Skip to content
2000
image of Recycling and Disposal of Lithium-Ion Batteries Utilized in Electric Vehicles: A Review

Abstract

The rapid proliferation of electric vehicles (EVs) has significantly contributed to reducing greenhouse gas emissions and advancing sustainable transportation systems. Central to the functionality of these EVs are lithium-ion batteries (LiFePO), known for their high energy density and long lifespan. However, as the EV market continues to expand, the growing issue of battery waste management presents considerable environmental and economic challenges. This paper provides a comprehensive overview of the three main types of lithium-ion batteries utilized in electric vehicles, namely, Lithium Iron Phosphate (LFP), Nickel Manganese Cobalt (NMC) and Nickel Cobalt aluminum (NCA) batteries. It examines the challenges and opportunities of lithium-ion battery recycling and disposal within the broader context of the ongoing energy crisis. As the demand for clean energy technologies intensifies, the sustainable management of battery waste becomes crucial to ensure the long-term viability of renewable energy systems and addressing resource scarcity. This review explores the complexities involved in lithium-ion battery recycling and disposal. It discusses the four prominent recycling methods that are available and in practice as of 2024. The advantages and disadvantages of each of the methods are carefully evaluated and discussed thoroughly in the paper. The findings underscore the urgent need for collaborative efforts among policymakers, industry stakeholders, and researchers to develop comprehensive strategies that support circular economy principles, enhance resource efficiency, and promote environmental stewardship in the transition shift toward a sustainable energy future.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029369243250325084413
2025-05-19
2025-09-26
Loading full text...

Full text loading...

References

  1. Goodenough J.B. Kim Y. Challenges for rechargeable batteries. J. Power Sources 2010 196 4 1762 1767
    [Google Scholar]
  2. Gaines L. The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sust. Mat. Technol. 2014 1-2 2 7 10.1016/j.susmat.2014.10.001
    [Google Scholar]
  3. Wang X. Gaustad G. Babbitt C.W. Richa K. Economies of scale for future lithium-ion battery recycling infrastructure. Resour. Conserv. Recycling 2014 83 53 62 10.1016/j.resconrec.2013.11.009
    [Google Scholar]
  4. Li L. Dunn J.B. Zhang X.X. Gaines L. Chen R.J. Wu F. Amine K. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J. Pow Sour 2013 233 180 189 10.1016/j.jpowsour.2012.12.089
    [Google Scholar]
  5. Zeng X. Li J. Singh N. Recycling of spent lithium-ion battery: A critical review. Crit. Rev. Environ. Sci. Technol. 2014 44 10 1129 1165 10.1080/10643389.2013.763578
    [Google Scholar]
  6. Wakefield E.H. History of the electric automobile: Battery-only powered cars. Warrendale, PA Society of Automotive Engineers 1994 10.4271/R‑122
    [Google Scholar]
  7. Anderson CD Anderson J. Electric and hybrid cars: McFarland. Available from: https://enciklopediamoderne.word press. 2com/wp-content/uploads/2014/12/curtis-d-anderson-judy-andersonelectric- and-hybrid-cars.pdf 2010
    [Google Scholar]
  8. Kirsch D.A. The electric vehicle and the burden of history. New Brunswick, NJ Rutgers University Press 2000
    [Google Scholar]
  9. Gaines L. Singh M. Argonne N. Energy and environmental impacts of electric vehicle battery production and recycling Total life cycle conference and exposition: Vienna (Austria) 1995
    [Google Scholar]
  10. Bai, Yaocai, Nitin Muralidharan, Yang-Kook Sun, Stefano Passerini, M. Stanley Whittingham, and Ilias Belharouak. "Energy and environmental aspects in recycling lithium-ion batteries: Concept of Battery Identity Global Passport Materials. Today 41 (2020):304-315.
    [Google Scholar]
  11. Warf B. Encyclopaedia of geography. Thousand Oaks, CA Sage Publications 2010 935 937 10.4135/9781412939591
    [Google Scholar]
  12. Dunn J.B. Gaines L. Sullivan J. Wang M.Q. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environ. Sci. Technol. 2012 46 22 12704 12710 10.1021/es302420z 23075406
    [Google Scholar]
  13. Xu J. Thomas H.R. Francis R.W. Lum K.R. Wang J. Liang B. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 2008 177 2 512 527 10.1016/j.jpowsour.2007.11.074
    [Google Scholar]
  14. Aykol M. Herring P. Anapolsky A. Machine learning for continuous innovation in battery technologies. Nat. Rev. Mater. 2020 5 10 725 727 10.1038/s41578‑020‑0216‑y
    [Google Scholar]
  15. Kader Z.A. Marshall A. Kennedy J. A review on sustainable recycling technologies for lithium-ion batteries. Emergent Materials 2021 4 3 725 735 10.1007/s42247‑021‑00201‑w
    [Google Scholar]
  16. Chen M. Ma X. Chen B. Arsenault R. Karlson P. Simon N. Wang Y. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 2019 3 11 2622 2646 10.1016/j.joule.2019.09.014
    [Google Scholar]
  17. Tarascon J.M. Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001 414 6861 359 367 10.1038/35104644 11713543
    [Google Scholar]
  18. Goodenough J.B. Park K.S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013 135 4 1167 1176 10.1021/ja3091438 23294028
    [Google Scholar]
  19. Whittingham M.S. Lithium batteries and cathode materials. Chem. Rev. 2004 104 10 4271 4302 10.1021/cr020731c 15669156
    [Google Scholar]
  20. Blomgren G.E. The development and future of lithium-ion batteries. J. Electrochem. Soc. 2017 164 1 A5019 A5025 10.1149/2.0251701jes
    [Google Scholar]
  21. Scrosati B. Hassoun J. Sun Y.K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011 4 9 3287 3295 10.1039/c1ee01388b
    [Google Scholar]
  22. Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020 11 1 1550 10.1038/s41467‑020‑15355‑0 32214093
    [Google Scholar]
  23. Ellis B.L. Lee K.T. Nazar L.F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 2010 22 3 691 714 10.1021/cm902696j
    [Google Scholar]
  24. Deimede V. Elmasides C. Separators for lithium-ion batteries: A review on the production processes and recent developments. Energy Technol. 2015 3 5 453 468 10.1002/ente.201402215
    [Google Scholar]
  25. Neumann J. Petranikova M. Meeus M. Gamarra J.D. Younesi R. Winter M. Nowak S. Recycling of lithium-ion batteries—current state of the art, circular economy, and next generation recycling. Adv. Energy Mater. 2022 12 17 2102917 10.1002/aenm.202102917
    [Google Scholar]
  26. Xu C. Dai Q. Gaines L. Hu M. Tukker A. Steubing B. Future material demand for automotive lithium-based batteries. Communicat. Mat. 2020 1 1 99 10.1038/s43246‑020‑00095‑x
    [Google Scholar]
  27. Palacín M.R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 2009 38 9 2565 2575 10.1039/b820555h 19690737
    [Google Scholar]
  28. Zubi G. Dufo-López R. Carvalho M. Pasaoglu G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018 89 292 308 10.1016/j.rser.2018.03.002
    [Google Scholar]
  29. Pender J.P. Jha G. Youn D.H. Ziegler J.M. Andoni I. Choi E.J. Heller A. Dunn B.S. Weiss P.S. Penner R.M. Mullins C.B. Electrode degradation in lithium-ion batteries. ACS Nano 2020 14 2 1243 1295 10.1021/acsnano.9b04365 31895532
    [Google Scholar]
  30. Bloom I. Cole B.W. Sohn J.J. Jones S.A. Polzin E.G. Battaglia V.S. Henriksen G.L. Motloch C. Richardson R. Unkelhaeuser T. Ingersoll D. Case H.L. An accelerated calendar and cycle life study of Li-ion cells. J. Power Sources 2001 101 2 238 247 10.1016/S0378‑7753(01)00783‑2
    [Google Scholar]
  31. Zhao Y. Pohl O. Bhatt A.I. Collis G.E. Mahon P.J. Rüther T. Hollenkamp A.F. A review on battery market trends, second-life reuse, and recycling. Sustain. Chem. 2021 2 1 167 205 10.3390/suschem2010011
    [Google Scholar]
  32. Teske S. Sawyer S. Schäfer O. Pregger T. Simon S. Naegler T. Energy [R]evolution - a sustainable world energy outlook 2015. Greenpeace International. Greenp. Inter. 2015 3 364
    [Google Scholar]
  33. 2021 Impact Report: Sustainability in electric vehicles and battery recycling. 2021 Available from: https://www.tesla. com/ns_videos/2021-tesla-impact-report.pdf
  34. Grosjean C. Miranda P.H. Perrin M. Poggi P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sustain. Energy Rev. 2012 16 3 1735 1744 10.1016/j.rser.2011.11.023
    [Google Scholar]
  35. Gruber P.W. Medina P.A. Keoleian G.A. Kesler S.E. Everson M.P. Wallington T.J. Global lithium availability: A constraint for electric vehicles? J. Ind. Ecol. 2011 15 5 760 775 10.1111/j.1530‑9290.2011.00359.x
    [Google Scholar]
  36. Duan X. Zhu W. Ruan Z. Xie M. Chen J. Ren X. Recycling of lithium batteries—A review. Energies 2022 15 5 1611 10.3390/en15051611
    [Google Scholar]
  37. Flexer V. Baspineiro C.F. Galli C.I. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 2018 639 1188 1204 10.1016/j.scitotenv.2018.05.223 29929287
    [Google Scholar]
  38. Miao Y. Liu L. Zhang Y. Tan Q. Li J. An overview of global power lithium-ion batteries and associated critical metal recycling. J. Hazard. Mater. 2022 425 127900 10.1016/j.jhazmat.2021.127900 34896721
    [Google Scholar]
  39. Gao X.S. Wu M. Zhao G.J. Gu K.H. Wu J.J. Zeng H.B. Recycling technologies of spent lithium-ion batteries and future directions: A review. Transact. Nonf. Met. Soc. China 2025 35 1 271 295 10.1016/S1003‑6326(24)66679‑3
    [Google Scholar]
  40. Kim H.J. Krishna T.N.V. Zeb K. Rajangam V. Gopi C.V.V.M. Sambasivam S. Raghavendra K.V.G. Obaidat I.M. A comprehensive review of Li-ion battery materials and their recycling techniques. Electronics 2020 9 7 1161 10.3390/electronics9071161
    [Google Scholar]
  41. Windisch-Kern S. Gerold E. Nigl T. Jandric A. Altendorfer M. Rutrecht B. Scherhaufer S. Raupenstrauch H. Pomberger R. Antrekowitsch H. Part F. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies. Waste Manag. 2022 138 125 139 10.1016/j.wasman.2021.11.038 34875455
    [Google Scholar]
  42. Lee J. Choe H. Yoon H.Y. Past trends and future directions for circular economy in electric vehicle waste battery reuse and recycling: A bibliometric analysis. Sustain. Energy Technol. Assess. 2025 75 104198 10.1016/j.seta.2025.104198
    [Google Scholar]
  43. Srinivasan S. Shanthakumar S. Ashok B. Sustainable lithium-ion battery recycling: A review on technologies, regulatory approaches and future trends. Energy Rep. 2025 13 789 812 10.1016/j.egyr.2024.12.043
    [Google Scholar]
  44. Ding G. Liu F. Fan X. Gao X. Cao G. Ban J. Li Z. Hu J. Research on green recycling of lithium-ion batteries cathode waste powder. Chem. Eng. J. 2024 493 152837 10.1016/j.cej.2024.152837
    [Google Scholar]
  45. Leal V.M. Ribeiro J.S. Coelho E.L.D. Freitas M.B.J.G. Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications. J. Energy Chem. 2023 79 118 134 10.1016/j.jechem.2022.08.005
    [Google Scholar]
  46. Bresolin B.M. Zanoletti A. Bontempi E. Recent improvements in salt-sssisted and microwave-assisted recovery methods for sustainable metal extraction from NCM cathodes in spent lithium-ion batteries: A review. Separ. Purif. Tech. 2025 363 1 131918 10.1016/j.seppur.2025.131918
    [Google Scholar]
  47. Adhikari B. Chowdhury N.A. Diaz L.A. Jin H. Saha A.K. Shi M. Klaehn J.R. Lister T.E. Electrochemical leaching of critical materials from lithium-ion batteries: A comparative life cycle assessment. Resour. Conserv. Recycl 2023 193 106973 10.1016/j.resconrec.2023.106973
    [Google Scholar]
  48. Wongnaree N. Yingnakorn T. Ma-Ud N. Sriklang L. Khumkoa S. Recovery of valuable metals from leached solutions of black mass through precipitation method. Res. Eng. 2025 25 104190 10.1016/j.rineng.2025.104190
    [Google Scholar]
  49. Li D. Feng S. He C. Men L. Li J. Zhang J. Zhou Y. A facile and efficient recovery method of valuable metals from spent lithium-ion batteries via simultaneous leaching and separation strategy. Waste Manag. 2025 195 220 230 10.1016/j.wasman.2025.01.036 39923659
    [Google Scholar]
  50. Wang C. Liu J. Xing P. Duan X. Li H. Integrating lithium recovery with the production of high-purity lithium carbonate from spent lithium-ion battery smelting slag. Hydrometallurgy 2025 233 106452 10.1016/j.hydromet.2025.106452
    [Google Scholar]
  51. Hong G. Park H. Gomez-Flores A. Kim H. Lee M.J. Lee J. Direct flotation separation of active materials from the black mass of lithium nickel cobalt manganese oxides-type spent lithium-ion batteries. Separ. Purif. Tech. 2024 336 126327 10.1016/j.seppur.2024.126327
    [Google Scholar]
  52. Vu T.T. Seo J. Song D. A comprehensive techno-economic analysis of the full project for recycling valuable metals from waste Lithium-Ion battery. J. Environ. Chem. Eng. 2024 12 6 114751 10.1016/j.jece.2024.114751
    [Google Scholar]
  53. Bhar M. Ghosh S. Krishnamurthy S. Kaliprasad Y. Martha S.K. A review on spent lithium-ion battery recycling: From collection to black mass recovery. RSC Sustainability 2023 1 5 1150 1167 10.1039/D3SU00086A
    [Google Scholar]
  54. Huang C. Lipatnikov A.N. Lövström C. Smajovic N. Andersson L. Ismail A. Experimental investigation of dust explosions with a focus on black mass in battery recycling. J. Loss Prev. Process Ind. 2025 94 105526 10.1016/j.jlp.2024.105526
    [Google Scholar]
  55. Reinhart L. Vrucak D. Woeste R. Lucas H. Rombach E. Friedrich B. Letmathe P. Pyrometallurgical recycling of different lithium-ion battery cell systems: Economic and technical analysis. J. Clean. Prod. 2023 416 137834 10.1016/j.jclepro.2023.137834
    [Google Scholar]
  56. Qu G. Yang J. Wang H. Ran Y. Li B. Wei Y. Applicability of the reduction smelting recycling process to different types of spent lithium-ion batteries cathode materials. Waste Manag. 2023 166 222 232 10.1016/j.wasman.2023.05.009 37196388
    [Google Scholar]
  57. Klemettinen L. Biswas J. Klemettinen A. Zhang J. O’Brien H. Partinen J. Jokilaakso A. Roasting-water leaching-slag cleaning process for recovery of valuable metals from Li-ion battery scrap. J. Sust. Metall 2024 1 9 10.1007/s40831‑024‑00988‑y
    [Google Scholar]
  58. Li N. Guo J. Chang Z. Dang H. Zhao X. Ali S. Li W. Zhou H. Sun C. Aqueous leaching of lithium from simulated pyrometallurgical slag by sodium sulfate roasting. RSC Advances 2019 9 41 23908 23915 10.1039/C9RA03754C 35530593
    [Google Scholar]
  59. Rinne M. Lappalainen H. Lundström M. Evaluating the possibilities and limitations of the pyrometallurgical recycling of waste Li-ion batteries using simulation and life cycle assessment. Green Chem. 2025 1 9 10.1039/D4GC05409A
    [Google Scholar]
  60. Makuza B. Tian Q. Guo X. Chattopadhyay K. Yu D. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. J. Power Sources 2021 491 229622 10.1016/j.jpowsour.2021.229622
    [Google Scholar]
  61. Zhang L. Hu Y. Xie M. Chen G. Lithium recovery from an alumina electrolysis slag leaching solution with strong acidity: Separation of lithium-ion and production of battery grade lithium carbonate. Desalination 2024 592 118158 10.1016/j.desal.2024.118158
    [Google Scholar]
  62. Ortiz A. López S. Ríos A. Copete H. Akroyd J. Mosbach S. Kraft M. Molina A. Small-scale pyrometallurgical plant for recycling spent lead acid batteries: CFD analysis of a submerged lance furnace, environmental and economic assessment, and multiobjective optimization. J. Clean. Prod. 2025 489 144654 10.1016/j.jclepro.2025.144654
    [Google Scholar]
  63. Pan C. Shen Y. Pyrometallurgical recycling of spent lithium-ion batteries from conventional roasting to synergistic pyrolysis with organic wastes. J. Energy Chem. 2023 85 547 561 10.1016/j.jechem.2023.06.040
    [Google Scholar]
  64. Patade C.L.A. Sharma A.R. Nigam V.K. Sampath M.K. Recovery of lithium and lead ions from battery industry wastes using advanced separation techniques. In: Metal Value Recovery from Industrial Waste Using Advanced Physicochemical Treatment Technologies. Giannakoudakis D.A. Das P. Pal P. Nayak J. Chakrabortty S. Amsterdam, Netherlands Elsevier 2025 235 259 10.1016/B978‑0‑443‑21884‑2.00007‑1
    [Google Scholar]
  65. Zhang L. Enhancing lithium recycling efficiency in pyrometallurgical processes. ACS Sustain. Chem. Eng. 2023 11 1 123 131 10.1021/acssusresmgt.4c00064
    [Google Scholar]
  66. Kwon O. Sohn I. Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process. Resour. Conserv. Recycling 2020 158 104809 10.1016/j.resconrec.2020.104809
    [Google Scholar]
  67. Jena K.K. AlFantazi A. Mayyas A.T. Comprehensive review on concept and recycling evolution of spent lithium-ion batteries. Energy Fuels 2021 35 22 18257 18284 10.1021/acs.energyfuels.1c02489
    [Google Scholar]
  68. Ji Y. Kpodzro E.E. Jafvert C.T. Zhao F. Direct recycling technologies of cathode in spent lithium-ion batteries. Clean Technol. Recyc. 2021 1 2 124 151 10.3934/ctr.2021007
    [Google Scholar]
  69. Environmental Protection Agency (EPA) 2021 Available from: https://www.epa.gov/hw/lithium-ion-battery-recycling
  70. Assefi M. Maroufi S. Yamauchi Y. Sahajwalla V. Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: A minireview. Curr. Opin. Green Sustain. Chem. 2020 24 26 31 10.1016/j.cogsc.2020.01.005
    [Google Scholar]
  71. Lv W. Wang Z. Cao H. Sun Y. Zhang Y. Sun Z. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain. Chem. Eng. 2018 6 2 1504 1521 10.1021/acssuschemeng.7b03811
    [Google Scholar]
  72. Rajaeifar M.A. Raugei M. Steubing B. Hartwell A. Anderson P.A. Heidrich O. Life cycle assessment of lithium‐ion battery recycling using pyrometallurgical technologies. J. Ind. Ecol. 2021 25 6 1560 1571 10.1111/jiec.13157
    [Google Scholar]
  73. Machala M.L. Chen X. Bunke S.P. Forbes G. Yegizbay A. Chalendar D.J.A. Azevedo I.L. Benson S. Tarpeh W.A. Life cycle comparison of industrial-scale lithium-ion battery recycling and mining supply chains. Nat. Commun. 2025 16 1 988 10.1038/s41467‑025‑56063‑x 39856111
    [Google Scholar]
  74. Norgren A. Carpenter A. Heath G. Design for recycling principles applicable to selected clean energy technologies: Crystalline-silicon photovoltaic modules, electric vehicle batteries, and wind turbine blades. J. Sust. Metall. 2020 6 4 761 774 10.1007/s40831‑020‑00313‑3
    [Google Scholar]
  75. Yingnakorn T. Hartley J. Terreblanche J.S. Lei C. Dose W.M. Abbott A.P. Direct re-lithiation strategy for spent lithium iron phosphate battery in Li-based eutectic using organic reducing agents. RSC Sustainab. 2023 1 9 2341 2349 10.1039/D3SU00237C
    [Google Scholar]
  76. Zhu X. Gong M. Mo R. 2024 99 113308 10.1016/j.est.2024.113308.
  77. Wang X. Gaustad G. Babbitt C.W. Bailey C. Ganter M.J. Landi B.J. Economic and environmental characterization of an evolving Li-ion battery waste stream. J. Environ. Manage. 2014 135 126 134 10.1016/j.jenvman.2014.01.021 24531384
    [Google Scholar]
  78. Huang L. Quality concerns in the adoption of recycled battery materials in industrial applications. Int. Mater. Rev. 2022 35 6 476 490 10.1016/j.jece.2024.114740
    [Google Scholar]
  79. Azimi G. Chan K.H. A review of contemporary and emerging recycling methods for lithium-ion batteries with a focus on NMC cathodes. Resour. Conserv. Recycling 2024 209 107825 10.1016/j.resconrec.2024.107825
    [Google Scholar]
  80. Mahandra H. Ghahreman A. A sustainable process for selective recovery of lithium as lithium phosphate from spent LiFePO4 batteries. Resour. Conserv. Recycling 2021 175 105883 10.1016/j.resconrec.2021.105883
    [Google Scholar]
  81. Arguello M.E. Labanda N.A. Calo V.M. Gumulya M. Utikar R. Derksen J. Dendrite formation in rechargeable lithium-metal batteries: Phase-field modeling using open-source finite element library. J. Energy Storage 2022 53 104892 10.1016/j.est.2022.104892
    [Google Scholar]
  82. Cornelio A. Mousa E. Ye G. Yang S.X. Zanoletti A. Bontempi E. Evaluating the sustainability of a pilot-scale spent lithium-ion battery recycling process. Separ. Purif. Tech. 2025 359 Part 1 130433 10.1016/j.seppur.2024.130433
    [Google Scholar]
  83. Beletskii E.V. Romanovski V. Direct plasma solution recycling of cathode materials for lithium-ion batteries with simultaneous removal of contaminants and relithiation. J. Power Sources 2024 624 235576 10.1016/j.jpowsour.2024.235576
    [Google Scholar]
  84. Ali H. Khan H.A. Pecht M.G. Circular economy of Li batteries: Technologies and trends. J. Energy Storage 2021 40 102690 10.1016/j.est.2021.102690
    [Google Scholar]
  85. Wang Y. Zhai Q. Yuan C. Analysis of direct recycling methods for retired lithium-ion batteries from electric vehicles. Procedia CIRP 2023 116 702 707 10.1016/j.procir.2023.02.118
    [Google Scholar]
  86. Rouhi H. Karola E. Serna-Guerrero R. Santasalo-Aarnio A. Voltage behavior in lithium-ion batteries after electrochemical discharge and its implications on the safety of recycling processes. J. Energy Storage 2021 35 102323 10.1016/j.est.2021.102323
    [Google Scholar]
  87. Lin Y. Yu Z. Wang Y. Goh M. Performance evaluation of regulatory schemes for retired electric vehicle battery recycling within dual-recycle channels. J. Environ. Manage. 2023 332 117354 10.1016/j.jenvman.2023.117354 36724597
    [Google Scholar]
  88. Pražanová A. Fridrich M. Weinzettel J. Knap V. Gate-to-gate life cycle assessment of lithium-ion battery recycling pre-treatment. Clea. Envir. Sys. 2025 16 100263 10.1016/j.cesys.2025.100263
    [Google Scholar]
  89. Roy J.J. Cao B. Madhavi S. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere 2021 282 130944 10.1016/j.chemosphere.2021.130944 34087562
    [Google Scholar]
  90. Junior B.A.B. Stopic S. Friedrich B. Tenório J.A.S. Espinosa D.C.R. Cobalt recovery from Li-Ion battery recycling: A critical review. Metals 2021 11 12 1999 10.3390/met11121999
    [Google Scholar]
  91. Dunn J.B. Gaines L. Kelly J.C. James C. Gallagher K.G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ. Sci. 2015 8 1 158 168 10.1039/C4EE03029J
    [Google Scholar]
  92. Xu F. Li L. Ge J. Chen R. Wu F. Chen S. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system. ACS Sustain. Chem.& Eng. 2018 6 6 2821 2828 10.1007/s41918‑018‑0012‑1
    [Google Scholar]
  93. Li Y. Gao T. Chen Z. Zhang Z. Amine K. Lu J. Recycling of spent lithium-ion batteries in view of high-energy cathode development. Energy Environ. Sci. 2018 11 9 2609 2645 10.1039/D0GC02745F
    [Google Scholar]
  94. Zhou Y. Liu X. Zhang H. Lin X. Cao H. Sun Z. Hydrometallurgical recycling of spent lithium-ion batteries: Recent advances and perspectives. J. Clean. Prod. 2021 297 126602 10.3390/batteries5040068
    [Google Scholar]
  95. Jha M.K. Kumari A. Jha A.K. Kumar V. Hait J. Pandey B.D. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Manag. 2013 33 9 1890 1897 10.1016/j.wasman.2013.05.008 23773705
    [Google Scholar]
  96. Kim D. Joo H. Kim C. Kim S. Kim W.Y. Han S. Park J. Park S. Jung H. Park S. Kwon K. A comprehensive review on the resynthesis of ternary cathode active materials from the leachate of Li-ion batteries. J. Energy Chem. 2024 95 446 463 10.1016/j.jechem.2024.03.053
    [Google Scholar]
  97. Xuan W. Otsuki A. Chagnes A. Investigation of the leaching mechanism of NMC 811 (LiNi0.8 Mn0.1 Co0.1 O2) by hydrochloric acid for recycling lithium ion battery cathodes. RSC Advances 2019 9 66 38612 38618 10.1039/C9RA06686A 35540190
    [Google Scholar]
  98. Jung Y.J. Yoo B.Y. Park S.C. Son S.H. Design optimization of selective lithium leaching of cathodic active materials from spent lithium-ion batteries based on the Taguchi method. Metals 2021 11 1 108 10.3390/met11010108
    [Google Scholar]
  99. Chen W.S. Ho H.J. Recovery of valuable metals from lithium-ion batteries NMC cathode waste materials by hydrometallurgical methods. Metals 2018 8 5 321 10.3390/met8050321
    [Google Scholar]
  100. Aaltonen M. Peng C. Wilson B. Lundström M. Leaching of metals from spent lithium-ion batteries. Recycling 2017 2 4 20 10.3390/recycling2040020
    [Google Scholar]
  101. Chen F. Yang B. Zhang W. Ma J. Lv J. Yang Y. Enhanced recycling network for spent e-bicycle batteries: A case study in Xuzhou, China. Waste Manag. 2017 60 660 665 10.1016/j.wasman.2016.09.027 27679969
    [Google Scholar]
  102. Saneie R. Abdollahi H. Ghassa S. Azizi D. Chelgani C.S. Recovery of copper and aluminum from spent lithium-ion batteries by froth flotation: A sustainable approach. J. Sust. Metall. 2022 8 1 386 397 10.1007/s40831‑022‑00493‑0
    [Google Scholar]
  103. Celante V.G. Freitas M.B.J.G. Electrodeposition of copper from spent Li-ion batteries by electrochemical quartz crystal microbalance and impedance spectroscopy techniques. J. Appl. Electrochem. 2010 40 2 233 239 10.1007/s10800‑009‑9996‑x
    [Google Scholar]
  104. Dolotko O. Gehrke N. Malliaridou T. Sieweck R. Herrmann L. Hunzinger B. Knapp M. Ehrenberg H. Universal and efficient extraction of lithium for lithium-ion battery recycling using mechanochemistry. Commun. Chem. 2023 6 1 49 10.1038/s42004‑023‑00844‑2 36977798
    [Google Scholar]
  105. Sun L. Liu B. Wu T. Wang G. Huang Q. Su Y. Wu F. Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride. Int. J. Miner. Metall. Mater. 2021 28 6 991 1000 10.1007/s12613‑020‑2115‑z
    [Google Scholar]
  106. Winslow K.M. Laux S.J. Townsend T.G. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour. Conserv. Recycling 2018 129 263 277 10.1016/j.resconrec.2017.11.001
    [Google Scholar]
  107. Peters J.F. Baumann M. Zimmermann B. Braun J. Weil M. The environmental impact of Li-Ion batteries and the role of key parameters – A review. Renew. Sustain. Energy Rev. 2017 67 491 506 10.1016/j.rser.2016.08.039
    [Google Scholar]
  108. Harper G. Sommerville R. Kendrick E. Driscoll L. Slater P. Stolkin R. Walton A. Christensen P. Heidrich O. Lambert S. Abbott A. Ryder K. Gaines L. Anderson P. Recycling lithium-ion batteries from electric vehicles. Nature 2019 575 7781 75 86 10.1038/s41586‑019‑1682‑5 31695206
    [Google Scholar]
  109. Ma X. Ge P. Wang L. Sun W. Bu Y. Sun M. Yang Y. The recycling of spent lithium-ion batteries: Crucial flotation for the separation of cathode and anode materials. Molecules 2023 28 10 4081 10.3390/molecules28104081 37241821
    [Google Scholar]
  110. Slattery M. Dunn J. Kendall A. Charting the electric vehicle battery reuse and recycling network in North America. Waste Manag. 2024 174 76 87 10.1016/j.wasman.2023.11.018 38029657
    [Google Scholar]
  111. Gonzales-Calienes G. Kannangara M. Bensebaa F. Economic and environmental viability of lithium-ion battery recycling—case study in two canadian regions with different energy mixes. Batteries 2023 9 7 375 10.3390/batteries9070375
    [Google Scholar]
  112. Xiaodong S. Ishchenko V. Environmental impact analysis of waste lithium-ion battery cathode recycling. j. ecol. eng. 2024 25 7 352 358 10.12911/22998993/189187
    [Google Scholar]
  113. Zhou L.F. Yang D. Du T. Gong H. Luo W.B. The current process for the recycling of spent lithium ion batteries. Front Chem. 2020 8 578044 10.3389/fchem.2020.578044 33344413
    [Google Scholar]
  114. Wang F. Zhang T. He Y. Zhao Y. Wang S. Zhang G. Zhang Y. Feng Y. Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment. J. Clean. Prod. 2018 185 646 652 10.1016/j.jclepro.2018.03.069
    [Google Scholar]
  115. Lander L. Cleaver T. Rajaeifar M.A. Nguyen-Tien V. Elliott R.J.R. Heidrich O. Kendrick E. Edge J.S. Offer G. Financial viability of electric vehicle lithium-ion battery recycling. iScience 2021 24 7 102787 10.1016/j.isci.2021.102787 34308293
    [Google Scholar]
  116. Shrestha A.B. Amarasekara A.S. The sustainable and green management of spent lithium-ion batteries through hydroxy acid recycling and direct regeneration of active positive electrode material: A review. Batteries 2025 11 2 68 10.3390/batteries11020068
    [Google Scholar]
  117. Piątek J. Afyon S. Budnyak T.M. Budnyk S. Sipponen M.H. Slabon A. Sustainable Li‐ion batteries: Chemistry and recycling. Adv. Energy Mater. 2021 11 43 2003456 10.1002/aenm.202003456
    [Google Scholar]
  118. Richa K. Babbitt C.W. Gaustad G. Wang X. A future perspective on lithium-ion battery waste flows from electric vehicles. Resour. Conserv. Recycling 2014 83 63 76 10.1016/j.resconrec.2013.11.008
    [Google Scholar]
  119. Kang D.H.P. Chen M. Ogunseitan O.A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 2013 47 10 5495 5503 10.1021/es400614y 23638841
    [Google Scholar]
  120. Diaz B.L. He X. Hu Z. Restuccia F. Marinescu M. Barreras J.V. Patel Y. Offer G. Rein G. Review—Meta-review of fire safety of lithium-ion batteries. J. Electrochem. Soc. 2020 167 9 090559 10.1149/1945‑7111/aba8b9
    [Google Scholar]
  121. Mrozik W. Rajaeifar M.A. Heidrich O. Christensen P. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 2021 14 12 6099 6121 10.1039/D1EE00691F
    [Google Scholar]
  122. Zanoletti A. Crespi F. Moretti L. Nannoni M. Dotelli G. Colombo E. Ensuring safety and reliability: An overview of lithium-ion battery operational hazards and mitigation strategies. Batteries. 2023 11 1 6 10.3390/batteries11010006
    [Google Scholar]
  123. Kilgo K. fM.; Anctil, A.; Kennedy, M.S.; Powell, B.A. Metal leaching from Lithium-ion and Nickel-metal hydride batteries and photovoltaic modules in simulated landfill leachates and municipal solid waste materials. Chem. Eng. J. 2022 431 133825 10.1016/j.cej.2021.133825
    [Google Scholar]
  124. King S. Boxall N.J. Lithium battery recycling in australia: Defining the status and identifying opportunities for the development of a new industry. J. Clean. Prod. 2019 215 1279 1287 10.1016/j.jclepro.2019.01.178
    [Google Scholar]
  125. Heath G.A. Ravikumar D. Hansen B. Kupets E. Li Y. A critical review of the circular economy for lithium-ion batteries and photovoltaic modules – status, challenges, and opportunities. J. Air Waste Manag. Assoc. 2022 72 6 478 539 10.1080/10962247.2022.2068878
    [Google Scholar]
/content/journals/mns/10.2174/0118764029369243250325084413
Loading
/content/journals/mns/10.2174/0118764029369243250325084413
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test