Skip to content
2000
image of Polarization Dependent Pressure Sensitivity in Water-Filled Photonic Crystal Fibers

Abstract

Background

Photonic crystal fibers (PCFs) are increasingly used for optical sensing due to their tunable structural and dispersion properties. Pressure sensing with PCFs is of interest, but current designs often have nonlinear sensitivity and limitations at high pressures.

Objective

This study introduces a novel water-filled PCF design to achieve enhanced pressure sensitivity by utilizing water's compressibility to improve chromatic dispersion responsiveness.

Methods

Numerical simulations were conducted to analyze how pressure affects chromatic dispersion and birefringence in both polarization modes of the proposed PCF.

Results

The water-filled PCF demonstrates a linear increase in pressure sensitivity, with the y-polarization mode reaching 100-185 ps/nm-km/bar at 200 bar and the x-polarization mode reaching 115-70 ps/nm-km/bar. This is a significant improvement over conventional air-filled PCFs, which show a nonlinear decrease in sensitivity with increasing pressure (47-30 ps/nm-km/bar for x-polarization and 60-40 ps/nm-km/bar for y-polarization).

Conclusion

The proposed water-filled PCF design offers superior pressure sensitivity, making it a promising candidate for high-precision pressure sensing applications in various fields.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029353562250528011037
2025-06-05
2025-08-14
Loading full text...

Full text loading...

References

  1. Sharma M. Borogohain N. Konar S. Index guiding photonic crystal fibers with large birefringence and walk-off. J. Lightwave Technol. 2013 31 21 3339 3344 10.1109/JLT.2013.2281825
    [Google Scholar]
  2. Vigneswaran D. Ayyanar N. Sharma M. Sumathi M. Rajan M. Porsezian K. Salinity sensor using photonic crystal fiber. Sens. Actuators A Phys. 2018 269 22 28 10.1016/j.sna.2017.10.052
    [Google Scholar]
  3. Nasif M.A. Shahriyar F. Hossain M.M. Gafur A. Hasan R. Design and analysis of a photonic crystal fiber sensor for highly toxic gases detection. Eur. Phys. J. Plus 2025 140 1 22 10.1140/epjp/s13360‑025‑05967‑0
    [Google Scholar]
  4. Bani M.M. Noor K.S. Ferdous A.H.M.I. Shobug M.A. Photonic crystal fiber sensors in the THz domain: A leap forward in alcohol detection. Heliyon 2024 10 24 e40945 10.1016/j.heliyon.2024.e40945 39759305
    [Google Scholar]
  5. Deepti M.R. Mollah M.A. PCF-based multi-analyte refractive index sensor for pathogen detection in water. J. Comput. Electron. 2025 24 1 28 10.1007/s10825‑024‑02239‑5
    [Google Scholar]
  6. Islam M.A. Islam M.R. Tasnim Z. Islam R. Khan R.L. Moazzam E. Low-loss and dispersion-flattened octagonal porous core PCF for terahertz transmission applications. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020 44 4 1583 1592 10.1007/s40998‑020‑00337‑1
    [Google Scholar]
  7. Sharma M. Konar S. Khan K.R. Supercontinuum generation in highly nonlinear hexagonal photonic crystal fiber at very low power. J. Nanophotonics 2015 9 1 093073 10.1117/1.JNP.9.093073
    [Google Scholar]
  8. Kumar A. Verma P. Jindal P. Decagonal solid core PCF based refractive index sensor for blood cells detection in terahertz regime. Opt. Quantum Electron. 2021 53 4 165 10.1007/s11082‑021‑02818‑x
    [Google Scholar]
  9. A, L.; Geetha, G. A novel hybrid hexagonal photonic crystal fibre for optical fibre communication. Opt. Fiber Technol. 2020 59 102321 10.1016/j.yofte.2020.102321
    [Google Scholar]
  10. Vijayalakshmi D. Manimegalai C.T. Selvakumar P. Bi-core photonic crystal fiber for blood component detection. J. Opt. 2022 52 1 8 10.1007/s12596‑022‑00848‑6
    [Google Scholar]
  11. Kumari R. Sharma M. Konar S. Lead silicate fiber with small dispersion and large nonlinearity at telecommunication wavelength. Optik (Stuttg.) 2015 126 20 2659 2662 10.1016/j.ijleo.2015.06.049
    [Google Scholar]
  12. Liu H. Wu B. Chen C. Zhao B. Zhang X. Zhang H. D-shaped tellurite photonic crystal fiber hydrogen and methane sensor based on four-wave mixing with SPR effect. Photonic Sens. 2023 13 1 230121 10.1007/s13320‑022‑0655‑8
    [Google Scholar]
  13. Rajesh A. Chandru S. Robinson S. Investigation of defective hybrid cladding with silicon nanocrystal PCF for supercontinuum genera-tion. Laser Phys. 2021 31 12 126206 10.1088/1555‑6611/ac32da
    [Google Scholar]
  14. Han J. Liu E. Liu J. Circular gradient-diameter photonic crystal fiber with large mode area and low bending loss. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2019 36 4 533 539 10.1364/JOSAA.36.000533 31044972
    [Google Scholar]
  15. Sharma M. Dixit V. Konar S. Ahmed K. Dhasarathan V. Endlessly single-mode photonic crystal fiber with high birefringence for sensing applications. Mod. Phys. Lett. B 2020 34 6 2050077 10.1142/S0217984920500773
    [Google Scholar]
  16. Hossain M.N. Ahmed F. Khan M.S. Ahmed K. Sharma M. Dhasarathan V. Highly nonlinear silicon nanocrystal doped photonic crystal fibers with low confinement loss. Physica B 2020 577 411802 10.1016/j.physb.2019.411802
    [Google Scholar]
  17. Chandru S. Shankar T. Rajesh A. Investigation on nanocore-centred nonlinear PCF for high nonlinearity and low dispersion. Ceram. Int. 2022 48 11 16042 16048 10.1016/j.ceramint.2022.02.148
    [Google Scholar]
  18. Wang E. Han Q. Zhou X. Yuan H. Li J. A bend-resistant photonic crystal fiber with large effective mode area. Opt. Fiber Technol. 2022 71 102902 10.1016/j.yofte.2022.102902
    [Google Scholar]
  19. Zhao Q. Liu J. Yang H. Liu H. Zeng G. Huang B. High birefringence D-shaped germanium-doped photonic crystal fiber sensor. Micromachines (Basel) 2022 13 6 826 10.3390/mi13060826 35744440
    [Google Scholar]
  20. Sharma M. Vigneswaran D. Raman induced soliton driven supercontinuum generation in highly birefringence photonic crystal fiber. Physica E 2018 104 146 154 10.1016/j.physe.2018.07.016
    [Google Scholar]
  21. Wang B. Jia C. Yang J. Di Z. Yao J. Zhang J. Highly birefringent, low flattened dispersion photonic crystal fiber in the terahertz region. IEEE Photonics J. 2021 13 2 1 10 10.1109/JPHOT.2021.3057698
    [Google Scholar]
  22. Asaduzzaman S. Rehana H. Bhuiyan T. Sarma D. Faragallah O.S. Eid M.M.A. Rashed A.N.Z. Extremely high birefringent slotted core umbrella-shaped photonic crystal fiber in terahertz regime. Appl. Phys. B 2022 128 8 148 10.1007/s00340‑022‑07868‑x
    [Google Scholar]
  23. Singla S. Singal P. Photonic crystal fiber: Construction, properties, developments and applications. Int. J. Electron. Eng. 2017 9 1 8
    [Google Scholar]
  24. Zhao Q. Qu J. Peng G. Yu C. Endless single-mode photonics crystal fiber metalens for broadband and efficient focusing in near-infrared range. Micromachines (Basel) 2021 12 2 219 10.3390/mi12020219 33670081
    [Google Scholar]
  25. Zhao F. Zhang H. Wang L. Ma R. Xu T. Zhu N. Jonrinaldi, A surrogate-assisted Jaya algorithm based on optimal directional guid-ance and historical learning mechanism. Eng. Appl. Artif. Intell. 2022 111 104775 10.1016/j.engappai.2022.104775
    [Google Scholar]
  26. Hu D.J.J. Xu Z. Shum P.P. Review on photonic crystal fibers with hybrid guiding mechanisms. IEEE Access 2019 7 67469 67482 10.1109/ACCESS.2019.2917892
    [Google Scholar]
  27. Ayyanar N. Vigneswaran D. Sharma M. Sumathi M. Mani Rajan M.S. Konar S. Hydrostatic pressure sensor using high birefrin-gence photonic crystal fibers. IEEE Sens. J. 2017 17 3 650 656 10.1109/JSEN.2016.2636242
    [Google Scholar]
  28. Dudley J.M. Genty G. Mussot A. Chabchoub A. Dias F. Rogue waves and analogies in optics and oceanography. Nat. Rev. Phys. 2019 1 11 675 689 10.1038/s42254‑019‑0100‑0
    [Google Scholar]
  29. Leal-Junior A. Díaz C. Frizera A. Lee H. Nakamura K. Mizuno Y. Marques C. Highly sensitive fiber-optic intrinsic electromagnet-ic field sensing. Adv. Photon. Res. 2021 2 1 2000078 10.1002/adpr.202000078
    [Google Scholar]
  30. Verma R.K. Suwalka P. Yadav J. Detection of adulteration in diesel and petrol by kerosene using SPR based fiber optic technique. Opt. Fiber Technol. 2018 43 95 100 10.1016/j.yofte.2018.04.011
    [Google Scholar]
  31. Dalla Vedova M.D.L. Berri P.C. Maggiore P. Quattrocchi G. Design and development of innovative FBG-based fiber optic sensors for aerospace applications. J. Phys. Conf. Ser. 2020 1589 1 012012 10.1088/1742‑6596/1589/1/012012
    [Google Scholar]
  32. Hyer H.C. Sweeney D.C. Petrie C.M. Functional fiber-optic sensors embedded in stainless steel components using ultrasonic additive manufacturing for distributed temperature and strain measurements. Addit. Manuf. 2022 52 102681 10.1016/j.addma.2022.102681
    [Google Scholar]
  33. Yang L. Wei F. Liu J.M. Wang S. Functional hybrid micro/nanoentities promote agrofood safety inspection. J. Agric. Food Chem. 2021 69 42 12402 12417 10.1021/acs.jafc.1c05185 34662114
    [Google Scholar]
  34. Yao Y. Yan M. Bao Y. Measurement of cable forces for automated monitoring of engineering structures using fiber optic sensors: A review. Autom. Construct. 2021 126 103687 10.1016/j.autcon.2021.103687
    [Google Scholar]
  35. Habel W.R. Guidelines and standards for fiber optic sensors: Quo vadis? Smart Structures and Materials 2006: Smart Sensor Monitoring Systems and Applications Springer: Cham 2006 6167 339 347 10.1117/12.658059
    [Google Scholar]
  36. Xuan K.D. Van L.C. Long V.C. Dinh Q.H. Van Mai L. Trippenbach M. Buczyński R. Influence of temperature on dispersion properties of photonic crystal fibers infiltrated with water. Opt. Quantum Electron. 2017 49 2 87 10.1007/s11082‑017‑0929‑3
    [Google Scholar]
  37. Jin W. Xiao L.M. Hong K.S. Liao Y.B. Novel devices and sensors based on microstructured optical fibers. Advanced Sensor Systems and Applications III Springer: Cham 2008 6830 476 485
    [Google Scholar]
  38. Michie A. Canning J. Lyytikäinen K. Aslund M. Digweed J. Temperature independent highly birefringent photonic crystal fibre. Opt. Express 2004 12 21 5160 5165 10.1364/OPEX.12.005160 19484072
    [Google Scholar]
  39. Srivastava R. Prajapati Y.K. Pal S. Kumar S. Micro-channel plasmon sensor based on a D-shaped photonic crystal fiber for malaria diagnosis with improved performance. IEEE Sens. J. 2022 22 15 14834 14841 10.1109/JSEN.2022.3181198
    [Google Scholar]
  40. Boufenar R. Bouamar M. Hocini A. Numerical analysis of a temperature sensor based on the photonic band gap effect in a photonic crystal fiber. Zhongguo Wuli Xuekan 2018 56 3 1126 1132 10.1016/j.cjph.2018.03.036
    [Google Scholar]
  41. Bock W.J. Chen J. Eftimov T. Urbanczyk W. A photonic crystal fiber sensor for pressure measurements. IEEE Trans. Instrum. Meas. 2006 55 4 1119 1123 10.1109/TIM.2006.876591
    [Google Scholar]
  42. Mathews S. Semenova Y. Rajan G. Liquid crystal optical fibers for sensing applications. Optical Fiber Sensor Technology. Optoelectronics, Imaging and Sensing Springer: Dordrecht 2015 4 249 269 10.1007/978‑94‑017‑2484‑5_9
    [Google Scholar]
  43. Lou Z. Wang L. Shen G. Recent advances in smart wearable sensing systems. Adv. Mater. Technol. 2018 3 12 1800444 10.1002/admt.201800444
    [Google Scholar]
  44. Liu H. Miller D.W. Talnagi J. Gamma radiation resistant Fabry–Perot fiber optic sensors. Rev. Sci. Instrum. 2002 73 8 3112 3118 10.1063/1.1490418
    [Google Scholar]
  45. Wu J. Deng K.L. Guida R. Lee B.K. Fiber-optic photo-acoustic spectroscopy sensor for harsh environment gas detection. 10.1117/12.734092 2007
    [Google Scholar]
  46. Rahim A. Hermans A. Wohlfeil B. Petousi D. Kuyken B. Van Thourhout D. Baets R. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv. Photonics 2021 3 2 024003 10.1117/1.AP.3.2.024003
    [Google Scholar]
  47. Essiambre R.J. Kramer G. Winzer P.J. Foschini G.J. Goebel B. Capacity limits of optical fiber networks. J. Lightwave Technol. 2010 28 4 662 701 10.1109/JLT.2009.2039464
    [Google Scholar]
  48. Shin W. Jung G. Hong S. Jeong Y. Park J. Jang D. Park B-G. Lee J-H. Low frequency noise characteristics of resistor- and Si MOSFET-type gas sensors fabricated on the same Si wafer with In2O3 sensing layer. Sens. Actuators B Chem. 2020 318 128087 10.1016/j.snb.2020.128087
    [Google Scholar]
  49. Padidar S. Ahmadi V. Ebnali-Heidari M. Design of high sensitive pressure and temperature sensor using photonic crystal fiber for downhole application. IEEE Photonics J. 2012 4 5 1590 1599 10.1109/JPHOT.2012.2212242
    [Google Scholar]
  50. Fu H.Y. Tam H.Y. Shao L.Y. Dong X. Wai P.K.A. Lu C. Khijwania S.K. Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl. Opt. 2008 47 15 2835 2839 10.1364/AO.47.002835 18493290
    [Google Scholar]
  51. Zhong X. Wang Y. Liao C. Liu S. Tang J. Wang Q. Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber. Opt. Lett. 2015 40 8 1791 1794 10.1364/OL.40.001791 25872075
    [Google Scholar]
  52. Fu H.Y. Wu C. Tse M.L.V. Zhang L. Cheng K.C.D. Tam H.Y. Guan B-O. Lu C. High pressure sensor based on photonic crystal fiber for downhole application. Appl. Opt. 2010 49 14 2639 2643 10.1364/AO.49.002639
    [Google Scholar]
  53. Bock W.J. Chen J. Mikulic P. Eftimov T. A novel fiber-optic tapered long-period grating sensor for pressure monitoring. IEEE Trans. Instrum. Meas. 2007 56 4 1176 1180 10.1109/TIM.2007.899904
    [Google Scholar]
  54. De M. Gangopadhyay T.K. Singh V.K. Prospects of photonic crystal fiber as physical sensor: An overview. Sensors (Basel) 2019 19 3 464 10.3390/s19030464 30678109
    [Google Scholar]
  55. Fortin V. Aydin Y.O. Bernier M. Vallée R. Rochette M. Chenard F. Sanghera J.S. Postprocessing soft glass optical fibers. Mid-Infrared Fiber Photonics Woodhead Publishing Sawston, Cambridge 2022 233 302 10.1016/B978‑0‑12‑818017‑4.00022‑7
    [Google Scholar]
  56. Chenard F. Alvarez O. Schartner E. Ebendorff-Heidepriem H. Mid-infrared chalcogenide polarization-maintaining single-mode fiber. Optical Components and Materials XIX, SPIE Springer: Cham 2022 11997 109 121 10.1117/12.2607497
    [Google Scholar]
  57. Thormählen I. Straub J. Grigull U. Refractive index of water and its dependence on wavelength, temperature, and density. J. Phys. Chem. Ref. Data 1985 14 4 933 945 10.1063/1.555743
    [Google Scholar]
  58. Akowuah E.K. Gorman T. Ademgil H. Haxha S. Robinson G.K. Oliver J.V. Numerical analysis of a photonic crystal fiber for bio-sensing applications. IEEE J. Quantum Electron. 2012 48 11 1403 1410 10.1109/JQE.2012.2213803
    [Google Scholar]
/content/journals/mns/10.2174/0118764029353562250528011037
Loading
/content/journals/mns/10.2174/0118764029353562250528011037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test