Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Beta(β)-caryophyllene (BCP) is a naturally occurring bicyclic sesquiterpene widely present in essential oils from various spices, fruits, and both medicinal and ornamental plants. This mini-review primarily covers research progress over the past 20 years (2004-2024) regarding the anti-inflammatory activities and mechanisms of BCP, focusing on its antioxidant, immunomodulatory, analgesic, and neuroprotective properties. Experimental studies have documented a variety of pharmacological activities associated with BCP, including anti-inflammatory, antioxidant, analgesic, immunomodulatory, cardioprotective, intestinal protective, neuroprotective, and nephroprotective effects. BCP has shown significant therapeutic potential in treating diabetes, cardiovascular diseases, inflammatory bowel diseases, ischemia/reperfusion injury, inflammatory disorders, and neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298342319241125043305
2025-01-03
2025-09-01
Loading full text...

Full text loading...

References

  1. NeteaM.G. BalkwillF. ChoncholM. CominelliF. DonathM.Y. Giamarellos-BourboulisE.J. GolenbockD. GresnigtM.S. HenekaM.T. HoffmanH.M. HotchkissR. JoostenL.A.B. KastnerD.L. KorteM. LatzE. LibbyP. Mandrup-PoulsenT. MantovaniA. MillsK.H.G. NowakK.L. O’NeillL.A. PickkersP. van der PollT. RidkerP.M. SchalkwijkJ. SchwartzD.A. SiegmundB. SteerC.J. TilgH. van der MeerJ.W.M. van de VeerdonkF.L. DinarelloC.A. A guiding map for inflammation.Nat. Immunol.201718882683110.1038/ni.3790 28722720
    [Google Scholar]
  2. ArulselvanP. FardM.T. TanW.S. GothaiS. FakuraziS. NorhaizanM.E. KumarS.S. Role of antioxidants and natural products in inflammation.Oxid. Med. Cell. Longev.201620161527613010.1155/2016/5276130 27803762
    [Google Scholar]
  3. MajetyP. HennesseyJ.V. Acute and Subacute, and Riedel’s Thyroiditis. MDText.com, Inc.: South Dartmouth (MA),2000
    [Google Scholar]
  4. TorresA. CillonizC. NiedermanM.S. MenéndezR. ChalmersJ.D. WunderinkR.G. van der PollT. Pneumonia.Nat. Rev. Dis. Primers2021712510.1038/s41572‑021‑00259‑0 33833230
    [Google Scholar]
  5. FurmanD. CampisiJ. VerdinE. Carrera-BastosP. TargS. FranceschiC. FerrucciL. GilroyD.W. FasanoA. MillerG.W. MillerA.H. MantovaniA. WeyandC.M. BarzilaiN. GoronzyJ.J. RandoT.A. EffrosR.B. LuciaA. KleinstreuerN. SlavichG.M. Chronic inflammation in the etiology of disease across the life span.Nat. Med.201925121822183210.1038/s41591‑019‑0675‑0 31806905
    [Google Scholar]
  6. MillerG.E. ChenE. ParkerK.J. Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving toward a model of behavioral and biological mechanisms.Psychol. Bull.2011137695999710.1037/a0024768 21787044
    [Google Scholar]
  7. TetaliS.D. Terpenes and isoprenoids: a wealth of compounds for global use.Planta201924911810.1007/s00425‑018‑3056‑x 30467631
    [Google Scholar]
  8. Mamdouh HashieshH. SheikhA. MeeranM.F.N. SaraswathiammaD. JhaN.K. SadekB. AdeghateE. TariqS. Al MarzooqiS. OjhaS. β-caryophyllene, a dietary phytocannabinoid, alleviates diabetic cardiomyopathy in mice by inhibiting oxidative stress and inflammation activating cannabinoid type-2 receptors.ACS Pharmacol. Transl. Sci.2023681129114210.1021/acsptsci.3c00027 37588762
    [Google Scholar]
  9. MazzantiniC. El BourjiZ. ParisioC. DavolioP.L. CocchiA. Pellegrini-GiampietroD.E. LanducciE. Anti-inflammatory properties of cannabidiol and beta-caryophyllene alone or combined in an in vitro inflammation model.Pharmaceuticals202417446710.3390/ph17040467 38675427
    [Google Scholar]
  10. IrreraN. D’AscolaA. PallioG. BittoA. MazzonE. ManninoF. SquadritoV. ArcoraciV. MinutoliL. CampoG.M. AvenosoA. BongiornoE.B. VaccaroM. SquadritoF. AltavillaD. β-caryophyllene mitigates collagen Antibody Induced Arthritis (CAIA) in mice through a cross-talk between CB2 and PPAR-γ receptors.Biomolecules20199832610.3390/biom9080326 31370242
    [Google Scholar]
  11. KumawatV.S. KaurG. Cannabinoid receptor 2 (CB2) agonists and l-arginine ameliorate diabetic nephropathy in rats by suppressing inflammation and fibrosis through NF-κβ pathway.Naunyn Schmiedebergs Arch. Pharmacol.2024397138139310.1007/s00210‑023‑02597‑0 37450015
    [Google Scholar]
  12. KumawatV.S. KaurG. Cannabinoid 2 receptor agonist and L-arginine combination attenuates diabetic cardiomyopathy in rats via NF-ĸβ inhibition.Can. J. Physiol. Pharmacol.2022100325927110.1139/cjpp‑2021‑0046 34860602
    [Google Scholar]
  13. YeomJ.E. KimS.K. ParkS.Y. Regulation of the gut microbiota and inflammation by β-caryophyllene extracted from cloves in a dextran sulfate sodium-induced colitis mouse model.Molecules20222722778210.3390/molecules27227782 36431883
    [Google Scholar]
  14. IrreraN. D’AscolaA. PallioG. BittoA. ManninoF. ArcoraciV. RotturaM. IeniA. MinutoliL. MetroD. VaccaroM. AltavillaD. SquadritoF. β-caryophyllene inhibits cell proliferation through a direct modulation of cb2 receptors in glioblastoma cells.Cancers (Basel)2020124103810.3390/cancers12041038 32340197
    [Google Scholar]
  15. MohamedM.E. AbdelnabyR.M. YounisN.S. β-caryophyllene ameliorates hepatic ischemia reperfusion-induced injury: the involvement of Keap1/Nrf2/HO 1/NQO 1 and TLR4/NF-κB/NLRP3 signaling pathways.Eur. Rev. Med. Pharmacol. Sci.202226228551856610.26355/eurrev_202211_30391 36459036
    [Google Scholar]
  16. HashieshH.M. MeeranM.F.N. SharmaC. SadekB. KaabiJ.A. OjhaS.K. Therapeutic potential of β-caryophyllene: A dietary cannabinoid in diabetes and associated complications.Nutrients20201210296310.3390/nu12102963 32998300
    [Google Scholar]
  17. ParedesJ. CastañedaR. GertschJ. HuertaV. RoaR. VallsE. ZarateC. EspunyA. SotoM. Neuroprotective effects of β-caryophyllene against dopaminergic neuron injury in a murine model of Parkinson’s disease induced by MPTP.Pharmaceuticals (Basel)20171036010.3390/ph10030060 28684694
    [Google Scholar]
  18. LiW.Y. YangF. ChenJ.H. RenG.F. β-Caryophyllene ameliorates MSU-induced gouty arthritis and inflammation through inhibiting NLRP3 and NF-κB signal pathway: In silico and in vivo.Front. Pharmacol.20211265130510.3389/fphar.2021.651305 33967792
    [Google Scholar]
  19. YangB. WangM. LiY. β-Caryophyllene downregualtes inflammatory cytokine expression and alleviates systemic inflammation in mice by inhibiting the NF-κB signaling pathway.Xibao Yu Fenzi Mianyixue Zazhi2024403229234 38512033
    [Google Scholar]
  20. CasadiegoO. MaciasO. GarcíaL. Sanabria-ChanagaE. Baay-GuzmánG.J. MantillaJ.C. EscobarP. In‐silico selection of wound‐healing plant secondary molecules and their pro‐healing activities on experimental models.Chem. Biodivers.20232012e20230096110.1002/cbdv.202300961 37966104
    [Google Scholar]
  21. Parisotto-PeterleJ. BidoneJ. LuccaL.G. AraújoG.M.S. FalkembachM.C. da Silva MarquesM. HornA.P. dos SantosM.K. da VeigaV.F.Jr LimbergerR.P. TeixeiraH.F. DoraC.L. KoesterL.S. Healing activity of hydrogel containing nanoemulsified β-caryophyllene.Eur. J. Pharm. Sci.202014810531810.1016/j.ejps.2020.105318 32205230
    [Google Scholar]
  22. PiccioloG. PallioG. AltavillaD. VaccaroM. OteriG. IrreraN. SquadritoF. β-caryophyllene reduces the inflammatory phenotype of periodontal cells by targeting CB2 receptors.Biomedicines20208616410.3390/biomedicines8060164 32560286
    [Google Scholar]
  23. MattiuzzoE. FaggianA. VenerandoR. BenettiA. BelluzziE. AbatangeloG. RuggieriP. BrunP. In vitro effects of low doses of β-caryophyllene, ascorbic acid and d-glucosamine on human chondrocyte viability and inflammation.Pharmaceuticals (Basel)202114328610.3390/ph14030286 33806983
    [Google Scholar]
  24. CastroN.F.C. JubilatoF.C. GuerraL.H.A. SantosF.C.A. TabogaS.R. VilamaiorP.S.L. Therapeutic effects of β‐caryophyllene on proliferative disorders and inflammation of the gerbil prostate.Prostate2021811281282410.1002/pros.24177 34125438
    [Google Scholar]
  25. VargaZ.V. MatyasC. ErdelyiK. CinarR. NieriD. ChiccaA. NemethB.T. PalocziJ. LajtosT. CoreyL. HaskoG. GaoB. KunosG. GertschJ. PacherP. β‐Caryophyllene protects against alcoholic steatohepatitis by attenuating inflammation and metabolic dysregulation in mice.Br. J. Pharmacol.2018175232033410.1111/bph.13722 28107775
    [Google Scholar]
  26. ShinS.Y. KohD. LimY. LeeY.H. Inhibition of EGR-1-dependent MMP1 transcription by ethanol extract of Ageratum houstonianum in HaCaT keratinocytes.Mol. Biol. Rep.202148111110.1007/s11033‑020‑06091‑1 33449301
    [Google Scholar]
  27. AhnS.S. YeoH. JungE. OuS. LeeY.H. LimY. ShinS.Y. β-caryophyllene ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis through the downregulation of mitogen-activated protein kinase/EGR1/TSLP signaling axis.Int. J. Mol. Sci.202223231486110.3390/ijms232314861 36499191
    [Google Scholar]
  28. GutiérrezH.A.E. SalidoS.C.L. SotoM.E.F. MartínezA.R.T. HuertaV.C. ParedesJ.M.V. Angiotensinergic effect of β-Caryophyllene on Lipopolysaccharide- induced systemic inflammation.Biochem. Biophys. Res. Commun.202471915008110.1016/j.bbrc.2024.150081 38744071
    [Google Scholar]
  29. XiaoK.J. WangW.X. DaiJ.L. ZhuL. Anti-inflammatory activity and chemical composition of the essential oils from Senecio flammeus.EXCLI J.201413782791 26417301
    [Google Scholar]
  30. BritoL.F. OliveiraH.B.M. das Neves Selis, N.; e Souza, C.L.S.; Júnior, M.N.S.; de Souza, E.P.; Silva, L.S.C.; de Souza Nascimento, F.; Amorim, A.T.; Campos, G.B.; de Oliveira, M.V.; Yatsuda, R.; Timenetsky, J.; Marques, L.M. Anti‐inflammatory activity of β ‐caryophyllene combined with docosahexaenoic acid in a model of sepsis induced by Staphylococcus aureus in mice.J. Sci. Food Agric.201999135870588010.1002/jsfa.9861 31206687
    [Google Scholar]
  31. BénetT. PicotV.S. AwasthiS. PandeyN. BavdekarA. KawadeA. RobinsonA. Rakoto-AndrianariveloM. SyllaM. DialloS. RussomandoG. BasualdoW. Komurian-PradelF. EndtzH. VanhemsP. Paranhos-BaccalàG. Severity of pneumonia in under 5-year-old children from developing countries: a multicenter, prospective, observational study.Am. J. Trop. Med. Hyg.2017971687610.4269/ajtmh.16‑0733 28719310
    [Google Scholar]
  32. OishiT. UchiyamaM. OishiT. MatsuiK. ShiraiT. MatsuoM. NegishiJ. KanekoT. TsukanoS. TaguchiT. NaritaM. Clinical implications of interleukin-18 levels in pediatric patients with Mycoplasma pneumoniae pneumonia.J. Infect. Chemother.201117680380610.1007/s10156‑011‑0265‑7 21681500
    [Google Scholar]
  33. ChenM. DengH. ZhaoY. MiaoX. GuH. BiY. ZhuY. GuoY. ShiS. XuJ. ZhaoD. LiuF. Toll-like receptor 2 modulates pulmonary inflammation and TNF-α release mediated by Mycoplasma pneumoniae.Front. Cell. Infect. Microbiol.20221282402710.3389/fcimb.2022.824027 35372108
    [Google Scholar]
  34. LiuM. NiuW. OuL. β-Caryophyllene ameliorates the Mycoplasmal pneumonia through the inhibition of NF-κB signal transduction in mice.Saudi J. Biol. Sci.20212884240424610.1016/j.sjbs.2021.06.034 34354405
    [Google Scholar]
  35. ZhangY. ZhangH. LiY. WangM. QianF. β-Caryophyllene attenuates lipopolysaccharide-induced acute lung injury via inhibition of the MAPK signalling pathway.J. Pharm. Pharmacol.202173101319132910.1093/jpp/rgab074 34313776
    [Google Scholar]
  36. D’AscolaA. IrreraN. EttariR. BittoA. PallioG. ManninoF. AtteritanoM. CampoG.M. MinutoliL. ArcoraciV. SquadritoV. PiccioloG. SquadritoF. AltavillaD. Exploiting curcumin synergy with natural products using quantitative analysis of dose–effect relationships in an experimental in vitro model of osteoarthritis.Front. Pharmacol.201910134710.3389/fphar.2019.01347 31798452
    [Google Scholar]
  37. MoldogazievaN.T. MokhosoevI.M. FeldmanN.B. LutsenkoS.V. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.Free Radic. Res.201852550754310.1080/10715762.2018.1457217 29589770
    [Google Scholar]
  38. MittalM. SiddiquiM.R. TranK. ReddyS.P. MalikA.B. Reactive oxygen species in inflammation and tissue injury.Antioxid. Redox Signal.20142071126116710.1089/ars.2012.5149 23991888
    [Google Scholar]
  39. MorrisG. GevezovaM. SarafianV. MaesM. Redox regulation of the immune response.Cell. Mol. Immunol.202219101079110110.1038/s41423‑022‑00902‑0 36056148
    [Google Scholar]
  40. FlohéL. Brigelius-FlohéR. SaliouC. TraberM.G. PackerL. Redox regulation of NF-kappa B activation.Free Radic. Biol. Med.19972261115112610.1016/S0891‑5849(96)00501‑1 9034250
    [Google Scholar]
  41. ReuterS. GuptaS.C. ChaturvediM.M. AggarwalB.B. Oxidative stress, inflammation, and cancer: How are they linked?Free Radic. Biol. Med.201049111603161610.1016/j.freeradbiomed.2010.09.006 20840865
    [Google Scholar]
  42. JomovaK. RaptovaR. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. ValkoM. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging.Arch. Toxicol.202397102499257410.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  43. Al-TaeeH. AzimullahS. MeeranM.F.N. Alaraj. A.M.K.; Al Jasmi, R.A.; Tariq, S.; AB Khan, M.; Adeghate, E.; Ojha, S. β-caryophyllene, a dietary phytocannabinoid attenuates oxidative stress, inflammation, apoptosis and prevents structural alterations of the myocardium against doxorubicin-induced acute cardiotoxicity in rats: An in vitro and in vivo study.Eur. J. Pharmacol.201985817246710.1016/j.ejphar.2019.172467 31216443
    [Google Scholar]
  44. MeeranM.F.N. Al TaeeH. AzimullahS. TariqS. AdeghateE. OjhaS. β-Caryophyllene, a natural bicyclic sesquiterpene attenuates doxorubicin-induced chronic cardiotoxicity via activation of myocardial cannabinoid type-2 (CB2) receptors in rats.Chem. Biol. Interact.201930415816710.1016/j.cbi.2019.02.028 30836069
    [Google Scholar]
  45. YoussefD.A. El-FayoumiH.M. MahmoudM.F. Beta-caryophyllene protects against diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors.Chem. Biol. Interact.2019297162410.1016/j.cbi.2018.10.010 30343038
    [Google Scholar]
  46. MouratidouC. PavlidisE.T. KatsanosG. KotoulasS.C. MouloudiE. TsoulfasG. GalanisI.N. PavlidisT.E. Hepatic ischemia-reperfusion syndrome and its effect on the cardiovascular system: The role of treprostinil, a synthetic prostacyclin analog.World J. Gastrointest. Surg.20231591858187010.4240/wjgs.v15.i9.1858 37901735
    [Google Scholar]
  47. ArizukaN. MurakamiT. SuzukiK. The effect of β-caryophyllene on nonalcoholic steatohepatitis.J. Toxicol. Pathol.201730426327310.1293/tox.2017‑0018 29097836
    [Google Scholar]
  48. HarbA.A. BustanjiY.K. AbdallaS.S. Hypocholesterolemic effect of β-caryophyllene in rats fed cholesterol and fat enriched diet.J. Clin. Biochem. Nutr.201862323023710.3164/jcbn.17‑3 29892161
    [Google Scholar]
  49. Ames-SibinA.P. BarizãoC.L. Castro-GhizoniC.V. SilvaF.M.S. Sá-NakanishiA.B. BrachtL. Bersani-AmadoC.A. Marçal-NataliM.R. BrachtA. ComarJ.F. β‐Caryophyllene, the major constituent of copaiba oil, reduces systemic inflammation and oxidative stress in arthritic rats.J. Cell. Biochem.201811912102621027710.1002/jcb.27369 30132972
    [Google Scholar]
  50. RajabB.S. AlbukhariT.A. KhanA.A. RefaatB. AlmehmadiS.J. NasreldinN. ElshopakeyG.E. El-BoshyM. Antioxidative and anti-inflammatory protective effects of β-caryophyllene against amikacin-induced nephrotoxicity in rat by regulating the Nrf2/AMPK/AKT and NF-κB/TGF-β/KIM-1 molecular pathways.Oxid. Med. Cell. Longev.2022202211210.1155/2022/4212331 36062191
    [Google Scholar]
  51. RefaatB. El-BoshyM. Protective antioxidative and anti-inflammatory actions of β-caryophyllene against sulfasalazine-induced nephrotoxicity in rat.Exp. Biol. Med. (Maywood)2022247869169910.1177/15353702211073804 35068213
    [Google Scholar]
  52. LiH. WangD. ChenY. YangM. β-Caryophyllene inhibits high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation in mesangial cells.Int. Immunopharmacol.20208410655610.1016/j.intimp.2020.106556 32416450
    [Google Scholar]
  53. BashaR.H. SankaranarayananC. β-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats.Chem. Biol. Interact.2016245505810.1016/j.cbi.2015.12.019 26748309
    [Google Scholar]
  54. SudeepH.V. VenkatakrishnaK. RajA. ReethiB. ShyamprasadK. VIPHYLLIN™, a standardized extract from black pepper seeds, mitigates intestinal inflammation, oxidative stress, and anxiety‐like behavior in DSS ‐induced colitis mice.J. Food Biochem.20224610e1430610.1111/jfbc.14306 35766031
    [Google Scholar]
  55. WuY.T. ZhongL.S. HuangC. GuoY.Y. JinF.J. HuY.Z. ZhaoZ.B. RenZ. WangY.F. β-Caryophyllene acts as a ferroptosis inhibitor to ameliorate experimental colitis.Int. J. Mol. Sci.202223241605510.3390/ijms232416055 36555694
    [Google Scholar]
  56. ChoJ.Y. KimH.Y. KimS.K. ParkJ.H.Y. LeeH.J. ChunH.S. β-Caryophyllene attenuates dextran sulfate sodium-induced colitis in mice via modulation of gene expression associated mainly with colon inflammation.Toxicol. Rep.201521039104510.1016/j.toxrep.2015.07.018 28962446
    [Google Scholar]
  57. ShirafkanF. HenselL. RattayK. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis.Front. Immunol.202415133971410.3389/fimmu.2024.1339714 38571951
    [Google Scholar]
  58. MeghaK.B. JosephX. AkhilV. MohananP.V. Cascade of immune mechanism and consequences of inflammatory disorders.Phytomedicine20219115371210.1016/j.phymed.2021.153712 34511264
    [Google Scholar]
  59. MoudgilK.D. VenkateshaS.H. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation.Int. J. Mol. Sci.20222419510.3390/ijms24010095 36613560
    [Google Scholar]
  60. YamaguchiM. LevyR. The combination of catechin, baicalin and β caryophyllene potentially suppresses the production of inflammatory cytokines in mouse macrophages in vitro.Exp. Ther. Med.20191754312431810.3892/etm.2019.7452 31007758
    [Google Scholar]
  61. AlbertiT. BarbosaW. VieiraJ. RaposoN. DutraR. (−)-β-Caryophyllene, a CB2 receptor-selective phytocannabinoid, suppresses motor paralysis and neuroinflammation in a murine model of multiple sclerosis.Int. J. Mol. Sci.201718469110.3390/ijms18040691 28368293
    [Google Scholar]
  62. da SilvaS.L. FigueiredoP.M.S. YanoT. Chemotherapeutic potential of the volatile oils from Zanthoxylum rhoifolium Lam leaves.Eur. J. Pharmacol.20075761-318018810.1016/j.ejphar.2007.07.065 17716654
    [Google Scholar]
  63. AskariV.R. Baradaran RahimiV. TabatabaeeS.A. Shafiee-NickR. Combination of Imipramine, a sphingomyelinase inhibitor, and β-caryophyllene improve their therapeutic effects on experimental autoimmune encephalomyelitis (EAE).Int. Immunopharmacol.20197710592310.1016/j.intimp.2019.105923 31711937
    [Google Scholar]
  64. AskariV.R. RahimiV. NickR. Low doses of β-caryophyllene reduced clinical and paraclinical parameters of an autoimmune animal model of multiple Sclerosis: Investigating the role of CB2 receptors in inflammation by lymphocytes and microglial.Brain Sci.2023137109210.3390/brainsci13071092 37509022
    [Google Scholar]
  65. WeiC. HuangL. ZhengY. CaiX. Selective activation of cannabinoid receptor 2 regulates Treg/Th17 balance to ameliorate neutrophilic asthma in mice.Ann. Transl. Med.2021912101510.21037/atm‑21‑2778 34277815
    [Google Scholar]
  66. Andrade-SilvaM. CorreaL.B. CandéaA.L.P. Cavalher-MachadoS.C. BarbosaH.S. RosasE.C. HenriquesM.G. The cannabinoid 2 receptor agonist β-caryophyllene modulates the inflammatory reaction induced by Mycobacterium bovis BCG by inhibiting neutrophil migration.Inflamm. Res.2016651186987910.1007/s00011‑016‑0969‑3 27379721
    [Google Scholar]
  67. CaoM. WangG. XieJ. Immune dysregulation in sepsis: experiences, lessons and perspectives.Cell Death Discov.20239146510.1038/s41420‑023‑01766‑7 38114466
    [Google Scholar]
  68. FontesL.B.A. DiasD.S. AarestrupB.J.V. AarestrupF.M. Da SilvaF.A.A. CorrêaJ.O.A. β -Caryophyllene ameliorates the development of experimental autoimmune encephalomyelitis in C57BL/6 mice.Biomed. Pharmacother.20179125726410.1016/j.biopha.2017.04.092 28463791
    [Google Scholar]
  69. SousaL.F.B. OliveiraH.B.M. das Neves Selis, N.; Morbeck, L.L.B.; Santos, T.C.; da Silva, L.S.C.; Viana, J.C.S.; Reis, M.M.; Sampaio, B.A.; Campos, G.B.; Timenetsky, J.; Yatsuda, R.; Marques, L.M. β-caryophyllene and docosahexaenoic acid, isolated or associated, have potential antinociceptive and anti-inflammatory effects in vitro and in vivo.Sci. Rep.20221211919910.1038/s41598‑022‑23842‑1 36357780
    [Google Scholar]
  70. Paula-FreireL.I.G. AndersenM.L. GamaV.S. MolskaG.R. CarliniE.L.A. The oral administration of trans-caryophyllene attenuates acute and chronic pain in mice.Phytomedicine201421335636210.1016/j.phymed.2013.08.006 24055516
    [Google Scholar]
  71. KoyamaS. PurkA. KaurM. SoiniH.A. NovotnyM.V. DavisK. KaoC.C. MatsunamiH. MescherA. Beta-caryophyllene enhances wound healing through multiple routes.PLoS One20191412e021610410.1371/journal.pone.0216104 31841509
    [Google Scholar]
  72. LiW. QianP. GuoY. GuL. JuratJ. BaiY. ZhangD. Myrtenal and β-caryophyllene oxide screened from Liquidambaris fructus suppress NLRP3 inflammasome components in Rheumatoid arthritis.BMC Compl. Med. Therap.202121124210.1186/s12906‑021‑03410‑2 34583676
    [Google Scholar]
  73. SilvaV. FonsêcaB.M. AguiarJ.C. NavarroD. OliveiraA. NapoleãoT.H. CorreiaM. LimaV. CostaW.K. Vanusa da SilvaM. Chemical composition, antinociceptive and anti-inflammatory effects in mice of the essential oil of Psidium cattleyanum Sabine leaves.J. Ethnopharmacol.202331211644310.1016/j.jep.2023.116443 37054827
    [Google Scholar]
  74. do NascimentoA.L. GuedesJ.B. CostaW.K. de VerasB.O. de AguiarJ.C.R.O.F. NavarroD.M.A.F. CorreiaM.T.S. NapoleãoT.H. de OliveiraA.M. da SilvaM.V. Essential oil from the leaves of Eugenia pohliana DC. (Myrtaceae) alleviate nociception and acute inflammation in mice.Inflammopharmacology20223062273228410.1007/s10787‑022‑01067‑y 36094726
    [Google Scholar]
  75. AlharthiS. ZioraZ.M. MustafaG. ChaubeyP. El KirdasyA.F. AlotaibiG. β-caryophyllene-loaded microemulsion-based topical hydrogel: A promising carrier to enhance the analgesic and anti-inflammatory outcomes.Gels20239863410.3390/gels9080634 37623089
    [Google Scholar]
  76. BlantonH. YinL. DuongJ. BenamarK. Cannabidiol and beta-caryophyllene in combination: A therapeutic functional interaction.Int. J. Mol. Sci.202223241547010.3390/ijms232415470 36555111
    [Google Scholar]
  77. KuwahataH. KatsuyamaS. KomatsuT. NakamuraH. CorasanitiM.T. BagettaG. SakuradaS. SakuradaT. TakahamaK. Local peripheral effects of β-caryophyllene through CB2 receptors in neuropathic pain in mice.Pharmacol. Pharm.20123439740310.4236/pp.2012.34053
    [Google Scholar]
  78. AlyE. KhajahM.A. MasochaW. β-caryophyllene, a CB2-receptor-selective phytocannabinoid, suppresses mechanical allodynia in a mouse model of antiretroviral-induced neuropathic pain.Molecules201925110610.3390/molecules25010106 31892132
    [Google Scholar]
  79. BergerG. AroraN. BurkovskiyI. XiaY. ChinnaduraiA. WesthofenR. HagnG. CoxA. KellyM. ZhouJ. LehmannC. Experimental cannabinoid 2 receptor activation by phyto-derived and synthetic cannabinoid ligands in LPS-induced interstitial cystitis in mice.Molecules20192423423910.3390/molecules24234239 31766439
    [Google Scholar]
  80. LaksE.Y. LiH. WardS.J. Non-psychoactive cannabinoid modulation of nociception and inflammation associated with a rat model of pulpitis.Biomolecules202313584610.3390/biom13050846 37238715
    [Google Scholar]
  81. OjhaS. JavedH. AzimullahS. HaqueM.E. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease.Mol. Cell. Biochem.20164181-2597010.1007/s11010‑016‑2733‑y 27316720
    [Google Scholar]
  82. Brand-RubalcavaP.A. Tejeda-MartínezA.R. González-ReynosoO. Nápoles-MedinaA.Y. Chaparro-HuertaV. Flores-SotoM.E. β-Caryophyllene decreases neuroinflammation and exerts neuroprotection of dopaminergic neurons in a model of hemiparkinsonism through inhibition of the NLRP3 inflammasome.Parkinsonism Relat. Disord.202311710590610.1016/j.parkreldis.2023.105906 37924806
    [Google Scholar]
  83. KanojiaU. ChaturbhujS.G. SankheR. DasM. SurubhotlaR. KrishnadasN. GourishettiK. NayakP.G. KishoreA. Beta-caryophyllene, a CB2R selective agonist, protects against cognitive impairment caused by neuro-inflammation and not in dementia due to ageing induced by mitochondrial dysfunction.CNS Neurol. Disord. Drug Targets2021201096397410.2174/1871527320666210202121103 33530917
    [Google Scholar]
  84. ChenF. BaiN. YueF. HaoY. WangH. HeY. LuK. Effects of oral β-caryophyllene (BCP) treatment on perioperative neurocognitive disorders: Attenuation of neuroinflammation associated with microglial activation and reinforcement of autophagy activity in aged mice.Brain Res.2023181514842510.1016/j.brainres.2023.148425 37244603
    [Google Scholar]
  85. AlonsoC. SattaV. FisacH.I. RuizF.J. SagredoO. Disease-modifying effects of cannabidiol, β-caryophyllene and their combination in Syn1-Cre/Scn1aWT/A1783V mice, a preclinical model of Dravet syndrome.Neuropharmacology202323710960210.1016/j.neuropharm.2023.109602 37290534
    [Google Scholar]
  86. LiuH. SongZ. LiaoD. ZhangT. LiuF. ZhuangK. LuoK. YangL. Neuroprotective effects of trans-caryophyllene against kainic acid induced seizure activity and oxidative stress in mice.Neurochem. Res.201540111812310.1007/s11064‑014‑1474‑0 25417010
    [Google Scholar]
  87. YangM. LvY. TianX. LouJ. AnR. ZhangQ. LiM. XuL. DongZ. Neuroprotective effect of β-caryophyllene on cerebral ischemia-reperfusion injury via regulation of necroptotic neuronal death and inflammation: In vivo and in vitro.Front. Neurosci.20171158310.3389/fnins.2017.00583 29123466
    [Google Scholar]
  88. SerraM.P. BoiM. CartaA. MurruE. CartaG. BanniS. QuartuM. Anti-inflammatory effect of beta-caryophyllene mediated by the involvement of TRPV1, BDNF and trkB in the rat cerebral cortex after hypoperfusion/reperfusion.Int. J. Mol. Sci.2022237363310.3390/ijms23073633 35408995
    [Google Scholar]
  89. AskariV.R. Shafiee-NickR. The protective effects of β-caryophyllene on LPS-induced primary microglia M1/M2 imbalance: A mechanistic evaluation.Life Sci.2019219407310.1016/j.lfs.2018.12.059 30620895
    [Google Scholar]
  90. AskariV.R. Shafiee-NickR. Promising neuroprotective effects of β-caryophyllene against LPS-induced oligodendrocyte toxicity: A mechanistic study.Biochem. Pharmacol.201915915417110.1016/j.bcp.2018.12.001 30529211
    [Google Scholar]
  91. HuY. ZengZ. WangB. GuoS. Trans-caryophyllene inhibits amyloid β (Aβ) oligomer-induced neuroinflammation in BV-2 microglial cells.Int. Immunopharmacol.201751919810.1016/j.intimp.2017.07.009 28821008
    [Google Scholar]
  92. GuoK. MouX. HuangJ. XiongN. LiH. Trans-caryophyllene suppresses hypoxia-induced neuroinflammatory responses by inhibiting NF-κB activation in microglia.J. Mol. Neurosci.2014541414810.1007/s12031‑014‑0243‑5 24488604
    [Google Scholar]
  93. SantosN.A.G. MartinsN.M. SistiF.M. FernandesL.S. FerreiraR.S. de FreitasO. SantosA.C. The cannabinoid beta-caryophyllene (BCP) induces neuritogenesis in PC12 cells by a cannabinoid-receptor-independent mechanism.Chem. Biol. Interact.2017261869510.1016/j.cbi.2016.11.015 27871898
    [Google Scholar]
  94. ManninoF. PallioG. ImbesiC. ScarfoneA. PuzzoloD. MicaliA. FreniJ. SquadritoF. BittoA. MinutoliL. IrreraN. Beta-caryophyllene, a plant-derived CB2 receptor agonist, protects SH-SY5Y cells from cadmium-induced toxicity.Int. J. Mol. Sci.202324201548710.3390/ijms242015487 37895166
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298342319241125043305
Loading
/content/journals/mroc/10.2174/0118756298342319241125043305
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test