Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Ruthenium and its complexes, or its nano form, are presently gaining a great deal of attention as essential reagents involved in lead discovery within the fields of medicinal, pharmacological, and biological chemistry. Similarly, as compared to systems made entirely of metal, nanoparticles have distinct and superior properties. As a powerful catalytic agent, ruthenium has several applications due to its inherent characteristics in both metallic and elemental forms. Arguably, ruthenium is the most important of the noble metals. From a variety of pharmacological perspectives, this review compiles the research on ruthenium and its complexes, highlighting their diversity and their potential beneficial effects in nanotechnology.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298344606241227044401
2025-01-17
2025-10-30
Loading full text...

Full text loading...

References

  1. HughesJ.P. ReesS. KalindjianS.B. PhilpottK.L. Principles of early drug discovery.Br. J. Pharmacol.201116261239124910.1111/j.1476‑5381.2010.01127.x 21091654
    [Google Scholar]
  2. WainwrightC.L. TeixeiraM.M. AdelsonD.L. BragaF.C. BuenzE.J. CampanaP.R.V. DavidB. GlaserK.B. LeeH.Y. HowesM-J.R. IzzoA.A. MaffiaP. MayerA.M.S. MazarsC. NewmanD.J. LughadhaN.E. PáduaR.M. PimentaA.M.C. ParraJ.A.A. QuZ. ShenH. SpeddingM. WolfenderJ-L. Future directions for the discovery of natural product-derived immunomodulating drugs: An IUPHAR positional review.Pharmacol. Res.202217710607610.1016/j.phrs.2022.106076
    [Google Scholar]
  3. BaydaS. AdeelM. TuccinardiT. CordaniM. RizzolioF. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine.Molecules201925111210.3390/molecules25010112 31892180
    [Google Scholar]
  4. MobeenH. SafdarM. FatimaA. AfzalS. ZamanH. MehdiZ. Emerging applications of nanotechnology in context to immunology: A comprehensive review.Front. Bioeng. Biotechnol.202210102487110.3389/fbioe.2022.1024871 36619389
    [Google Scholar]
  5. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. TorresR.M.P. TorresA.L.S. TorresD.L.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  6. KhanY. SadiaH. ShahA.S.Z. KhanM.N. ShahA.A. UllahN. UllahM.F. BibiH. BafakeehO.T. KhedherN.B. EldinS.M. FadhlB.M. KhanM.I. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review.Catalysts20221211138610.3390/catal12111386
    [Google Scholar]
  7. ChandrakalaV. ArunaV. AngajalaG. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems.Emerg. Mat.2022561593161510.1007/s42247‑021‑00335‑x
    [Google Scholar]
  8. AfzalO. AltamimiA.S.A. NadeemM.S. AlzareaS.I. AlmalkiW.H. TariqA. MubeenB. MurtazaB.N. IftikharS. RiazN. KazmiI. Nanoparticles in drug delivery: From history to therapeutic applications.Nanomaterials20221224449410.3390/nano12244494 36558344
    [Google Scholar]
  9. YusufA. AlmotairyA.R.Z. HenidiH. AlshehriO.Y. AldughaimM.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems.Polymers2023157159610.3390/polym15071596 37050210
    [Google Scholar]
  10. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  11. VeerakumarP. SangiliA. ChenS-M. KaruppusamyN. Sustainable synthesis of ruthenium–palladium-based nanonet assembly for efficient reduction of 4-nitrophenol and nitrofurantoin.ACS Appl. Nano Mater.2023621197401975510.1021/acsanm.3c03352
    [Google Scholar]
  12. GauravT. MukhtiarA. FaizU. Synthesis, thermoelectric and energy storage performance of transition metal oxides composites.Coord. Chem. Rev.202349821547010.1021/acsanm.3c03352
    [Google Scholar]
  13. PolanskiJ. LachD. KapkowskiM. BartczakP. SiudygaT. SmolinskiA. Ru and Ni—privileged metal combination for environmental nanocatalysis.Catalysts202010999210.3390/catal10090992
    [Google Scholar]
  14. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  15. MurthyS.K. Nanoparticles in modern medicine: State of the art and future challenges.Int. J. Nanomedicine20072212914110.1016/j.arabjc.2017.05.011 17722542
    [Google Scholar]
  16. BehzadiS. SerpooshanV. TaoW. HamalyM.A. AlkawareekM.Y. DreadenE.C. BrownD. AlkilanyA.M. FarokhzadO.C. MahmoudiM. Cellular uptake of nanoparticles: Journey inside the cell.Chem. Soc. Rev.201746144218424410.1039/C6CS00636A 28585944
    [Google Scholar]
  17. HafeezJ. BilalM. RasoolN. HafeezU. ShahA.A.S. ImranS. ZakariaA.Z. Synthesis of ruthenium complexes and their catalytic applications: A review.Arab. J. Chem.2022151110416510.1016/j.arabjc.2022.104165
    [Google Scholar]
  18. LeeS.Y. KimC.Y. NamT.G. Ruthenium complexes as anticancer agents: A brief history and perspectives.Drug Des. Devel. Ther.2020145375539210.2147/DDDT.S275007 33299303
    [Google Scholar]
  19. KhanH.Y. MauryaS.K. SiddiqueH.R. YousufS. ArjmandF. New tailored RNA-targeted organometallic drug candidates against Huh7 (Liver) and Du145 (Prostate) cancer cell lines.ACS Omega2020525152181522810.1021/acsomega.0c01206 32637795
    [Google Scholar]
  20. MunteanuA.C. UivarosiV. Ruthenium complexes in the fight against pathogenic microorganisms. An extensive review.Pharmaceutics202113687410.3390/pharmaceutics13060874 34199283
    [Google Scholar]
  21. ClaudelM. SchwarteJ.V. FrommK.M. New antimicrobial strategies based on metal complexes.Chemistry20202484989910.3390/chemistry2040056
    [Google Scholar]
  22. JamesP. MatshweleO. DaphneM. MelvinL. LebogangJ. DavidN. Antibacterial activity of 2‐picolyl‐polypyridyl‐based ruthenium (II/III) complexes on non‐drug‐resistant and drug‐resistant bacteria.Bioinorg. Chem. Appl.202120211556320910.1155/2021/5563209
    [Google Scholar]
  23. LiF. FeterlM. WarnerJ.M. KeeneF.R. CollinsJ.G. Dinuclear polypyridylruthenium(II) complexes: Flow cytometry studies of their accumulation in bacteria and the effect on the bacterial membrane.J. Antimicrob. Chemother.201368122825283310.1093/jac/dkt279 23873648
    [Google Scholar]
  24. LiaoX. LiuL. TanY. JiangG. FangH. XiongY. DuanX. JiangG. WangJ. DaltonT. Synthesis of ruthenium complexes functionalized with benzothiophene and their antibacterial activity against Staphylococcus aureus.Dalton Trans.202150165607561610.1039/D0DT04258G 33908929
    [Google Scholar]
  25. KrishnamoorthyM. HakobyanS. RamstedtM. GautrotJ.E. Surface-initiated polymer brushes in the biomedical field: Applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings.Chem. Rev.201411421109761102610.1021/cr500252u 25353708
    [Google Scholar]
  26. LiJ. WangG. ZhuH. ZhangM. ZhengX. DiZ. LiuX. WangX. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer.Sci. Rep.201441435910.1038/srep04359 24619247
    [Google Scholar]
  27. AbdullayevE. SakakibaraK. OkamotoK. WeiW. ArigaK. LvovY. Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating.ACS Appl. Mater. Interfaces20113104040404610.1021/am200896d 21905653
    [Google Scholar]
  28. AlBalawiA.N. ElmetwalliA. BarakaD.M. AlnagarH.A. AlamriE.S. HassanM.G. Chemical constituents, antioxidant potential, and antimicrobial efficacy of Pimpinella anisum extracts against multidrug-resistant bacteria.Microorganisms2023114102410.3390/microorganisms11041024 37110449
    [Google Scholar]
  29. LapasamA. DkharL. JoshiN. PoluriK.M. KolliparaM.R. Antimicrobial selectivity of ruthenium, rhodium, and iridium half sandwich complexes containing phenyl hydrazone Schiff base ligands towards B. thuringiensis and P. aeruginosa bacteria.Inorg. Chim. Acta201948425526310.1016/j.ica.2018.09.067
    [Google Scholar]
  30. SunD. ZhangW. LvM. YangE. ZhaoQ. WangW. SunD. ZhangW. LvM. YangE.Q. ZhaoW. WangW. Antibacterial activity of ruthenium(II) polypyridyl complex manipulated by membrane permeability and cell morphology.Bioorg. Med. Chem. Lett.201525102068207310.1016/j.bmcl.2015.03.090 25881824
    [Google Scholar]
  31. AtakiltA. TizazuH. Synthesis and assessment of antibacterial activities of ruthenium (III) mixed ligand complexes containing 1, 10‐phenanthroline and guanide.Bioinorg. Chem. Appl.201620161360792410.1155/2016/3607924
    [Google Scholar]
  32. KumariM. LuR.M. LiM.C. HuangJ.L. HsuF.F. KoS.H. KeF.Y. SuS.C. LiangK.H. YuanJ.P.Y. ChiangH.L. SunC.P. LeeI.J. LiW.S. HsiehH.P. TaoM.H. WuH.C. A critical overview of current progress for COVID-19: Development of vaccines, antiviral drugs, and therapeutic antibodies.J. Biomed. Sci.20222916810.1186/s12929‑022‑00852‑9 36096815
    [Google Scholar]
  33. ButlerC.C. HobbsF.D.R. GbinigieO.A. RahmanN.M. HaywardG. RichardsD.B. DorwardJ. LoweD.M. StandingJ.F. BreuerJ. KhooS. PetrouS. HoodK. TamN.V.J.S. PatelM.G. SavilleB.R. MarionJ. OgburnE. AllenJ. RutterH. FrancisN. ThomasN.P.B. EvansP. DobsonM. MaddenT.A. HolmesJ. HarrisV. PngM.E. LownM. HeckeV.O. DetryM.A. SaundersC.T. FitzgeraldM. BerryN.S. MwandighaL. GalalU. MortS. JaniB.D. HartN.D. AhmedH. ButlerD. McKennaM. ChalkJ. LavalleeL. HadleyE. CuretonL. BenysekM. AnderssonM. CoatesM. BarrettS. BatemanC. DaviesJ.C. WoodR.I. UstianowskiA. StevensC.A. YuL.M. LittleP. AgyemanA.A. AhmedT. AllcockD. MartinezB.A. BenedictO.E. BirdN. BrennanL. BrownJ. BurnsG. ButlerM. ChengZ. DansonR. de Kare-SilverN. DhasmanaD. DicksonJ. EngambaS. FisherS. FoxR. FrostE. GauntR. GhoshS. GilkarI. GoodmanA. GranierS. HowellA. HussainI. HutchinsonS. ImlachM. IrvingG. JacobsenN. KennardJ. KhanU. KnoxK. KrasuckiC. LawT. LeeR. LesterN. LewisD. LunnJ. MackintoshC.I. MathukiaM. MooreP. MortonS. MurphyD. NallyR. NdukaubaC. OgundapoO. OkekeH. PatelA. PatelK. PenfoldR. PoonianS. PopoolaO. PoraA. PrasadV. PrasadR. RazzaqO. RichardsonS. RoyalS. SafaA. SehdevS. SevenoaksT. ShahD. SheikhA. ShortV. SidhuB.S. SinghI. SoniY. ThalasselisC. WilsonP. WingfieldD. WongM. WoodallM.N.J. WoodingN. WoodsS. YongJ. YongblahF. ZafarA. Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): An open-label, platform-adaptive randomised controlled trial.Lancet20234011037328129310.1016/S0140‑6736(22)02597‑1 36566761
    [Google Scholar]
  34. JankovićN. MilovićE. JovanovićJ.Đ. MarkovićZ. VranešM. StanojkovićT. MatićI. CrnogoracM.Đ. KlisurićO. CvetinovM. BukhariA.S.N. A new class of half-sandwich ruthenium complexes containing Biginelli hybrids: Anticancer and anti-SARS-CoV-2 activities.Chem. Biol. Interact.202236311002510.1016/j.cbi.2022.110025 35752294
    [Google Scholar]
  35. TrondlR.P. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application.ChemInform2014453610.1002/chin.201436281
    [Google Scholar]
  36. MałeckaM. SkoczyńskaA. GoodmanD.M. HartingerC.G. BudziszE. Biological properties of ruthenium(II)/(III) complexes with flavonoids as ligands.Coord. Chem. Rev.202143621384910.1016/j.ccr.2021.213849
    [Google Scholar]
  37. SinghA.K. SaxenaG. SahabjadaA. ArshadM. Synthesis, characterization and biological evaluation of ruthenium flavanol complexes against breast cancer.Spectrochim. Acta A Mol. Biomol. Spectrosc.20171809710410.1016/j.saa.2017.02.056
    [Google Scholar]
  38. DwyerF.P. GyarfasE.C. RogersW.P. KochJ.H. Biological activity of complex ions.Nature1952170431819019110.1038/170190a0 12982853
    [Google Scholar]
  39. KilahN.L. MeggersE. Sixty years young: The diverse biological activities of metal polypyridyl complexes pioneered by Francis P.Dwyer. Aust. J. Chem.20126591325133210.1071/CH12275
    [Google Scholar]
  40. AllardyceC.S. DysonP.J. Ruthenium in medicine: Current clinical uses and future prospects.Platin. Met. Rev.2001452626910.1595/003214001X4526269
    [Google Scholar]
  41. KaraounN. RenfrewA.K. A luminescent ruthenium(II) complex for light-triggered drug release and live cell imaging.Chem. Commun.20155174140381404110.1039/C5CC05172J 26248575
    [Google Scholar]
  42. JoshiT. PierrozV. MariC. GemperleL. FerrariS. GasserG. A bis(dipyridophenazine)(2‐(2‐pyridyl)pyrimidine‐4‐carboxylic acid)ruthenium(II) complex with anticancer action upon photodeprotection.Angew. Chem. Int. Ed.201453112960296310.1002/anie.201309576 24500767
    [Google Scholar]
  43. GrisiF. CostabileC. GalloE. MaricondaA. TedescoC. LongoP. Ruthenium-based complexes bearing saturated chiral N-heterocyclic carbene ligands: Dynamic behavior and catalysis.Organometallics200827184649465610.1021/om800459y
    [Google Scholar]
  44. PerfettoA. CostabileC. LongoP. GrisiF. Ruthenium olefin metathesis catalysts with frozen NHC ligand conformations.Organometallics201433112747275910.1021/om5001452
    [Google Scholar]
  45. JalalM. HammoutiB. TouzaniR. AounitiA. OzdemirI. Metal-NHC heterocycle complexes in catalysis and biological applications: Systematic review.Mater. Today Proc.202031S122S12910.1016/j.matpr.2020.06.398 32837919
    [Google Scholar]
  46. OttI. Metal N-heterocyclic carbene complexes in medicinal chemistry.Adv. Inorg. Chem.20207512114810.1016/bs.adioch.2019.10.008
    [Google Scholar]
  47. PatilA. HoaglandP. PatilA. BugarinA. N-heterocyclic carbene-metal complexes as bio-organometallic antimicrobial and anticancer drugs, an update (2015-2020).Future Med. Chem.202012242239227510.4155/fmc‑2020‑0175 33228391
    [Google Scholar]
  48. LiangJ. SunD. YangY. LiM. LiH. ChenL. Discovery of metal-based complexes as promising antimicrobial agents.Eur. J. Med. Chem.202122411369610.1016/j.ejmech.2021.113696 34274828
    [Google Scholar]
  49. BiotC. NostenF. FraisseL. MinassianT.D. KhalifeJ. DiveD. The antimalarial ferroquine: From bench to clinic.Parasite201118320721410.1051/parasite/2011183207 21894260
    [Google Scholar]
  50. DondorpA.M. NostenF. YiP. DasD. PhyoA.P. TarningJ. LwinK.M. ArieyF. HanpithakpongW. LeeS.J. RingwaldP. SilamutK. ImwongM. ChotivanichK. LimP. HerdmanT. AnS.S. YeungS. SinghasivanonP. DayN.P.J. LindegardhN. SocheatD. WhiteN.J. Artemisinin resistance in Plasmodium falciparum malaria.N. Engl. J. Med.2009361545546710.1056/NEJMoa0808859 19641202
    [Google Scholar]
  51. DubarF. EganT.J. PradinesB. KuterD. NcokaziK.K. ForgeD. PaulJ.F. PierrotC. KalamouH. KhalifeJ. BuisineE. RogierC. VezinH. ForfarI. SlomiannyC. TrivelliX. KapishnikovS. LeiserowitzL. DiveD. BiotC. The antimalarial ferroquine: Role of the metal and intramolecular hydrogen bond in activity and resistance.ACS Chem. Biol.20116327528710.1021/cb100322v 21162558
    [Google Scholar]
  52. EkengardE. GlansL. CassellsI. FogeronT. GovenderP. StringerT. ChellanP. LisenskyG.C. HershW.H. DoverbrattI. LidinS. KockD.C. SmithP.J. SmithG.S. NordlanderE. Antimalarial activity of ruthenium(II) and osmium(II) arene complexes with mono- and bidentate chloroquine analogue ligands.Dalton Trans.20154444193141932910.1039/C5DT02410B 26491831
    [Google Scholar]
  53. LiY. KockD.C. SmithP.J. GuzgayH. HendricksD.T. NaranK. MizrahiV. WarnerD.F. ChibaleK. SmithG.S. Synthesis, characterization, and pharmacological evaluation of silicon-containing aminoquinoline organometallic complexes as antiplasmodial, antitumor, and antimycobacterial agents.Organometallics201332114115010.1021/om300945c
    [Google Scholar]
  54. LiY. KockD.C. SmithP.J. ChibaleK. SmithG.S. Synthesis and evaluation of a carbosilane congener of ferroquine and its corresponding half-sandwich ruthenium and rhodium complexes for antiplasmodial and β-hematin inhibition activity.Organometallics201433174345434810.1021/om500622p
    [Google Scholar]
  55. TackeR. HeinrichT. BertermannR. BurschkaC. HamacherA. KassackM.U. Sila-haloperidol: A silicon analogue of the dopamine (D2) receptor antagonist haloperidol.Organometallics200423194468447710.1021/om040067l
    [Google Scholar]
  56. MbabaM. GoldingT.M. SmithG.S. Recent advances in the biological investigation of organometallic platinum-group metal (Ir, Ru, Rh, Os, Pd, Pt) complexes as antimalarial agents.Molecules20202522527610.3390/molecules25225276 33198217
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298344606241227044401
Loading
/content/journals/mroc/10.2174/0118756298344606241227044401
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test