12 24 2239 2275 10.4155/fmc‑2020‑0175 33228391
    [Google Scholar]
  48. Liang J. Sun D. Yang Y. Li M. Li H. Chen L. Discovery of metal-based complexes as promising antimicrobial agents. Eur. J. Med. Chem. 2021 224 113696 10.1016/j.ejmech.2021.113696 34274828
    [Google Scholar]
  49. Biot C. Nosten F. Fraisse L. Minassian T.D. Khalife J. Dive D. The antimalarial ferroquine: From bench to clinic. Parasite 2011 18 3 207 214 10.1051/parasite/2011183207 21894260
    [Google Scholar]
  50. Dondorp A.M. Nosten F. Yi P. Das D. Phyo A.P. Tarning J. Lwin K.M. Ariey F. Hanpithakpong W. Lee S.J. Ringwald P. Silamut K. Imwong M. Chotivanich K. Lim P. Herdman T. An S.S. Yeung S. Singhasivanon P. Day N.P.J. Lindegardh N. Socheat D. White N.J. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 2009 361 5 455 467 10.1056/NEJMoa0808859 19641202
    [Google Scholar]
  51. Dubar F. Egan T.J. Pradines B. Kuter D. Ncokazi K.K. Forge D. Paul J.F. Pierrot C. Kalamou H. Khalife J. Buisine E. Rogier C. Vezin H. Forfar I. Slomianny C. Trivelli X. Kapishnikov S. Leiserowitz L. Dive D. Biot C. The antimalarial ferroquine: Role of the metal and intramolecular hydrogen bond in activity and resistance. ACS Chem. Biol. 2011 6 3 275 287 10.1021/cb100322v 21162558
    [Google Scholar]
  52. Ekengard E. Glans L. Cassells I. Fogeron T. Govender P. Stringer T. Chellan P. Lisensky G.C. Hersh W.H. Doverbratt I. Lidin S. Kock D.C. Smith P.J. Smith G.S. Nordlander E. Antimalarial activity of ruthenium(II) and osmium(II) arene complexes with mono- and bidentate chloroquine analogue ligands. Dalton Trans. 2015 44 44 19314 19329 10.1039/C5DT02410B 26491831
    [Google Scholar]
  53. Li Y. Kock D.C. Smith P.J. Guzgay H. Hendricks D.T. Naran K. Mizrahi V. Warner D.F. Chibale K. Smith G.S. Synthesis, characterization, and pharmacological evaluation of silicon-containing aminoquinoline organometallic complexes as antiplasmodial, antitumor, and antimycobacterial agents. Organometallics 2013 32 1 141 150 10.1021/om300945c
    [Google Scholar]
  54. Li Y. Kock D.C. Smith P.J. Chibale K. Smith G.S. Synthesis and evaluation of a carbosilane congener of ferroquine and its corresponding half-sandwich ruthenium and rhodium complexes for antiplasmodial and β-hematin inhibition activity. Organometallics 2014 33 17 4345 4348 10.1021/om500622p
    [Google Scholar]
  55. Tacke R. Heinrich T. Bertermann R. Burschka C. Hamacher A. Kassack M.U. Sila-haloperidol: A silicon analogue of the dopamine (D2) receptor antagonist haloperidol. Organometallics 2004 23 19 4468 4477 10.1021/om040067l
    [Google Scholar]
  56. Mbaba M. Golding T.M. Smith G.S. Recent advances in the biological investigation of organometallic platinum-group metal (Ir, Ru, Rh, Os, Pd, Pt) complexes as antimalarial agents. Molecules 2020 25 22 5276 10.3390/molecules25225276 33198217
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298344606241227044401
Loading
/content/journals/mroc/10.2174/0118756298344606241227044401
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test