Skip to content
2000
Volume 17, Issue 2
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Background

The synthesis of carbon quantum dots (CQDs) from L. fruit using the hydrothermal method is investigated for heavy-metal detection. CQDs have gained significant attention due to their unique properties, including high photoluminescence, biocompatibility, and low toxicity. The utilization of natural sources such as L. fruit for CQDs synthesis offers an eco-friendly and cost-effective approach.

Methods

In this study, L. fruit was chosen as a precursor for CQDs synthesis due to its abundance and potential for heavy-metal adsorption. The hydrothermal method was employed as it provides a simple and efficient route for CQDs synthesis. The process involves the hydrolysis and carbonization of the fruit extract under controlled temperature and pressure conditions. The resulting CQDs were characterized using various techniques such as UV-visible spectroscopy, FE-SEM, EDS, E-mapping, DLS, Zeta potential, PL spectroscopy, and FTIR.

Results

UV-Vis confirmed the presence of CQDs the observation of a distinct absorption peak. EDS spectrum revealed the formation of CQDs and other groups of elements present with it, which contribute to their stability and interaction with heavy metals. FESEM images showed that the synthesized CQDs possessed a uniform size distribution and exhibited a well-defined crystalline structure. The synthesized CQDs were then evaluated for heavy-metal detection. In addition, due to their unique surface properties and interaction with heavy metals, CQDs acted as an effective sensor. A series of experiments were conducted to investigate the sensitivity and selectivity of the CQDs towards various metal ions. The results demonstrated the superior performance of the synthesized CQDs in detecting Fe3+ ions, exhibiting high sensitivity and selectivity by quenching fluorescence when interacting with Fe3+ ions.

Conclusion

The successful synthesis of CQDs from L. fruit is reported. The characterization results confirmed the formation of CQDs with desirable properties for Fe3+ ions detection. The obtained CQDs demonstrated promising potential as efficient and eco-friendly sensors for Fe3+ ions detection in environmental and biomedical samples.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029343917241021043804
2024-12-10
2025-12-13
Loading full text...

Full text loading...

References

  1. BaluS. GanapathyD. AryaS. AtchudanR. SundramoorthyA.K. Advanced photocatalytic materials based degradation of micropollutants and their use in hydrogen production – a review.RSC Advances20241420143921442410.1039/D4RA01307G38699688
    [Google Scholar]
  2. ShivalingamC. MohanL. GanapathyD. ShanmugamR. PitchiahS. RamadossR. SundramoorthyA.K. Current overview on the role of nanoparticles in water desalination technology.Curr. Anal. Chem.202218998999810.2174/1573411018666220805112549
    [Google Scholar]
  3. SinghA. ShahS.S. SharmaC. GuptaV. SundramoorthyA.K. KumarP. AryaS. An approach towards different techniques for detection of heavy metal ions and their removal from waste water.J. Environ. Chem. Eng.202412311303210.1016/j.jece.2024.113032
    [Google Scholar]
  4. SharmaB. SinghA. SharmaA. DubeyA. GuptaV. AbaszadeR.G.O. SundramoorthyA.K. SharmaN. AryaS. Synthesis and characterization of zinc selenide/graphene oxide (ZnSe/GO) nanocomposites for electrochemical detection of cadmium ions.Appl. Phys., A Mater. Sci. Process.2024130529710.1007/s00339‑024‑07472‑0
    [Google Scholar]
  5. LimS.Y. ShenW. GaoZ. Carbon quantum dots and their applications.Chem. Soc. Rev.201544136238110.1039/C4CS00269E25316556
    [Google Scholar]
  6. LiH. KangZ. LiuY. LeeS.T. Carbon nanodots: Synthesis, properties and applications.J. Mater. Chem.201222462423010.1039/c2jm34690g
    [Google Scholar]
  7. MageshV. SundramoorthyA.K. GanapathyD. Recent advances on synthesis and potential applications of carbon quantum dots.Front. Mater.2022990683810.3389/fmats.2022.906838
    [Google Scholar]
  8. DhariwalJ. RaoG.K. VayaD. Recent advancements towards the green synthesis of carbon quantum dots as an innovative and eco-friendly solution for metal ion sensing and monitoring.RSC Sustainability202421113610.1039/D3SU00375B
    [Google Scholar]
  9. ShenT. WangQ. GuoZ. KuangJ. CaoW. Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity.Ceram. Int.20184410118281183410.1016/j.ceramint.2018.03.271
    [Google Scholar]
  10. FerjaniH. AbdallaS. OyewoO.A. OnwudiweD.C. Facile synthesis of carbon dots by the hydrothermal carbonization of avocado peels and evaluation of the photocatalytic property.Inorg. Chem. Commun.202416011186610.1016/j.inoche.2023.111866
    [Google Scholar]
  11. PrathapN. BallaP. ShivakumarM.S. PeriyasamiG. KaruppiahP. RamasamyK. VenkatesanS. Prosopis juliflora hydrothermal synthesis of high fluorescent carbon dots and its antibacterial and bioimaging applications.Sci. Rep.2023131967610.1038/s41598‑023‑36033‑337322059
    [Google Scholar]
  12. IredeE.L. AwoyemiR.F. OwolabiB. AworindeO.R. KajolaR.O. HazeezA. RajiA.A. GaniyuL.O. OnukwuliC.O. OnivefuA.P. IfijenI.H. Cutting-edge developments in zinc oxide nanoparticles: Synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions.RSC Advances20241429209922103410.1039/D4RA02452D38962092
    [Google Scholar]
  13. El-ShabasyR.M. Farouk ElsadekM. Mohamed AhmedB. Fawzy FarahatM. MoslehK.N. TaherM.M. Recent developments in carbon quantum dots: Properties, fabrication techniques, and bio-applications.Processes (Basel)20219238810.3390/pr9020388
    [Google Scholar]
  14. MeghalB.K. SridharanG. GanapathyD. SundramoorthyA.K. Green synthesis of carbon quantum dots using barks of Ficus religiosa and their application as a selective fluorescence chemosensor.Micro Nanosyst.202416425526310.2174/0118764029310433240813044002
    [Google Scholar]
  15. TungareK. BhoriM. RacherlaK. S. SawantS. Synthesis, characterization and biocompatibility studies of carbon quantum dots from Phoenix dactylifera.3 Biotech.20201012540
    [Google Scholar]
  16. AtchudanR. PerumalS. EdisonT.N.J.I. SundramoorthyA.K. VinodhR. SangarajuS. KishoreS.C. LeeY.R. Natural nitrogen-doped carbon dots obtained from hydrothermal carbonization of Chebulic myrobalan and their sensing ability toward heavy metal ions.Sensors (Basel)202323278710.3390/s2302078736679584
    [Google Scholar]
  17. MuthulingamS. GreeshmaK.P. PoornimaK. TamizselviR. JohnS. UthirakumarA.P. Enhancement in photostability of betalain dye from Basella alba fruits using zinc oxide nanoparticles.Mater. Today20224919931999
    [Google Scholar]
  18. LiL. DongT. Photoluminescence tuning in carbon dots: Surface passivation or/and functionalization, heteroatom doping.J. Mater. Chem. C Mater. Opt. Electron. Devices20186307944797010.1039/C7TC05878K
    [Google Scholar]
  19. WangY. HuA. Carbon quantum dots: Synthesis, properties and applications.J. Mater. Chem. C Mater. Opt. Electron. Devices2014234692110.1039/C4TC00988F
    [Google Scholar]
  20. NiranjanR. PrasadG.D. AchankunjuS. ArockiarajM. VelumaniK. NachimuthuK. SundramoorthyA.K. NeogiI. NallasivamJ.L. RajeshkumarV. MahadevegowdaS.H. Multicomponent reaction based tolyl-substituted and pyrene-pyridine conjugated isomeric ratiometric fluorescent probes: A comparative investigation of photophysical and Hg(II)-sensing behaviors.J. Fluoresc.202320230346710.1007/s10895‑023‑03467‑x37864613
    [Google Scholar]
  21. Muthamil SelvanS. Vijai AnandK. MageshV. SundramoorthyA.K. VinithaG. KhoslaA. GovindarajuK. Green synthesis of blue light-emitting carbon dots using tridax procumbens leaves: Optical and electrochemical studies.ECS J. Solid State Sci. Technol.202312606700710.1149/2162‑8777/acdf81
    [Google Scholar]
  22. DeB. KarakN. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice.RSC Advances2013322828610.1039/c3ra00088e
    [Google Scholar]
  23. RajP. LeeS. LeeT.Y. Carbon dot/naphthalimide based ratiometric fluorescence biosensor for hyaluronidase detection.Materials (Basel)2021145131310.3390/ma1405131333803381
    [Google Scholar]
  24. DeR. JoK.W. LeeB.H. SomeS. KimK.T. Microwave-assisted rapid synthesis of nitrogen-enriched amphibious carbon quantum dots for sensitive detection of ROS and multiple other applications.J. Mater. Chem. B Mater. Biol. Med.202311266024604310.1039/D3TB00614J37272382
    [Google Scholar]
  25. AtchudanR. EdisonT.N.J.I. PerumalS. VinodhR. SundramoorthyA.K. BabuR.S. LeeY.R. Leftover kiwi fruit peel-derived carbon dots as a highly selective fluorescent sensor for detection of ferric ion.Chemosensors (Basel)20219716610.3390/chemosensors9070166
    [Google Scholar]
  26. YanF. JiangY. SunX. BaiZ. ZhangY. ZhouX. Surface modification and chemical functionalization of carbon dots: A review.Mikrochim. Acta2018185942410.1007/s00604‑018‑2953‑930128831
    [Google Scholar]
  27. QuD. ZhengM. DuP. ZhouY. ZhangL. LiD. TanH. ZhaoZ. XieZ. SunZ. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts.Nanoscale2013524122721227710.1039/c3nr04402e24150696
    [Google Scholar]
  28. XuJ. ShalomM. Conjugated carbon nitride as an emerging luminescent material: Quantum dots, thin films and their applications in imaging, sensing, optoelectronic devices and photoelectrochemistry.ChemPhotoChem20193417017910.1002/cptc.201800256
    [Google Scholar]
  29. JingH. BardakciF. AkgölS. KusatK. AdnanM. AlamM. GuptaR. SahreenS. ChenY. GopinathS. SasidharanS. Green carbon dots: Synthesis, characterization, properties and biomedical applications.J. Funct. Biomater.20231412710.3390/jfb1401002736662074
    [Google Scholar]
  30. LiuM.L. ChenB.B. LiC.M. HuangC.Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications.Green Chem.201921344947110.1039/C8GC02736F
    [Google Scholar]
  31. ZhangQ. ZhangX. BaoL. WuY. JiangL. ZhengY. WangY. ChenY. The application of green-synthesis-derived carbon quantum dots to bioimaging and the analysis of Mercury(II).J. Anal. Methods Chem.201920191910.1155/2019/818313431886024
    [Google Scholar]
  32. BoraA. MohanK. DoluiS.K. Carbon dots as cosensitizers in dye-sensitized solar cells and fluorescence chemosensors for 2,4,6-trinitrophenol detection.Ind. Eng. Chem. Res.20195851227712277810.1021/acs.iecr.9b05056
    [Google Scholar]
  33. DagerA. UchidaT. MaekawaT. TachibanaM. Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: Photoluminescence analysis using machine learning.Sci. Rep.2019911400410.1038/s41598‑019‑50397‑531570739
    [Google Scholar]
  34. ZhangX. HouX. LuD. ChenY. FengL. Porphyrin functionalized carbon quantum dots for enhanced electrochemiluminescence and sensitive detection of Cu2+.Molecules2023283145910.3390/molecules2803145936771121
    [Google Scholar]
  35. XuX. RayR. GuY. PloehnH.J. GearheartL. RakerK. ScrivensW.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments.J. Am. Chem. Soc.200412640127361273710.1021/ja040082h15469243
    [Google Scholar]
  36. ZhuH. WangX. LiY. WangZ. YangF. YangX. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties.Chem. Commun. (Camb.)2009345118512010.1039/b907612c20448965
    [Google Scholar]
  37. BakerS.N. BakerG.A. Luminescent carbon nanodots: Emergent nanolights.Angew. Chem. Int. Ed.201049386726674410.1002/anie.20090662320687055
    [Google Scholar]
  38. ZhangZ. ZhangJ. ChenN. QuL. Graphene quantum dots: An emerging material for energy-related applications and beyond.Energy Environ. Sci.2012510886910.1039/c2ee22982j
    [Google Scholar]
  39. JiaX. LiJ. WangE. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence.Nanoscale20124185572557510.1039/c2nr31319g22786671
    [Google Scholar]
  40. ZhaoL. WangY. ZhaoX. DengY. XiaY. Facile synthesis of nitrogen-doped carbon quantum dots with chitosan for fluorescent detection of Fe3+.Polymers (Basel)20191111173110.3390/polym1111173131652826
    [Google Scholar]
  41. QiH. ZhaiZ. DongX. ZhangP. Nitrogen doped carbon quantum dots (N-CQDs) with high luminescence for sensitive and selective detection of hypochlorite ions by fluorescence quenching.Spectrochim. Acta A Mol. Biomol. Spectrosc.202227912145612145610.1016/j.saa.2022.12145635687990
    [Google Scholar]
  42. AliM.S. BhuniaN. AliM.S. KarmakarS. MukherjeeP. ChattopadhyayD. Fluorescent N-doped carbon quantum dots: A selective detection of Fe3+ and understanding its mechanism.Chem. Phys. Lett.202382514057414057410.1016/j.cplett.2023.140574
    [Google Scholar]
  43. Vinod KumarV. RamanT. AnthonyS.P. Fluorescent carbon quantum dots chemosensor for selective turn-on sensing of Zn 2+ and turn-off sensing of Pb 2+ in aqueous medium and zebrafish eggs.New J. Chem.20174124151571516410.1039/C7NJ02831H
    [Google Scholar]
  44. SongY. XiaX. XiaoZ. ZhaoY. YanM. LiJ. LiH. LiuX. Synthesis of N,S co-doped carbon dots for fluorescence turn-on detection of Fe2+ and Al3+ in a wide pH range.J. Mol. Liq.202236812066312066310.1016/j.molliq.2022.120663
    [Google Scholar]
  45. GaoC. ZangP. LiuW. TangY. A highly selective and sensitive fluorescent chemosensor for aluminum ions based on schiff base.J. Fluoresc.20162662015202110.1007/s10895‑016‑1895‑z27488687
    [Google Scholar]
  46. AhmadT. Abdel-AzeimS. KhanS. UllahN. Turn-on fluorescent sensors for nanomolar detection of zinc ions: Synthesis, properties and DFT studies.J. Taiwan Inst. Chem. Eng.202213910450710450710.1016/j.jtice.2022.104507
    [Google Scholar]
  47. GuoA. ZhuR. RenY. DongJ. FengL. A “turn-on” fluorescent chemosensor for aluminum ion and cell imaging application.Spectrochim. Acta A Mol. Biomol. Spectrosc.201615353053410.1016/j.saa.2015.09.00926421494
    [Google Scholar]
  48. WangH. XuX. YinJ. ZhangZ. XueL. A Highly selective “turn‐on” fluorescent sensor for aluminum ion detection in aqueous solution based on imidazo[2,1‐b ]thiazole schiff base.ChemistrySelect20216256454645910.1002/slct.202101562
    [Google Scholar]
/content/journals/mns/10.2174/0118764029343917241021043804
Loading
/content/journals/mns/10.2174/0118764029343917241021043804
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test