Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Ganoderma triterpenoids (GTs) are primarily extracted from the mycelium of (), with the main active components being ganoderic acid (GAs). They belong to the lanosterane type of tetracyclic triterpenoids and typically feature C30 and C26 skeletons. The diverse bioactivities of GTs are determined by various substituents at C-3, C-7, C-11, and C-15 on the tetracyclic skeleton, as well as the C-17 side chain. Recent studies have revealed the antitumor, anti-inflammatory, hepatoprotective, hypoglycemic, hypolipidemic, proangiogenic, antimalarial, antituberculosis, antibacterial, antiviral, and anti-aging properties of GTs. They demonstrate potential in treating and preventing a variety of conditions including cancers, neurodegenerative diseases, cardiovascular diseases, hyperglycemia, and hyperlipidemia, thus showcasing a broad spectrum of applications and research significance in the medical field. This paper provides a review of the bioactivity of GTs isolated from in recent years and discusses the regulation of GTs biosynthesis, laying a foundation for the development of new drugs derived from .

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298331320241203052701
2025-01-02
2025-09-02
Loading full text...

Full text loading...

References

  1. AhmadR. RiazM. KhanA. AljameaA. AlgheryafiM. SewaketD. AlqathamaA. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties.Phytother. Res.202135116030606210.1002/ptr.7215 34411377
    [Google Scholar]
  2. LinZ. YangB. Eds.; Ganoderma and Health: Biology, Chemistry and Industry.SingaporeSpringer Singapore2019
    [Google Scholar]
  3. BlundellR. CamilleriE. BaralB. KarpińskiT.M. NezaE. AtroozO.M. The phytochemistry of Ganoderma species and their medicinal potentials.Am. J. Chin. Med.202351485988210.1142/S0192415X23500404 36999543
    [Google Scholar]
  4. WuS. ZhangS. PengB. TanD. WuM. WeiJ. WangY. LuoH. Ganoderma lucidum: A comprehensive review of phytochemistry, efficacy, safety and clinical study.Food Sci. Hum. Wellness202413256859610.26599/FSHW.2022.9250051
    [Google Scholar]
  5. LiuJ. ChenG. YangJ. ShengL. TangX. ZhangX. HuaH. Deciphering the chemical composition of Ganoderma lucidum from different geographical origins by mass spectrometry molecular networking coupled with multivariate analysis.Biomed. Chromatogr.2023371e550610.1002/bmc.5506 36093881
    [Google Scholar]
  6. YuN. HuangY. JiangY. ZouL. LiuX. LiuS. ChenF. LuoJ. ZhuY. Ganoderma lucidum triterpenoids (GLTs) reduce neuronal apoptosis via inhibition of ROCK signal pathway in APP/PS1 transgenic Alzheimer’s disease mice.Oxid. Med. Cell. Longev.2020202011110.1155/2020/9894037 32089787
    [Google Scholar]
  7. BryantJ.M. BouchardM. HaqueA. Anticancer activity of ganoderic acid DM: Current status and future perspective.J. Clin. Cell. Immunol.20178653510.4172/2155‑9899.1000535 29399381
    [Google Scholar]
  8. HeX. ChenY. LiZ. FangL. ChenH. LiangZ. AbozeidA. YangZ. YangD. Germplasm resources and secondary metabolism regulation in Reishi mushroom (Ganoderma lucidum).Chin. Herb. Med.202315337638210.1016/j.chmed.2023.01.005 37538858
    [Google Scholar]
  9. AdoteyG. AlolgaR.N. QuarcooA. GedelM.A. AnangA.K. HollidayJ.C. Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-TOF-MS)-based metabolomic analysis of mycelial biomass of three Ganoderma isolates from the Lower Volta River Basin of Ghana.J. Pharm. Biomed. Anal.202120511435510.1016/j.jpba.2021.114355 34500238
    [Google Scholar]
  10. ZhaoP. GuanM. TangW. WalayatN. DingY. LiuJ. Structural diversity, fermentation production, bioactivities and applications of triterpenoids from several common medicinal fungi: Recent advances and future perspectives.Fitoterapia202316610547010.1016/j.fitote.2023.105470 36914012
    [Google Scholar]
  11. MaH.T. HsiehJ.F. ChenS.T. Anti-diabetic effects of Ganoderma lucidum.Phytochemistry201511410911310.1016/j.phytochem.2015.02.017 25790910
    [Google Scholar]
  12. PengH. ZhongL. ChengL. ChenL. TongR. ShiJ. BaiL. Ganoderma lucidum: Current advancements of characteristic components and experimental progress in anti-liver fibrosis.Front. Pharmacol.202313109440510.3389/fphar.2022.1094405 36703748
    [Google Scholar]
  13. JamilO.K. CravensA. PayneJ.T. KimC.Y. SmolkeC.D. Biosynthesis of tetrahydropapaverine and semisynthesis of papaverine in yeast.Proc. Natl. Acad. Sci. USA202211933e220584811910.1073/pnas.2205848119 35939674
    [Google Scholar]
  14. ShiaoM.S. LinL.J. YehS.F. Structures, biosynthesis and biological functions of oxygenated treterpenoids in Ganoderma lucidum.Phytochem Ecol19899235243
    [Google Scholar]
  15. WangW.F. XiaoH. ZhongJ.J. Biosynthesis of a ganoderic acid in Saccharomyces cerevisiae by expressing a cytochrome P450 gene from Ganoderma lucidum.Biotechnol. Bioeng.201811571842185410.1002/bit.26583 29476632
    [Google Scholar]
  16. WuG.S. GuoJ.J. BaoJ.L. LiX.W. ChenX.P. LuJ.J. WangY.T. Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum - a review.Expert Opin. Investig. Drugs201322898199210.1517/13543784.2013.805202 23790022
    [Google Scholar]
  17. LiP. LiuL. HuangS. ZhangY. XuJ. ZhangZ. Anti-cancer effects of a neutral triterpene fraction from ganoderma lucidum and its active constituents on SW620 human colorectal cancer cells.Anticancer. Agents Med. Chem.202020223724410.2174/1871520619666191015102442 31749435
    [Google Scholar]
  18. QuL. LiS. ZhuoY. ChenJ. QinX. GuoG. Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells.Oncol. Lett.201714674677472 29344190
    [Google Scholar]
  19. KouR.W. GaoY.Q. XiaB. WangJ.Y. LiuX.N. TangJ.J. YinX. GaoJ.M. Ganoderterpene A, a new triterpenoid from Ganoderma lucidum, attenuates LPS-induced inflammation and apoptosis via suppressing MAPK and TLR-4/NF-κB pathways in BV-2 Cells.J. Agric. Food Chem.20216943127301274010.1021/acs.jafc.1c04905 34666484
    [Google Scholar]
  20. ChanS.W. TomlinsonB. ChanP. LamC.W.K. The beneficial effects of Ganoderma lucidum on cardiovascular and metabolic disease risk.Pharm. Biol.20215911159116910.1080/13880209.2021.1969413 34465259
    [Google Scholar]
  21. ShevelevO.B. SeryapinaA.A. ZavjalovE.L. GerlinskayaL.A. GoryachkovskayaT.N. SlynkoN.M. KuibidaL.V. PeltekS.E. MarkelA.L. MoshkinM.P. Hypotensive and neurometabolic effects of intragastric Reishi (Ganoderma lucidum) administration in hypertensive ISIAH rat strain.Phytomedicine2018411610.1016/j.phymed.2018.01.013 29519314
    [Google Scholar]
  22. GrienkeU. KasererT. KirchwegerB. LambrinidisG. KandelR.T. FosterP.A. SchusterD. MikrosE. RollingerJ.M. Steroid sulfatase inhibiting lanostane triterpenes - Structure activity relationship and in silico insights.Bioorg. Chem.20209510349510.1016/j.bioorg.2019.103495 31855822
    [Google Scholar]
  23. LiuY. WenH.K. XuR.X. LiuC. LiX.H. QinX.D. ZhaoY.X. JiaY.X. LuoD.Q. Semisynthesis and antitumor activity of endertiin B and related triterpenoids from Ganoderma lucidum.Org. Biomol. Chem.202422244978498610.1039/D4OB00641K 38832762
    [Google Scholar]
  24. JiangB. LiN. DuW. Survival benefits of ganoderma lucidum in early-stage triple-negative breast cancer: A real world study.Recent Pat. Anticancer Drug Discov.2024Epub ahead of print10.2174/0115748928282946240111114448
    [Google Scholar]
  25. ZhaoH. ZhangQ. ZhaoL. HuangX. WangJ. KangX. Spore powder of Ganoderma lucidum improves cancer-related fatigue in breast cancer patients undergoing endocrine therapy: A pilot clinical trial.Evid. Based Complement. Alternat. Med.201220121810.1155/2012/809614 22203880
    [Google Scholar]
  26. CancemiG. CasertaS. GangemiS. PioggiaG. AllegraA. Exploring the therapeutic potential of Ganoderma lucidum in cancer.J. Clin. Med.2024134115310.3390/jcm13041153 38398467
    [Google Scholar]
  27. PengG. XiongC. ZengX. JinY. HuangW. Exploring nutrient profiles, phytochemical composition, and the antiproliferative activity of Ganoderma lucidum and Ganoderma leucocontextum: A comprehensive comparative study.Foods202413461410.3390/foods13040614 38397591
    [Google Scholar]
  28. WangJ. PuJ. ZhangZ. FengZ. HanJ. SuX. ShiL. Triterpenoids of Ganoderma lucidum inhibited S180 sarcoma and H22 hepatoma in mice by regulating gut microbiota.Heliyon202396e1668210.1016/j.heliyon.2023.e16682 37484292
    [Google Scholar]
  29. GalappaththiM.C.A. PatabendigeN.M. PremarathneB.M. HapuarachchiK.K. TibprommaS. DaiD.Q. SuwannarachN. RapiorS. KarunarathnaS.C. A review of Ganoderma triterpenoids and their bioactivities.Biomolecules20221312410.3390/biom13010024 36671409
    [Google Scholar]
  30. CadarE. Negreanu-PirjolT. PascaleC. SirbuR. PrasacuI. Negreanu-PirjolB.S. TomescuC.L. IonescuA.M. Natural bio-compounds from Ganoderma lucidum and their beneficial biological actions for anticancer application: A review.Antioxidants20231211190710.3390/antiox12111907 38001761
    [Google Scholar]
  31. WuY.L. HanF. LuanS.S. AiR. ZhangP. LiH. ChenL.X. Triterpenoids from Ganoderma lucidum and their potential anti-inflammatory effects.J. Agric. Food Chem.201967185147515810.1021/acs.jafc.9b01195 30995041
    [Google Scholar]
  32. KangJ.K. KangH.K. HyunC.G. Anti-inflammatory effects of spiramycin in LPS-activated RAW 264.7 macrophages.Molecules20222710320210.3390/molecules27103202 35630676
    [Google Scholar]
  33. SuH.G. PengX.R. ShiQ.Q. HuangY.J. ZhouL. QiuM.H. Lanostane triterpenoids with anti-inflammatory activities from Ganoderma lucidum.Phytochemistry202017311225610.1016/j.phytochem.2019.112256 32062196
    [Google Scholar]
  34. KooM.H. ChaeH.J. LeeJ.H. SuhS.S. YounU.J. Antiinflammatory lanostane triterpenoids from Ganoderma lucidum.Nat. Prod. Res.202135224295430210.1080/14786419.2019.1705815 31872776
    [Google Scholar]
  35. LiuY.Y. CaiD. TangX.P. ChengY.X. Ganoderma lucidum-derived meroterpenoids show anti-inflammatory activity in vitro.Molecules2024295114910.3390/molecules29051149 38474661
    [Google Scholar]
  36. KouR.W. XiaB. WangZ.J. LiJ.N. YangJ.R. GaoY.Q. YinX. GaoJ.M. Triterpenoids and meroterpenoids from the edible Ganoderma resinaceum and their potential anti-inflammatory, antioxidant and anti-apoptosis activities.Bioorg. Chem.202212110568910.1016/j.bioorg.2022.105689 35217377
    [Google Scholar]
  37. WeiJ.C. WangY.X. DaiR. TianX-G. SunC-P. MaX-C. JiaJ-M. ZhangB-J. HuoX-K. WangC. C27-Nor lanostane triterpenoids of the fungus Ganoderma lucidum and their inhibitory effects on acetylcholinesteras.Phytochem. Lett.20172026326810.1016/j.phytol.2017.05.015
    [Google Scholar]
  38. WeiJ.C. WangA.H. WeiY.L. HuoX.K. TianX.G. FengL. MaX.C. WangC. HuangS.S. JiaJ.M. Chemical characteristics of the fungus Ganoderma lucidum and their inhibitory effects on acetylcholinesterase.J. Asian Nat. Prod. Res.20182010992100110.1080/10286020.2017.1367770 28944681
    [Google Scholar]
  39. LiD.W. LiuM. LengY.Q. HuJ.F. DengS. LengA.J. MaX.C. WangR.Y. ZhouJ. WangC. Lanostane triterpenoids from Ganoderma lucidum and their inhibitory effects against FAAH.Phytochemistry202220311333910.1016/j.phytochem.2022.113339 35961409
    [Google Scholar]
  40. WuH. TangS. HuangZ. ZhouQ. ZhangP. ChenZ. Hepatoprotective effects and mechanisms of action of triterpenoids from lingzhi or reishi medicinal mushroom Ganoderma lucidum (agaricomycetes) on α-amanitin-induced liver injury in mice.Int. J. Med. Mushrooms201618984185010.1615/IntJMedMushrooms.v18.i9.80 27910775
    [Google Scholar]
  41. ZhaoC. FanJ. LiuY. GuoW. CaoH. XiaoJ. WangY. LiuB. Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol-induced liver injury in mice, an iTRAQ-based proteomic analysis.Food Chem.201927114815610.1016/j.foodchem.2018.07.115 30236660
    [Google Scholar]
  42. ZhangX. GaoX. LongG. YangY. ChenG. HouG. HuoX. JiaJ. WangA. HuG. Lanostane-type triterpenoids from the mycelial mat of Ganoderma lucidum and their hepatoprotective activities.Phytochemistry202219811313110.1016/j.phytochem.2022.113131 35248578
    [Google Scholar]
  43. ShaoH. LiY. WuC. ChenR. KangJ. Triterpenes from antler-shaped fruiting body of Ganoderma lucidum and their hepatoprotective activities.Phytochemistry202422411414810.1016/j.phytochem.2024.114148 38763311
    [Google Scholar]
  44. ChenB. TianJ. ZhangJ. WangK. LiuL. YangB. BaoL. LiuH. Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase.Fitoterapia201712061610.1016/j.fitote.2017.05.005 28527898
    [Google Scholar]
  45. TongA. WuW. ChenZ. WenJ. JiaR. LiuB. CaoH. ZhaoC. Modulation of gut microbiota and lipid metabolism in rats fed high-fat diets by Ganoderma lucidum triterpenoids.Curr. Res. Food Sci.2023610042710.1016/j.crfs.2022.100427 36632433
    [Google Scholar]
  46. GregoriM. ReF. CornierJ. Neurodegenerative diseases - Alzheimer’s disease.Pharmaceutical Nanotechnology: Innovation and Production.Wiley-VCH2017649659
    [Google Scholar]
  47. ChenX.J. DengZ. ZhangL.L. PanY. FuJ. ZouL. BaiZ. XiaoX. ShengF. Therapeutic potential of the medicinal mushroom Ganoderma lucidum against Alzheimer’s disease.Biomed. Pharmacother.202417211622210.1016/j.biopha.2024.116222 38310653
    [Google Scholar]
  48. LianW. YangX. DuanQ. LiJ. ZhaoY. YuC. HeT. SunT. ZhaoY. WangW. The biological activity of Ganoderma lucidum on neurodegenerative diseases: The interplay between different active compounds and the pathological hallmarks.Molecules20242911251610.3390/molecules29112516 38893392
    [Google Scholar]
  49. ZhaoY. QinY. HuX. ChenX. JiangY.P. JinX.J. LiG. LiZ.H. YangJ.H. CuiS.Y. ZhangY.H. Sporoderm-removed Ganoderma lucidum spores ameliorated early depression-like behavior in a rat model of sporadic Alzheimer’s disease.Front. Pharmacol.202415140612710.3389/fphar.2024.1406127 38720779
    [Google Scholar]
  50. QinY. ZhaoY. HuX. ChenX. JiangY.P. JinX.J. LiG. LiZ.H. YangJ.H. ZhangG.L. CuiS.Y. ZhangY.H. Ganoderma lucidum spore extract improves sleep disturbances in a rat model of sporadic Alzheimer’s disease.Front. Pharmacol.202415139029410.3389/fphar.2024.1390294 38720773
    [Google Scholar]
  51. LiQ.M. HanH.H. ZangD.D. ZhaX.Q. ZhouA. ZhangF.Y. LuoJ.P. Rapid discovery of Aβ 42 fibril disintegrators from Ganoderma lucidum via ligand fishing and their neuroprotective effects on Alzheimer’s disease.J. Agric. Food Chem.20247284127414110.1021/acs.jafc.3c08664 38362879
    [Google Scholar]
  52. ZhangX. JiC. FuY. YangY. XuG. Screening of active components of Ganoderma lucidum and decipher its molecular mechanism to improve learning and memory disorders.Biosci. Rep.2024447BSR2023206810.1042/BSR20232068 38904095
    [Google Scholar]
  53. ShenW. WuJ. ShiL. FengH. YangX. ZhangY. Explore the mechanisms of triterpenoids from Ganoderma lucidum in the protection against Alzheimer’s disease via microbiota-gut-brain axis with the aid of network pharmacology.Fitoterapia202417810615010.1016/j.fitote.2024.106150 39089595
    [Google Scholar]
  54. LaiP. CaoX. XuQ. LiuY. LiR. ZhangJ. ZhangM. Ganoderma lucidum spore ethanol extract attenuates atherosclerosis by regulating lipid metabolism via upregulation of liver X receptor alpha.Pharm. Biol.202058176077010.1080/13880209.2020.1798471 32780606
    [Google Scholar]
  55. HuJ. LiG.F. XuF.M. Antibacterial lanostane triterpenoids from Ganoderma tsugae.J. Asian Nat. Prod. Res.202317 37796245
    [Google Scholar]
  56. AhmadM.F. AhmadF.A. KhanM.I. AlsayeghA.A. WahabS. AlamM.I. AhmedF. Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties.Int. J. Biol. Macromol.202118776977910.1016/j.ijbiomac.2021.06.122 34197853
    [Google Scholar]
  57. ZhengD.S. ChenL.S. Triterpenoids from Ganoderma lucidum inhibit the activation of EBV antigens as telomerase inhibitors.Exp. Ther. Med.20171443273327810.3892/etm.2017.4883 28912878
    [Google Scholar]
  58. BharadwajS. LeeK.E. DwivediV.D. YadavaU. PanwarA. LucasS.J. PandeyA. KangS.G. Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against Dengue virus NS2B-NS3 protease.Sci. Rep.2019911905910.1038/s41598‑019‑55723‑5 31836806
    [Google Scholar]
  59. BharadwajS. LeeK.E. DwivediV.D. YadavaU. NeesM. KangS.G. Density functional theory and molecular dynamics simulation support Ganoderma lucidum triterpenoids as broad range antagonist of matrix metalloproteinases.J. Mol. Liq.202031111332210.1016/j.molliq.2020.113322
    [Google Scholar]
  60. ZengM. QiL. GuoY. ZhuX. TangX. YongT. XieY. WuQ. ZhangM. ChenD. Long-term administration of triterpenoids From Ganoderma lucidum mitigates age-associated brain physiological decline via regulating sphingolipid metabolism and enhancing autophagy in mice.Front. Aging Neurosci.20211362886010.3389/fnagi.2021.628860 34025387
    [Google Scholar]
  61. LeeS. KimS.Y. LeeS. JangS. HwangS.T. KwonY. ChoiJ. KwonO. Ganoderma lucidum extract attenuates corticotropin-releasing hormone-induced cellular senescence in human hair follicle cells.iScience202427510967510.1016/j.isci.2024.109675 38706837
    [Google Scholar]
  62. Iser-BemP.N. LobatoT.B. Alecrim-ZezaA.L. dos Santos de OliveiraL.C. PassosM.E.P. ManuelR. DinizV.L.S. CorreaI.S. de OliveiraS.P. SilvaE.B. AlmeidaM.M. DiasB.B. GritteR.B. Levada-PiresA.C. MasiL.N. HatanakaE. Pithon-CuriT.C. HirabaraS.M. FabiJ.P. CuriR. GorjaoR. Ganoderma lucidum dry extract supplementation modulates T lymphocyte function in older women.Br. J. Nutr.2024132213014010.1017/S0007114524001144 38800991
    [Google Scholar]
  63. LiuJ. ShimizuK. TanakaA. ShinobuW. OhnukiK. NakamuraT. KondoR. Target proteins of ganoderic acid DM provides clues to various pharmacological mechanisms.Sci. Rep.20122190510.1038/srep00905 23205267
    [Google Scholar]
  64. FatmawatiS. KondoR. ShimizuK. Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors.Bioorg. Med. Chem. Lett.201323215900590310.1016/j.bmcl.2013.08.084 24070782
    [Google Scholar]
  65. ChengC.R. YueQ.X. WuZ.Y. SongX.Y. TaoS.J. WuX.H. XuP.P. LiuX. GuanS.H. GuoD.A. Cytotoxic triterpenoids from Ganoderma lucidum.Phytochemistry201071131579158510.1016/j.phytochem.2010.06.005 20615519
    [Google Scholar]
  66. LiuJ. KurashikiK. ShimizuK. KondoR. Structure-activity relationship for inhibition of 5α-reductase by triterpenoids isolated from Ganoderma lucidum.Bioorg. Med. Chem.200614248654866010.1016/j.bmc.2006.08.018 16962782
    [Google Scholar]
  67. OludemiT. BarrosL. PrietoM.A. HelenoS.A. BarreiroM.F. FerreiraI.C.F.R. Extraction of triterpenoids and phenolic compounds from Ganoderma lucidum: optimization study using the response surface methodology.Food Funct.20189120922610.1039/C7FO01601H 29215673
    [Google Scholar]
  68. RuanW. LimA.H.H. HuangL.G. PopovichD.G. Extraction optimisation and isolation of triterpenoids from Ganoderma lucidum and their effect on human carcinoma cell growth.Nat. Prod. Res.201428242264227210.1080/14786419.2014.938337 25032738
    [Google Scholar]
  69. GaoY. ZhangR. ZhangJ. GaoS. GaoW. ZhangH. WangH. HanB. Study of the extraction process and in vivo inhibitory effect of ganoderma triterpenes in oral mucosa cancer.Molecules20111675315533210.3390/molecules16075315 21705972
    [Google Scholar]
  70. KimK.H. MoonE. ChoiS.U. KimS.Y. LeeK.R. Lanostane triterpenoids from the mushroom Naematoloma fasciculare.J. Nat. Prod.201376584585110.1021/np300801x 23634786
    [Google Scholar]
  71. AnsariM.H.R. KhanW. ParveenR. SaherS. AhmadS. Pharmacokinetic, metabolomic, and stability assessment of ganoderic acid H based triterpenoid enriched fraction of Ganoderma lucidum P. Karst.Metabolites20221229710.3390/metabo12020097 35208173
    [Google Scholar]
  72. LiY. LiangW. HanY. ZhaoW. WangS. QinC. Triterpenoids and polysaccharides from Ganoderma lucidum improve the histomorphology and function of testes in middle-aged male mice by alleviating oxidative stress and cellular apoptosis.Nutrients20221422473310.3390/nu14224733 36432421
    [Google Scholar]
  73. ChenB. KeB. YeL. JinS. JieF. ZhaoL. WuX. Isolation and varietal characterization of Ganoderma resinaceum from areas of Ganoderma lucidum production in China.Sci. Hortic. (Amsterdam)201722410911410.1016/j.scienta.2017.06.002
    [Google Scholar]
  74. LiuJ.Q. WangC.F. LiY. LuoH.R. QiuM.H. Isolation and bioactivity evaluation of terpenoids from the medicinal fungus Ganoderma sinense.Planta Med.201278436837610.1055/s‑0031‑1280441 22161763
    [Google Scholar]
  75. ShenS.F. ZhuL.F. WuZ. WangG. AhmadZ. ChangM.W. Extraction of triterpenoid compounds from Ganoderma Lucidum spore powder through a dual-mode sonication process.Drug Dev. Ind. Pharm.202046696397410.1080/03639045.2020.1764022 32363953
    [Google Scholar]
  76. ZhengS. ZhangW. LiuS. Optimization of ultrasonic-assisted extraction of polysaccharides and triterpenoids from the medicinal mushroom Ganoderma lucidum and evaluation of their in vitro antioxidant capacities.PLoS One20201512e024474910.1371/journal.pone.0244749 33382761
    [Google Scholar]
  77. DatT.D. VietN.D. ThanhV.H. LinhN.T.T. NganN.T.K. NamH.M. PhongM.T. HieuN.H. Optimization of triterpenoid extraction from Ganoderma lucidum by ethanol‐modified supercritical carbon dioxide andthe biological properties of the extract.ChemistrySelect202278e20210344410.1002/slct.202103444
    [Google Scholar]
  78. KarimiM. RaofieF. KarimiM. Production Ganoderma lucidum extract nanoparticles by expansion of supercritical fluid solution and evaluation of the antioxidant ability.Sci. Rep.2022121990410.1038/s41598‑022‑13727‑8 35701498
    [Google Scholar]
  79. ChengC.R. LiY.F. XuP.P. FengR-H. YangM. GuanS-H. GuoD-A. Preparative isolation of triterpenoids from Ganoderma lucidum by counter-current chromatography combined with pH-zone-refining.Food Chem.201213041010101610.1016/j.foodchem.2011.07.122
    [Google Scholar]
  80. WubshetS.G. JohansenK.T. NybergN.T. JaroszewskiJ.W. Direct (13)C NMR detection in HPLC hyphenation mode: analysis of Ganoderma lucidum terpenoids.J. Nat. Prod.201275587688210.1021/np200915c 22515483
    [Google Scholar]
  81. QiaoY. YangY.K. DongX.C. 13C NMR chemical shifts of ganoderma triterpenoids: A meta-analysis.Chin J Magn Reson200504437456
    [Google Scholar]
  82. HuangY. LiX. PengX. AdegokeA.T. ChenJ. SuH. HuG. WeiG. QiuM. NMR-based structural classification, identification, and quantification of triterpenoids from edible mushroom Ganoderma resinaceum.J. Agric. Food Chem.20206892816282510.1021/acs.jafc.9b07791 32040905
    [Google Scholar]
  83. ArshadiN. NouriH. MoghimiH. Increasing the production of the bioactive compounds in medicinal mushrooms: an omics perspective.Microb. Cell Fact.20232211110.1186/s12934‑022‑02013‑x 36647087
    [Google Scholar]
  84. NoushahiH.A. KhanA.H. NoushahiU.F. HussainM. JavedT. ZafarM. BatoolM. AhmedU. LiuK. HarrisonM.T. SaudS. FahadS. ShuS. Biosynthetic pathways of triterpenoids and strategies to improve their Biosynthetic Efficiency.Plant Growth Regul.202297343945410.1007/s10725‑022‑00818‑9 35382096
    [Google Scholar]
  85. YuanW. JiangC. WangQ. FangY. WangJ. WangM. XiaoH. Biosynthesis of mushroom-derived type II ganoderic acids by engineered yeast.Nat. Commun.2022131774010.1038/s41467‑022‑35500‑1 36517496
    [Google Scholar]
  86. WangQ. XuM. ZhaoL. WangF. LiY. ShiG. DingZ. Transcriptome dynamics and metabolite analysis revealed the candidate genes and regulatory mechanism of ganoderic acid biosynthesis during liquid superficial‐static culture of Ganoderma lucidum.Microb. Biotechnol.202114260061310.1111/1751‑7915.13670 32975886
    [Google Scholar]
  87. WangW.F. XiaoH. ZhongJ.J. Biosynthesis of a novel ganoderic acid by expressing CYP genes from Ganoderma lucidum in Saccharomyces cerevisiae.Appl. Microbiol. Biotechnol.2022106252353410.1007/s00253‑021‑11717‑w 34921329
    [Google Scholar]
  88. YangC. LiW. LiC. ZhouZ. XiaoY. YanX. Metabolism of ganoderic acids by a Ganoderma lucidum cytochrome P450 and the 3-keto sterol reductase ERG27 from yeast.Phytochemistry2018155839210.1016/j.phytochem.2018.07.009 30077898
    [Google Scholar]
  89. LuoY. DuZ. JiangC. YuZ. ZhongJ-J. ShiT. XiaoH. Rational engineering of a membrane-anchored promiscuous cytochrome P450 for the efficient biosynthesis of valuable ganoderic acids.ACS Catal.20231324156731568110.1021/acscatal.3c04440
    [Google Scholar]
  90. LuoQ. LiN. XuJ.W. A methyltransferase LaeA regulates ganoderic acid biosynthesis in Ganoderma lingzhi.Front. Microbiol.202213102598310.3389/fmicb.2022.1025983 36312944
    [Google Scholar]
  91. LiangC. TianD. LiuY. LiH. ZhuJ. LiM. XinM. XiaJ. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y.Eur. J. Med. Chem.201917413014110.1016/j.ejmech.2019.04.039 31035236
    [Google Scholar]
  92. TangW. LiuJ.W. ZhaoW.M. WeiD.Z. ZhongJ.J. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells.Life Sci.200680320521110.1016/j.lfs.2006.09.001 17007887
    [Google Scholar]
  93. LiuR.M. ZhongJ.J. Ganoderic acid Mf and S induce mitochondria mediated apoptosis in human cervical carcinoma HeLa cells.Phytomedicine201118534935510.1016/j.phymed.2010.08.019 21036023
    [Google Scholar]
  94. ChenN.H. LiuJ.W. ZhongJ.J. Ganoderic acid Me inhibits tumor invasion through down-regulating matrix metalloproteinases 2/9 gene expression.J. Pharmacol. Sci.2008108221221610.1254/jphs.SC0080019 18946196
    [Google Scholar]
  95. FangY. XiaoH. The aspartic protease Yps3p and cell wall glucanase Scw10p are novel determinants that enhance the secretion of the antitumor triterpenoid GA-HLDOA in Saccharomyces cerevisiae.ACS Synth. Biol.20221192917292610.1021/acssynbio.2c00005 35969118
    [Google Scholar]
  96. CuiM. MaY. YuY. Heme oxygenase-1/carbon monoxide signaling participates in the accumulation of triterpenoids of Ganoderma lucidum.J. Zhejiang Univ. Sci. B2021221194195310.1631/jzus.B2000818 34783224
    [Google Scholar]
  97. XuX. ZhuF. ZhuY. LiY. ZhouH. ChenS. RuanJ. Transcriptome profiling of transcription factors in Ganoderma lucidum in response to methyl jasmonate.Front. Microbiol.202213105237710.3389/fmicb.2022.1052377 36504766
    [Google Scholar]
  98. XuJ. WangY. ZhangY. XiongK. YanX. RuanS. WuX. Identification of a novel metabolic target for bioactive triterpenoids biosynthesis in Ganoderma lucidum.Front. Microbiol.20221387811010.3389/fmicb.2022.878110 35615508
    [Google Scholar]
  99. YuanX. HouM. JiX. HuangS. SongL. YuY. YeJ. XuW. Mechanism of enhanced production of triterpenoids in algal-fungal consortium.Bioprocess Biosyst. Eng.202245101625163310.1007/s00449‑022‑02768‑y 35963944
    [Google Scholar]
  100. FangY. LuoM. SongX. ShenY. XiaoH. Improving the production of squalene-type triterpenoid 2,3;22,23-squalene dioxide by optimizing the expression of CYP505D13 in Saccharomyces cerevisiae.J. Biosci. Bioeng.2020130326527110.1016/j.jbiosc.2020.04.005 32423728
    [Google Scholar]
  101. TianY.Z. WangZ.F. LiuY.D. ZhangG.Z. LiG. The whole-genome sequencing and analysis of a Ganoderma lucidum strain provide insights into the genetic basis of its high triterpene content.Genomics2021113184084910.1016/j.ygeno.2020.10.015 33091546
    [Google Scholar]
  102. SongX. XiaoH. LuoS. WangX. WangW. LinS. Biosynthesis of squalene-type triterpenoids in Saccharomyces cerevisiae by expression of CYP505D13 from Ganoderma lucidum.Bioresour. Bioprocess.2019611910.1186/s40643‑019‑0256‑6
    [Google Scholar]
  103. ZhouS. ZhangX. MaF. XieS. TangC. TangQ. ZhangJ. Integrative analysis of selected metabolites and the fungal transcriptome during the developmental cycle of Ganoderma lucidum strain G0119 correlates lignocellulose degradation with carbohydrate and triterpenoid metabolism.Appl. Environ. Microbiol.20218713e00533e2110.1128/AEM.00533‑21 33893114
    [Google Scholar]
  104. JiangA.L. LiuY.N. LiuR. RenA. MaH.Y. ShuL.B. ShiL. ZhuJ. ZhaoM.W. Integrated proteomics and metabolomics analysis provides insights into ganoderic acid biosynthesis in response to methyl jasmonate in Ganoderma Lucidum.Int. J. Mol. Sci.20192024611610.3390/ijms20246116 31817230
    [Google Scholar]
  105. WuT. LiuX. WangT. TianL. QiuH. GeF. ZhuJ. ShiL. JiangA. YuH. RenA. Heme oxygenase/carbon monoxide participates in the regulation of Ganoderma lucidum heat-stress response, ganoderic acid biosynthesis, and cell-wall integrity.Int. J. Mol. Sci.202223211314710.3390/ijms232113147 36361934
    [Google Scholar]
  106. AhmadM.F. A AlsayeghA. AhmadF.A. AkhtarM.S. AlavudeenS.S. BantunF. WahabS. Ahmed, A.; Ali, M.; Elbendary, E.Y.; Raposo, A.; Kambal, N.; H Abdelrahman, M. Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites.Heliyon2024103e2560710.1016/j.heliyon.2024.e25607 38356540
    [Google Scholar]
  107. SchoderK.A. KrümpelJ. MüllerJ. LemmerA. Effects of environmental and nutritional conditions on mycelium growth of three basidiomycota.Mycobiology202452212413410.1080/12298093.2024.2341492 38690030
    [Google Scholar]
  108. XuJ. YanX. JiaX. WangY. XuH. YuH. HeL. ZhengB. WuX. A new strategy to improve Ganoderma polysaccharides production by symbiotic fungi elicitors through activating the biosynthetic pathway.Int. J. Biol. Macromol.202323512379810.1016/j.ijbiomac.2023.123798 36841391
    [Google Scholar]
  109. SonetsI.V. DovidchenkoN.V. UlianovS.V. YarinaM.S. KoshechkinS.I. RazinS.V. KrasnopolskayaL.M. TyakhtA.V. Unraveling the polysaccharide biosynthesis potential of Ganoderma lucidum: A chromosome-level assembly using Hi-C sequencing.J. Fungi (Basel)2023910102010.3390/jof9101020 37888276
    [Google Scholar]
  110. WangZ. QiuH. LiY. ZhaoM. LiuR. GlPRMT5 inhibits GlPP2C1 via symmetric dimethylation and regulates the biosynthesis of secondary metabolites in Ganoderma lucidum.Commun. Biol.20247124110.1038/s42003‑024‑05942‑y 38418849
    [Google Scholar]
  111. YeL. LiuS. XieF. ZhaoL. WuX. Enhanced production of polysaccharides and triterpenoids in Ganoderma lucidum fruit bodies on induction with signal transduction during the fruiting stage.PLoS One2018134e019628710.1371/journal.pone.0196287 29694432
    [Google Scholar]
  112. QuanX. KatoD. DariaV. MatobaO. WakeH. Holographic microscope and its biological application.Neurosci. Res.2022179576410.1016/j.neures.2021.10.012 34740727
    [Google Scholar]
  113. LiT. YangY. QiH. CuiW. ZhangL. FuX. HeX. LiuM. LiP. YuT. CRISPR/Cas9 therapeutics: progress and prospects.Signal Transduct. Target. Ther.2023813610.1038/s41392‑023‑01309‑7 36646687
    [Google Scholar]
  114. FengF. LaiL. PeiJ. Computational chemical synthesis analysis and pathway design.Front Chem.2018619910.3389/fchem.2018.00199 29915783
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298331320241203052701
Loading
/content/journals/mroc/10.2174/0118756298331320241203052701
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biosynthesis; CYP450 gene; extraction; Ganoderma triterpenoids; identification; isolation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test